Lecture 15

Orthogonality + Projections in \(\mathbb{R}^n \)
§ 1: Geometric Interpretation of dot products (revisited).

Thm: \(\mathbf{v} \cdot \mathbf{w} = 0 \) if and only if \(\mathbf{v} \) and \(\mathbf{w} \) are perpendicular.
Def: The length of a vector $v = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ is

$$\|v\| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} = \sqrt{v \cdot v}.$$

So $v \cdot v = \|v\|^2$.

$$v \cdot v = 0 \iff \|v\| = 0 \iff v = 0.$$
Example:

\[
\sqrt{2^2 + 1^2} = \sqrt{5}
\]

\[
\|v\| = \sqrt{5}.
\]

Remark: Our definition of length is the Pythagorean theorem.
Def: We call $v \in \mathbb{R}^n$ a unit vector if
\[\|v\| = 1. \]

Thm: If v is non-zero, $\frac{v}{\|v\|}$ is a unit vector.

Circle radius 1
Thm: Let \(v_1, v_2 \in \mathbb{R}^n \)
then
\[
v_1 \cdot v_2 = \| v_1 \| \| v_2 \| \cos \theta
\]
where \(\theta \) is the angle between \(v_1 \) and \(v_2 \)

where \(0 \leq \theta < \pi \)
Why is this formula true?

It relates two ways of describing projection onto a line.
So:

\[v_1'' = \left(\frac{11 v_{11}}{11 v_{22}} \cos \theta \right) v_2 \]

On the other hand, you know

\[v_1'' = \left(\frac{v_1 \cdot v_2}{v_2 \cdot v_2} \right) v_2 \]

Equating these:

\[\frac{v_1 \cdot v_2}{11 v_{22}} = \frac{11 v_{11}}{11 v_{22}} \cos \theta \]

So

\[v_1 \cdot v_2 = 11 v_{11} 11 v_{22} \cos \theta. \]
Problem: What is the angle between $v_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$?

Using formula solve for θ.
\[\mathbf{v}_1 \cdot \mathbf{v}_2 = \frac{1}{2} \]

\[||\mathbf{v}_1|| = \sqrt{3/4} = \frac{\sqrt{3}}{2} \]

\[||\mathbf{v}_2|| = 1 \]

\[\frac{1}{2} = \frac{\sqrt{3}}{2} \cos \theta \]

\[\theta = \arccos \left(\frac{1}{\sqrt{3}} \right) \approx 54.7 \text{ degrees} \]
§ 2. Projection onto a subspace S^+ or the gonal complements.

Thm: Let $V \subseteq \mathbb{R}^n$ be a subspace, every vector $w \in \mathbb{R}^n$ can be written as

$$w = w^\parallel + w^\perp$$

where $w^\parallel \in V$ and $w^\perp \in (V)^\perp$, for all $\vec{v} \in V$ (w^\perp is perp. to all $\vec{v} \in V$).
Thm / Def: The map \(\text{Proj}_V : \mathbb{R}^n \rightarrow \mathbb{R}^n \) defined by \(w \mapsto \overline{w} \) is called an orthogonal projection onto \(V \). \(\text{Proj}_V \) is a linear transformation.
Properties:

1. $\text{Proj}(\vec{v}) = \vec{v}$ if $\vec{v} \in V$.

2. $\text{Im}(\text{Proj}_v) = V$.

3. $w \in \text{ker}(\text{Proj}_v)$ if $w^\perp = 0$.

 So if $w = w^\perp$, i.e., w is perpendicular to all $\vec{v} \in V$.
Def: The orthogonal complement of a subspace V is

$$V^\perp = \{ w \in \mathbb{R}^n : \forall v \in V, \ w \cdot v = 0 \}.$$
Examples of V^\perp

1. In \mathbb{R}^2, if V is a line through 0 of slope m, then V^\perp is perpendicular line v_1 (slope $-\frac{1}{m}$).
2. In \mathbb{R}^n, if V is a plane through 0 then V^\perp is the perpendicular line and v.v.

3. $(\mathbb{R}^n)^\perp = \mathbb{E}^3$.
 $\mathbb{E}^3^\perp = \mathbb{R}^n$.
Properties of V^\perp

1. V^\perp is a subspace (it's the kernel of the linear trans. Proj_V)

2. $(V^\perp)^\perp = V$

3. $\dim(V^\perp) = n - \dim(V)$

(Rank nullity: $\dim(V) + \dim(V^\perp) = n$)
\(\nabla V \wedge V^\perp = 30 \).

Question: How do you compute \(\text{Proj} \) (next time)?