Lecture 10: Subspaces of \mathbb{R}^k

Last time we defined the span of a set of vectors $v_1, \ldots, v_n \in \mathbb{R}^k$ to be the set

$$\text{Span}(v_1, \ldots, v_n) := \left\{ \sum_{i=1}^{n} c_i v_i : c_i \in \mathbb{R} \right\}$$

Let's see what these sets look like:

- $\text{Span}(\overrightarrow{0})$ is the origin.
- $\text{Span}(\overrightarrow{v})$ is a line through the origin containing \overrightarrow{v}.

The origin.
The span of v_1 and v_2 is the plane through a containing v_1 and v_2, as long as v_1 and v_2 don't lie on the same line through 0.

i.e. $\text{Span}(v_1, v_2) \neq \text{Span}(v_1)$ or $\text{Span}(v_2)$.

Any vector in the plane containing v_1 and v_2 and the origin is in the $\text{Span}(v_1, v_2)$.
The span of a set of vectors $v_1, \ldots, v_n \in \mathbb{R}^k$ is a generalization of the notion of "line, plane, etc. through the origin containing v_1, \ldots, v_n.

Lines, planes, etc. through 0 are generalized by the following definition:

Def: A subset $V \subseteq \mathbb{R}^k$ is called a **subspace** if

1. $\overrightarrow{0} \in V$.
2. If $v \in V$ then $cv \in V$ for all $c \in \mathbb{R}$.
3. If $v_1, v_2 \in V$, then $v_1 + v_2 \in V$.

Examples:

1. $\mathbb{R}^3 \subseteq \mathbb{R}^k$ is a subspace.
2. More generally, lines and planes through the origin are subspaces.
(2) If $V = \mathbb{R}^k$, then V is a subspace of \mathbb{R}^k.

(3) If v_1, \ldots, v_n are vectors in \mathbb{R}^k, then $\operatorname{span}(v_1, \ldots, v_n)$ is a subspace.

(4) If A is an $n \times m$ matrix (i.e. a linear transformation $A : \mathbb{R}^m \rightarrow \mathbb{R}^n$), then

$$\ker(A) = \left\{ x \in \mathbb{R}^m \mid A x = 0 \right\}$$

is a subspace of \mathbb{R}^m and

$$\operatorname{im}(A) = \left\{ b \in \mathbb{R}^n \mid b = A x \text{ for some } x \in \mathbb{R}^m \right\}$$

is a subspace of \mathbb{R}^n.
The matrix A from last time had kernel a plane through 0 and image a line through 0.

Thm: Every subspace $V \subseteq \mathbb{R}^k$ is equal to $\text{span}(v_1, \ldots, v_n)$ for some vectors v_1, \ldots, v_n.
Warning: In general, there are many subsets \(\{ v_1, \ldots, v_n \} \) which span a subspace \(V \).

Ex: \(V = \mathbb{R}^2 \leq \mathbb{R}^2 \).

\[\text{Span}(v_1, v_2) = V \text{ for all } v_1 \text{ and } v_2 \]

which are not co-linear.
Ex: $\text{Span } (v, 2v, 3v) = \text{Span } (v)$.

You don't always need n vectors to $\text{Span } (v_1, \ldots, v_n)$.
General problem

Given a set of vectors v_1, \ldots, v_n, find the smallest subset of these vectors which span $\text{Span}(v_1, \ldots, v_n)$.

(Least example you only need 1 but were given 3).
Specific Problem

Let \(v_1, v_2, v_3, v_4, v_5 \)

\[
A = \begin{bmatrix}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 5 & -8 & 1 \\
3 & 6 & 1 & 5 & 7 \\
\end{bmatrix}
\]

We know that \(\text{Im}(A) \) is the span of the columns of \(A \).

Can we find fewer columns that \(\text{Span} \) \(\text{Im}(A) \)?
Solution:
Let's label the columns
v_1, \ldots, v_5

$\text{Im}(A) = \text{Span} \ (v_1, \ldots, v_5) \subseteq \mathbb{R}^4$

Idea: Scan across asking if at each step if
$\text{Span} \ (v_1, \ldots, v_i)$ is smaller or the same size as
$\text{Span} \ (v_1, \ldots, v_{i+1})$.
let's do that.

\[\text{Span}(v_1) \text{ it's a line.} \]

Is \[\text{Span}(v_2, v_1) = \text{Span}(v_1) \]

is \(v_2 \) on the line \(\text{Span}(v_1) \)?

Yes, \(v_2 = 2v_1 \).

Row reduce

\[
\begin{bmatrix} v_1 & v_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 \end{bmatrix}
\]
Is \(\text{Span}(v_1, v_3) = \text{Span}(v_1) \)?

No.

Not a scalar multiple

\[
\begin{bmatrix}
 v_1 \\
v_3
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 1 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]

inconsistent.

So \(\text{Span}(v_1, v_3) \) is a plane.
Is \(\text{Span}(v_1, v_3) = \text{Span}(v_1, v_2, v_3, v_4) \)?

Find if there is an \(a, b \) such that

\[
ax_1 + bx_2 = x_4
\]

Set the following equations:

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
v_1 & v_3 & v_4 & 1
\end{bmatrix}
\]

\[
\Rightarrow \begin{bmatrix}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -4 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Yes, \(3v_1 - 4v_3 = v_4 \).
Warm up:

Row reduce

\[
A = \begin{bmatrix}
1 & 2 & 2 \\
-1 & -2 & -5 \\
4 & 8 & 6 \\
3 & 6 & 5 \\
v_1 & v_2 & v_3
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
1 & 2 & 2 \\
0 & 1 & -4 \\
1 & 6 & 5 \\
v_1 & v_2 & v_3
\end{bmatrix}
\]

\[\text{Not in span of } v_1, v_2, v_3\]

\[3v_1 - 4v_2 \text{ Not in span of } v_1, v_2, v_3\]

\[\text{Pivot } \Rightarrow \text{ Span gets bigger.}\]

\[\text{Im}(A) = \text{Span } (v_1, v_3, v_5)\]
Thm: The image of a matrix A is spanned by the columns which contain a pivot upon row reduction.