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Motion of Level Sets by Mean Curvature IV 

By Lawrence C. Evans and Joel Spruck 

ABSTRACT. We continue our investigation of the "level-set" technique for describing 
the generalized evolution of hypersurfaces moving according to their mean curvature. 
The principal assertion of this paper is a kind of reconciliation with the geometric 
measure theoretic approach pioneered by K. Brakke: we prove that almost every level 
set of the solution to the mean curvature evolution PDE is in fact a unit-density varifold 
moving according to its mean curvature. In particular, a.e. level set is endowed with a 
kind of "geometric structure." The proof utilizes compensated compactness methods to 
pass to limits in various geometric expressions. 

I. Introduction 

In several earlier papers we, Chen et al. [3, 4], and others have studied a new notion of  generalized 

mean curvature motion of  hypersurfaces in IR n, defined as follows. Given, say, a smooth, bounded 

(n - l)-dimensional surface F0 C R n, choose a smooth function g : IR ~ --+ R whose zero set is 

F0; that is, 

r 0 = {X C ]I~ n ] g(x) = 01. (1.1) 

We consider next the mean curvature evolution PDE 

U t = 8 i j  IAxixj in IR" x (0, OC) 

u = g  inR" x {t = 0 } .  
(1.2) 

As explained in [8], [3], etc., this PDE asserts each level set of  u is evolving by mean curvature 

motion, at least in regions where u is smooth and I Dul ~ O. We and Chen et al. [3, 4] have shown 

(1.2) has a unique, weak solution u (see [8], [3] for definitions), and consequently we can define F t 

to be the zero-set of u at time t: 

F, = {x ~ 1~" I u(x ,  t )  = 0} .  (1.3) 
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The collection of sets {Ft}t_>0 comprise the (level-set method) generalized mean curvature 
motion, starting from the initial surface F0. (Chen et al. [3] in fact study more general geometric 

laws of motion.) 

The intention of this endeavor is the construction of a reasonable and useful global interpretation 
for mean curvature flow, which allows for developing singularities, changes of  topological type, and 
so forth. We and other authors have consequently devoted considerable effort to studying the evolution 
F0 ~ Ft (t > 0), to ascertain if indeed the level-set construction above is natural geometrically. 

For instance, see [8, w for a proof that { Ft }t>_o agrees with the smooth, classical motion by mean 
curvature starting from F0, until the time t, of the onset of  singularities in the classical motion. For 
later times t > t,, the generalized motion Ft is still defined, and so the real question is whether the 

definition (1.3) is thereafter geometrically reasonable or not. 

This question is particularly pressing since others have proposed different constructions for 
generalized mean curvature motions. The most notable alternative approach is due to K. Brakke, 
whose pioneering monograph [2] sets forth an entirely different interpretation of generalized surfaces, 

called varifolds, moving by curvature. Brakke's  important accomplishments were first to construct 
a family { Vt }t_>0 of evolving varifolds and second to establish partial regularity for any unit-density 
varifold moving via mean curvature. His methods, which build on Allard's fundamental paper [1], 

avoid certain of  the pathologies associated with our level set approach: see [8, w for a preliminary 

discussion. 

The principal result of  this current paper is a kind of reconciliation between the level-set and 

varifold approaches, at least generically. We will in effect prove, under certain assumptions on the 

initial function g, that almost every level set of u is a unit-density varifold evolving by mean curvature 
in Brakke's sense. This assertion, the exact meaning of which will be set forth in Section 7, is useful 

on several counts. First, even though for a given initial set F0 ----- {x E ]l~ n [ g ( x )  -~- 0} the level-set 
flow and varifold flows may differ substantially, for "most" initial sets I '~ = {x E]K n ] g(x)  = y} 
the evolutions are compatible. Second, since the typical level set is a unit-density varifold, the 
partial i'egularity theory from Brakke [2, Chap. 6] applies. This is of  interest since Brakke's  own 
construction [2, Chap. 4] is apparently not known to yield unit-density moving varifoids. Finally, 
and more generally, our results demonstrate that a.e. level set of  the solution of  (1.2) is naturally 
endowed with a kind of geometric structure. 

The key to our proof is a new estimate for the approximate problems introduced in [8]: 

l'i t : ~ij IDu'~I2+E2 Uxix i 

U ~ ~ g  

/ 
in ]1~ n X (0, (X)) [ 

/ i n R  n • { t = 0 } .  
(1.4~) 

In light of  [8, w we know u E ~ u locally uniformly in IK n x [0, cx~), u being the unique weak 

solution of  (1.2). Set 

Du ~ ) 
H ~ = div \ ( iDu,12 + e2)1/2 , 

a quantity which we will see can be interpreted as the approximate mean curvature of  the level sets 
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of u ". Our primary new estimate is the L 1 bound 

sup sup f IH'ldx < oo, (1.5) 
0<~<1 t>_O JR" 

proved in Section 2. To understand the utility of  this bound, let us contrast it with the easier inequality 

sup [H~]2( IDu~  12 + 62)  1/2 dx dt < o~ (1.6) 
0<E < 1 " 

for T > 0. Now (1.6) has a direct geometric interpretation. Indeed, let us for heuristic purposes set 
E = 0 and suppose our solution u of  (1.2) is really smooth, with I Dul # O. Then each level surface 
F v, = {x E ~" [ u(x, t) = y} moves by mean curvature, whence classical differential geometry 
(cf. Huisken [ 14]) provides the calculation 

d , l  • [ 
~ H  - ( F , )  = - J r  H'2dnn-l' (1.7) 

H "- I  denoting (n - l)-dimensional Hausdorff measure and H the mean curvature of  F~. Note 

H = div (Du/lDu[), as v = Du/lDu[ is a unit normal vector field to the level set F, Y. Now 

(1.7) implies 

H n - I ( F T  v) + H2dH ~-1 dt = H ~ - I ( F ~ ) .  (1.8) 

Integrate this equality with respect to y and employ the Coarea Formula to deduce 

+f0 L 
In particular, 

for ~ H2lDuldxdt  < 00. 
i t  

Estimate (1.5) is quite different in character, corresponding to the formal estimate on u: 

(1.9) 

Since the integrand does not contain the term I Du l, we cannot invoke the Coarea Formula to prove 
this from the corresponding law of motion of each level set taken separately. In other words, the formal 

estimate (1. I 0) presumably depends on more than just the fact that each level set moves independently 

by curvature motion. Indeed, (1.10) seems somehow to be an analytic consequence of the fitting 

together of  the level sets to foliate space. We loosely interpret this as a kind of dynamic "stability" 
condition on the level sets Ftr. In crude geometric terms, it is presumably this "stability" of  the level 

sets that accounts for the fairly strong conclusion that generically they are unit-density varifolds 

supfR,>0 ,, IHIdx < oo. (1.10) 
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moving by mean curvature. (For our time-dependent problem there is no obvious "minimization" 

principle; "stability," however ill-defined, seems to be the best we can hope for.) 

The analytic consequences of (1.10), or more precisely (1.5), are interesting. As we will prove 

in Section 3, (1.5) implies 

IDu'l ~ [Dul weakly * in L~ ") (1.11) 

for each time t > 0, and in particular, 

fBI Du'I dx --+ f8 [Dul dx (1.12) 

for each bounded Borel set B. This is a powerful statement, much stronger than the usual lower 

semicontinuity assertion 

L IDu[ dx lim inf 1 I Du'l dx. 
f < 

~ o  JR 

From (1.12) and the coarea formula we see in particular that "generically" the level sets of u" do 

not "lose area" as they converge to the level sets of u. The informal idea is that almost every level 

set does not "fold over" or "double up" in the limit, and so the limits are unit density. 

Our proof of (1.11) from estimate (1.5) employs the method of compensated compactness, 
which for the case at hand amounts to a PDE/level-set version of geometric varifold techniques. 
Details appear in Section 3. In Sections 4 and 5 we pass to limits as e ~ 0 in various nonlinear 
expressions involving u ' .  We deduce for the limit u level-set versions of the first variation formula 
for area and the inequality for motion by mean curvature. Then in Section 6 we "decompose" these 
formulas into corresponding statements for a.e. level set at a.e. time. Finally in Section 7 we rapidly 
recall the standard terminology for varifolds and moving varifolds, and we reinterpret the conclusions 

of Section 6 in this language. Here we very closely follow Brakke [2]. 

The level-set method for studying evolution of surfaces by mean-curvature flow seems to have 

originated in the physics literature, in the paper by Ohta et al. [17]. Sethian [19],[20] and Osher and 

Sethian [ 18] independently introduced this idea as a computational tool. Some recent theoretical 

analyses and applications of the level-set approach include Soner [22], Giga et al. [12], Chen et al. 

[4], Giga et al. [ 13], Ilmanen [ 15], and others. Ilmanen [ 16] has introduced a new "approximate" vari- 

ational principle within the geometric measure theoretic approach and in particular has constructed a 

family of unit-density varifolds flowing by mean curvature. The paper by Evans et al. [7] proves the 
level-set generalized motion governs the asymptotic limiting behavior of the standard Allen-Cahn 

equation, a simple model for certain phase transitions. This provides further confirmation of the 
physical and geometric reasonableness of our model. 



Motion of Level Sets by Mean Curvature IV 

2.  A n  L 1 e s t i m a t e  o n  H E 

We first turn our attention to the approximate problem 

( "") x, ,j E in N n ' =  6ij to--~t~+E2 Ux, x~ x (0, oo) U t 

u '  = g  onlR ~ x { t = O }  

forO < ~  < 

81 

(2.1E) 

1. Here D u  ~ = D x u  E = (u~  . . . . .  u~)  is the gradient with respect to x. As 

explained in [8, w this PDE has a unique, smooth solution u ' ,  and additionally the maximum 

principle provides the bounds 

sup Ilu', O u ' ,  UTI]L~CR,,• oo)) < Cl lg l lc"(R~ (2.2) 
0<E<I 

The functions {u' },>0 are thus uniformly bounded and Lipschitz in R n x (0, oo).  In addition, we 

proved in [8, w that 

u '  ~ u locally uniformly on IR n x [0, oo) ,  (2.3) 

u denoting the unique weak solution of the mean curvature evolution PDE 

lgt = (~ij ~ Ux, xj in R" X (0, OO) (2.4) 

u = g  o n R  n x { t = 0 } .  

Observe in particular that (2.3) asserts the full limit exists as e ~ 0. 

Assume hereafter that 

F0 is a smooth connected hypersurface, the / 

! boundary of  a bounded open set U C R n. 

We next choose the initial function g to vanish on F0 and be particularly well behaved. Recall 

from [8, w that the evolution of  any initial level set depends only on that set and not on the choice 
of  other level sets. As we are interested in proving an L 1 bound on 

H E = div \ ( IDuEI2  +6:2)  1/2,] , 

we first need to show we can select the initial function g so that at least at time 0, H E is bounded 
in L I . 



82 Lawrence C. Evans and Joel Spruck 

L e r n m a  2.1. There exists a C3 function g " R ~ ~ R such that 

(i) - - l _ < g <  1, 

(ii) F o = { X  �9  n I g ( x ) = 0 } ,  

(iii) g(x )  = l forlarge Ixl, 

Dg 
(iv) supo<E_< 1 fR, div ((iDgl~--~+~2)l/2) d x  < oo. 

P r o o f .  1. Let 

[ --dist(x,  ro )  x �9 0 
d ( x )  

I dist(x, Fo) x E N n -- (7/ 

denote the signed distance function to I'o. Choose 6o so small d is smooth within the region 

R = {x �9 A" I dist(x, 1-'o) < So}. 

Note I Ddl  = 1 and consequently 

1 
dx,~jdx, dxj = - D d  . D([Odl  2) = 0 in R. 

2 

Choose a smooth function 4, �9 N --+ A satisfying 

4 , ( - z )  = -4 , ( z )  (z �9 ~) ,  4,(z) = - 1  

# ( z )  > o, 4,"(z) ___ o 

(2.5) 

i f z  < --So 
(2.6) 

if - -So < z  < 0 .  

2. Let 

g ( x )  = 4 , (d(x) )  (x �9 An). (2.7) 

Clearly (i)-(iii) obtain, and so we must verify (iv). For this, take x �9 R and compute 

Dg ) 1 
div ( IDgl  ~ 7 ~2)1/2 = ( iDgl2 + ~2)3/2 ((]Dgl2 + ~:2)SiJ - gx, gxj)gx, xj 

1 
- (4,) ax, ax,)(4, dx, x, + 4, dx, dx,) (((4,,')2 4- E 2 ) S i j  , 2 , t, 

((4,I)2 + E2)3/2 

((4,') 2 + d ) 3 n  
[(4,,)2 + e2)(4, ,Ad 4- 4,") -- 4,"(4,')21 by (2.5) 

4,; E2~ ;' 
= A d  + ((4,t)2 ..]_ t52)1/2 ((4,t)2 _}_ E2)3/2 
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Consequently, 

f~,, div Dg ((,Dgl~-~62),/a) dx < s ~2(~ , , )  

(((]),')2 + ~2)3/2 dx 

( f0 ) < C 1 -{- E 2 
- -  8o (r 2 "a t- E2) 3/2 ds , 

where we used the Coarea Formula. But 

i o.s for ) E 2 
8o ( ( ( ~ " ~ - E E 2 )  3/2 = 8o ((~b,')2 ._{_ ~2)1/2 d s  

q~'(o) 
< 1 .  

(4,'(0) 2 + E2)~/2 - 

This calculation and (2.8) complete the proof. [ ]  

(2.8) 

and 

N o t a t i o n .  We henceforth write 

D u  E 
v E = (2.9) 

( IDuEIZat-E2)I /2  

Du E ) 
H ~ = div(v  E) = div \(]DuE-~- ~ 62)1/2'  . (2.10) 

We think of  v E as being the approximate normal vector field, and H E as being the approximate mean 

curvature, for the level sets of  u E. (In view of  [8, w v E and H E are actually the normal to and 

mean curvature of  the level sets of  v E ---- u E --  exn+l in ]I~ nq-I .) [ ]  

T h e o r e m  2.2. We have the estimate 

sup f ~  I H E(x, t)  l dx < oo. 
0<~<1  n 

t>_0 

(2.11) 

Remark. In fact, we show 

t w-~ f~. IH'(x, t ) l  dx 

is nonincreasing. [ ]  
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1. Utilizing the notation above, we rewrite the PDE (2.1), to read 

u~ = (IDu~l 2 + 62)1/2H E = (IDu~l 2 + 62) 1/2 d iv (v ' ) .  (2.12) 

for 

Consequently, 

2. Let us now compute 

U xit E 
via = (IDu~I2 + 62) 1/2 

U'x,U'x, u'  = 1 
- ( iOu ,  12 + 62)3/2 ~jt ( iDu ,  i 2 _.1_ 62)l/2a,~U~xjt 

xi bl xj 

a i j  =-- 3ij  - -  (IOu--~ + 6 2) 
(i, j = 1 . . . . .  n) .  

(vi,,)~, 

( , ) 
= ( i D u ,  i 2 + 62)'/2ai~ut~j ~, 

_ _  ( 1 62)l/2a,l((lOu,12 +62)l/2H,)xj ) 
- ( i O u ,  i 2~_ .. . ~ "  

(2.13) 

(2.14) 

4. Let r/ : R ~ ~ be smooth, convex, Lipschitz, with 1/(0) = 0. Then, utilizing Lemma 2.3 
below, we compute 

dL -~ ~ 77(H ~)dx = . r f (H*)Ht  dx 

= . 0 ' ( H ' )  ( iOu ,  i 2 + E2)l/2ai~((IDu" + Ez)1/2H')xj dx 
Xi 

= - . r / " ( n ' ) ( i O u ,  iHx'+ E2)l/2a,~((IOu'l 2 + Ez)l/Zn')xj dx 

f R  t! E E E E = - . ~  ( n ) % n x n x ,  dx 

-- ,, + Ez)l/2aij(I Du I + ~ 

a E As r/ is  convex and the matrix ( ( i j ) )  is positive definite, the first integral in the last expression is 
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nonnegative. Discarding this term and integrating in time we deduce 

f~,~l(H~(x, t))dx < L ,~ (H~(x ,O) )dx  

+c, fot fR, o"(H')lH'l lDH'ldxds 

for C,  ~ CllD((lDu'12+ ~2)1/2)11L~. 

85 

(2.15) 

5. Since we have absolutely no control over C,  as e --+ 0, we must select 0 so that the term 

involving C, in fact vanishes. For each 6 > 0, choose a smooth convex function 0~ : R ~ ~ such 

that 

Oa(0) = 0, r/6(z) ~ Izl uniformly on R, r/a > 0, / (2.16) 
It C y! 0 < r/a < 7 '  spt r/~ C ( - 6 ,  6). / 

Set r / =  r/~ in (2.15): 

,, rl~(H'(x, t ) )dx < ,, o~(H'(x, 0))dx + T ,'1<_~1 

Sending 6 --+ 0 and noting fR,, IDH'I dx < ~ according to Lemma 2.3, we deduce 

L l'f, IH ' ( x , t ) l dx  < IH'(x,O)ldx +C,  I D H ' l d x d t  
. . . .  I H '  I=0} 

= f~,, IH'(x,O)ldx,  

since DH ~ = 0 a,e. on the set { H '  = 0}. But 

Dg 
H'(x ,  O) = div ( (lDgl2 + e2),/2 ) 

and consequently 

sup f~  I H ' ( x ,  0) 1 dx < 
O<E_<I  '~ 

according to Lemma 2.1(iv). [ ]  

Lemma 2.3. For each 6 > 0 there exist positive constants At, at such that 

In ' l ,  [DH'I <_ A,e -a,lxl2 

for all x E ~n, O < t < T. 
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1. Set w ~ = 1 --  u ~. Then w ~ is smooth, bounded, nonnegative, and (2.1)~ states 

E E ~ 11) t = a i j W x i x j  in N ~ x (0, o~) (2.17) 

U'x,U'x  
ai~ - -  ( ~ i j  - (]Du, I 2 + Ez ) 

Since I Du'l is bounded, the coefficients ((aiEj)) are uniformly elliptic. Since u ~ (x ,  0) = g ( x )  = 1 

for, say, Ixl _> R, we have 

From (2.17), (2.18) we deduce 

for constants B , ,  b,  > 0. 

2. Write 

w'(x,O) = 0i f lx l  >__ R. (2.18) 

Iwr ~ Br -b'l~12 (2.19) 

C ( x ,  r)  = B ( x ,  r )  x [0, T].  

Then since u ' and thus the coefficients ai~ are smooth, we deduce from (2.17),  (2.18) the local 

bounds 

f o r k  = 1, 2 . . . .  and Ixl > R + 2. In particular, (2.18) implies 

ID2u" (x, t)[, [D3 u" (x,  t)l _< C,e  -c'lxlz (2.20) 

for Ix l > R + 2, 0 < t < T,  and appropriate constants C , ,  c ,  > 0. Since 

In ' l  < CIO2u ' l  
E 

and 

IDH'I ~ CID3u '  I, 

estimate (2.10) follows from (2.20). [ ]  

R e m a r k .  There is a somewhat more elegant technique which avoids the need for estimates 

on u ~, H ~, etc. as [x l - +  oo. First we fix a cube Q so large that g =-- 1 in I~ ~ --  Q. We then redefine 

g in R ~ --  Q so that g is Q-per iodic  in ] ~ .  Then, by uniqueness, u ~ and thus u are Q-periodic,  
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and we can replace the integral over R ~ with an integral over the finite region Q. The level sets of  u 

within the cube Q will be unaffected. [ ]  

3. C o m p e n s a t e d  compactness ;  appl icat ions  of  L l est imate  on  H ~ 

In this and subsequent sections we make use of  estimate (2.11) to justify the passage to limits 

of  various quantities as e ~ 0. For our present purposes we may as well ignore the time variable 

t, and suppose we are given a collection {u E }0<, < 1 of  smooth, bounded, Lipschitz functions on j~n, 

with the uniform estimate 

sup Ilu ' ,  DU~IIL~(R.) < ~ .  (3.1) 
O<E<I 

Let us suppose also that 

UE ---~ U 

Ou t ~ Ou 

locally uniformly on Ii{ n / 

I weakly �9 in L~(R~ ;  R") 
(3.2) 

as e ~ 0, for some bounded, Lipschitz function u. 

Also as before, we write 

Du ~ 
v ' = ( 3 . 3 )  

( [ D u ' l  2 + e2)l/2 ' 

Du ~ ) 
H ~ ~ div(v ~) = div \ ( IDuEt2 + •2)1/2 " (3.4) 

We assume in addition to (3.1) that we have the estimate 

sup IIH'IIL,<~.) < o0. (3.5) 
O<E_<I 

Theorem 3.1. Under the above hypotheses, 

IDu'l  ~ IDul weakly * in L~(]l{n). (3.6) 

P r o o f .  1. We apply the machinery of  compensated compactness: see, e.g., Tartar [23], Da- 

corogna [5], Evans [6], etc., for more details. 
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First, in view of(3.2) there exists a subsequence ek ~ 0 and for a.e. x E It{" a Borel probability 

F ( D u  ~) --~ F weakly * in L~(IR n) 

measure Vx on R n such that 

(3.7) 

for each continuous function F " R n --+ R ,  where 

/~(x) ----= [ F(X)dvx(~, )  (a.e. x c /Rn) .  (3.8) 
JR n 

The collection {vx (')}a.e. x~R,, comprises the Young measures associated with the weak convergence 

Du ~ ~ Du. 

< 1, passing to a further subsequence as necessary and reindexing, we may 

v ~ ~ v weakly * in L ~ ( R n ;  IR n) (3.9) 

2. Since ]v~[ 

assume 

for 

Ivl S l in R n. ( 3 . 1 0 )  

Utilizing estimate (3.5) we may additionally suppose that there exists a signed Radon measure/1, on 

IR" such that 

H "~ ~ /z weakly as measures on R n. (3.11) 

Thus 

s w H  `k dx --+ f~ w d l z  
n n 

for each continuous function w with compact support. If, in particular, w is Lipschitz and has compact 
support, we have 

s w d l z = l i m [  w H ' k d x  
n ,INn 

= -- lim [ D w . v  ~'dx 

= - - s 1 7 6  D w  �9 v d x .  (3.12) 

3. Now we claim 

Du ̀ k �9 v ~ ~ Du . v weakly �9 in L~(IRn).  (3.13) 
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This is a variant of the Div-Curl Lemma (cf. [23],[5], etc.). Indeed, letting r E Cc ~ (I/{ n) we discover 

lim f D u  ~ ' . v ~ ' r  = - l i m  ~ u ~ * H ~ r  ~ ' . D C d x  
k--+~x~ J N "  k - - - ~  ,, 

= ~, ,  D u  �9 v r  d x .  

Hence D u  ~ �9 v ~ converges to D u  �9 v in the distribution sense. But { D u  ~ �9 v ~ is bounded in /k=l 
L ~ ( R  ~) and so converges weakly �9 in L ~ ( R  ~) as well. This verifies claim (3.13). 

4. Next note the elementary inequality 

IPl - Ip12 
(IPl 2 -F E2) 1/2 

IPl 12 E2)1/2 
(iplZq_E2),/2 I(IP + - I P l l  

< E f o r a l l p ~ R  ". 

Thus 

IIDu~l- D u  ~ . v ' l  = IDu'l - 

IDu'l 2 
( iDu,  12 q_ ff2)1/2 

< ~ f o r a l l x  EIR ". 

Consequently (3.13) implies 

IDu'~l ~ D u  �9 v weakly �9 in L~(N") .  (3.14) 

and 

5. On the other hand, according to (3.7) and (3.8), 

IDu'~l ~ f Ikldvx(&) 
dR n 

D u  = f~,, X dvx(X) 

for a.e. x E R". Therefore (3.14) implies 

L,, IXl dvx(X)  = fR,, X dvx(X) �9 v ( x )  

(3.15) 

(3.16) 
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for a.e. x c R". But Iv(x)l 5 1 and so 

Thus 

Hence (3.15) in fact says 

IZl dvxO0 < s  )~ dvx(Z) > ( x ) l  

< s  )~dv.()~) 

_< s  I ; q d v , ( Z ) .  

R-I)~ldvx()Q = f re )~dvxO0 

= IDu(x)[.  

(a.e. x E ]R ") 

(3.17) 

(3.18) 

IDuEk I ---~ IDul weakly * in L~176 

This assertion is valid for each subsequence Ek --+ CX~, and so (3.6) is proved. [ ]  

R e m a r k  1. Note very carefully Theorem 3.1 does not say Du E --+ Du  a.e. or in LPo~(~ ") 

for any 1 < p < oo. Such strong convergence may in fact fail. Consider as an example: 

uE(x) = x ,  + eg(xn /e )  (x C ]I~ n, 0 < e ~ 1), 

where g �9 IR --+ R is smooth, l-periodic, Ig'l -< ~ < 1, and f l  g ( t ) d t  = O, fo ~ lg ' ( t ) l  dt 5~ O. 
Then u E --~ u = x~ and Du E = (0 . . . . .  l+g ' ( x~ /6 ) ) .  Since O < 1--or < l + g ' ( x ~ / e )  < l + o q  

div (Du ' / lDuEI )  = o. Thus 

H E = div (IDuEI 2 71- e2)1/2 IDuE I 

_ -ODuEI _ (IDuEI 2 q- e 2 ) l / 2 ) O u ' ) ]  
- -  div ]-D--~-E ] ( ~ - 1  i T+- e 2-- ~ j .  

Since 0 < 1 - ot < I Du" I < 1 + ot and I D2u E I < C / e ,  we compute 

sup InEI < O(e)llD2uEIIL~ - -  O(1)  < ~ .  
0<E<I 

In particular {IHEI}0<,_< is bounded in L l~  (Rn). But 

Du" 7 r Du  = (0 . . . . .  1) 

a.e. or in P n. Lloc(~ , ~n). [ ]  
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Remark 2. If  p ,  q E N n, p ,  q 56 0, we have the identity 

q Ipl P q 2 

[ p l = l q l + ~ - ~ - ( p - q ) + - T  Ipl Iql " 

Assume 2 = D u ( x )  56 O. Setting p = ~., q = 2 :fi 0 and integrating with respect to Vx(?~) over 
R n, we deduce 

L L IZl ~ 2 2dv~(~) 
I~.ldv~(~) = 121+ T I~.1 I~1 

n n 

Thus (3.18) implies 

I~1 ~ 2 2 

2 141 121 = ~  
Vx a.e., 

and so Vx is supported in the ray { t2  ] t > 0} C IR n. We see from the example in Remark 1 that Vx 

is however not necessarily a unit mass. [ ]  

R e m a r k  3. It is perhaps of  interest to compare these deductions with those resulting from 

different estimates on H ' .  Assume for instance that 

sup IH'I(IDu'I2 + E2) 1/2 < (X), 
0<~<1 

an estimate available in the full time-dependent problem, since suP0<,_< l I H~I(I D u  ~ 12 + •2)1/2 = 

sup0<,_<, lu7l < oo. Consider the expressions 

�9 ~ ~ Uxj (IDu'l 2 -+-E2)v2a~j - 

Now 

U ~ U ~ ) 
Xi Xj 

(IDu,12 + d)v2 
(i = 1 . . . . .  n) .  

( ") U~x~U ~, H ~ 
(iDu~12 + ~2)I/2~q _ (IDu~l 2 + E2) 1/2 = _U,x, 

xi 

is bounded uniformly in e, and so the Div-Curl  Lemma implies for a.e. x 

�9 2 j ( s  ')~]~ij--Li~----J-Jdvx(~,)) �9 
. P , I  
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But we also note 
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~ = Y(IDu~[ 2 E 2 )  1/2 - -  ]Du~l 2 
i L + (IDu~[2 -'[- E2) 1/2 

(?2 
u E - -~0 .  

( i D u ,  i 2 + ff2) 1/2 xi 

Thus 

Multiply by ~-i and sum on i: 

X)~j dv~(X)~ = 0 Izl l 

(~.  2) 2 
s [LII2[ 2 dvxO0 = O. 

The integrand is nonnegative, and thus 

1~121212 = 0 - - 2 )  2 Vx a.e. 

E 

UX i 

(i = 1 . . . . .  n) .  

Hence Young's measure vx is supported in the line {t~. ] t ~ R}, but we cannot thereby conclude 

(as in Remark 2) that G is supported in the ray {t~ I t > 0}. This stronger result seems to require 
an estimate on H ~ like (2.11), which does not involve the term I Du~ I. [] 

Ek Our goal next is to characterize v, the weak * limit of  the {v }~=l" Observe that since the 

mapping p ~-+ P/IP[ is not continuous, we cannot employ Young measures to write v(x)  = 
f~, Ov/IXI) dvx(X) for a.e. x ~ IR n. Nevertheless, we can show: 

Theorem 3.2. Assume 

v 'k --~ v weakly * in L ~ ( R n ;  n~n). (3.19) 

Then 

O n  
v --  a.e. on the set {IDul > 0}. (3.20) 

IOul 

Proof. 1. We extract more information from the compensated compactness methods employed 
in the proof of  Theorem 3.1. First recall the equality (3.18), which asserts 

~ .  I,kldv~(,k) = ~ ) v d v x ( X )  (3.21) 
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for a.e. x ~ R", { v~ (-)} denoting as before the Young measures corresponding to the weak conver- 
gence Du ~ --~ Ou. 

Fix x E 1R n for which (3.21) obtains and suppose 

Du(x) = ~,, )~dvx()~) =-- 2 r O. (3.22) 

According to (3.16) in the previous proof 

But 

fR ]~.[dvx(X) = ~.. v(x). 
i i  

(3.23) 

(3.24) 

and so we would obtain a contradiction to (3.23) were any of  the inequalities in (3.24) strict. Thus 

v(x) is a unit vector, pointing in the same direction as ~.: 

X Du(x) 
v ( x )  = - _  - - -  

[~.1 IDu(x)l 

This conclusion is valid for a.e. x ~ {[Du[ > 0}. [ ]  

Now we show v" ~ v = Du/IDu[ strongly on the set {IDul > 0}. 

Theorem 3.3. We have 

Du ~ 
( i D u ,  i 2 + (:2) 1/2 

D i g  
--~ - -  strongly in L'(oc({IDu I > 0}; Rn). (3.25) 

IDu[ 

Proo f .  According to Theorem 3.2, 

F Ek _ ~  _ _  
O n  

I D u l  

weakly * in {]Dul > 0}, 

whenever {v ~' }~=j is a weakly �9 convergent subsequence. In particular, the full limit 

i) ~: _...x 
O u  

IOul 
weakly * in {IDul > 0} 
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Ou 0}, then exists. But ifq~ e C ~ ( R n ) ,  ~b > 0, and we write v - -  ~ on {IDul > 

4 lv" - vl2 dx = f.o.,>o} cP(iv~[2 q - i v l 2 -  2v~ " v) dx  

< 2 f  ~ b ( 1 - v ' . v )  dx ;  
all Dul>0} 

and the term on the right converges to 

2floul>01 q~(1 - Ivl2)dx = O, 

since ]v] = 1. Thus v ~ ~ v = Du/]Du]  strongly in LZlo~({]Du] > 0}; ~ ) .  [ ]  

R e m a r k .  As Iv '1, I vl ~ 1, the convergence above is in LlPoc as well, for 1 < p < ~ .  
[ ]  

4. Passage to limits, I 

We return now to the full time-dependent problems (2.1), ,  (2.4). In view of  estimates (2.2), 
(2.1 1) and Theorems 3.1 and 3.3, we have 

IDu'(  ", t)l ~ IDu(.,  t)[ weakly �9 in L~(lt~n) I 

/ for each time t > 0 
(4.1) 

and 

Ou'r our in L2oc({lDu( ., t)l > 0}; ~") / ([Du,(.,t)12+~2)l/2 ~ ~ strongly 

/ for each time t >_ 0. 
(4.2) 

Integrating in time, we deduce as well that 

IDu'l  ~ IDul weakly * in L ~ ( R  n x (0, oo))  (4.3) 

and 

Du ~ Du 
--~ - -  strongly in L~oc({lDul > 0]; ~n) .  (4.4) 

( [Ou ' l  2 + Ez) 1/2 IOul 

O/~ ~ Our intention is to pass to limits in various geometric formulas involving H ' ,  (iOu,-~-g,2),/2, etc., 

and for this we will need an additional L 2 estimate on H ". 



Theorem 4.1. 
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For each T > 0 and each compact set K C R n, 

,2 sup (H~)2(IDu~ +E2)l/Zdxdt < oo. 
o<~_<1 
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(4.5) 

Proof .  S e l e c t q ~ C  c ( ) , 0 < ~ b <  1. Then 

dx ( IDu,  12 + ~2)1/2 

L ( ~ ) = --  ,, ~b2div (iOu,~Te2),/2 u7 dx 

f~ D~" Du ~ 
- 2 ,, ~b(tDu, I e + ~2)1/~u~ dx 

dPZ(H')2([Du'[2 + E2)l/2 dx <_ 

+ 2s d~IDd~IIH'I(IDu'I z + E2) 1/2 dx by (2.12) 

's < - -  d~z(l-I~)2(IDu~12 + eZ)l/Zdx 
- 2 ,, 

2 L ,  ]DdPl2(IDu~ 12 + e2)1 /2  dx. + 

Integrating, we deduce 

foT fR, ~b2(H~)2(lDuEl2 + ~2)'/2 dx 

f[f, < 4 ]DqbI2(IDu~[ 2 + E2) 1/2 dx + 2 ~b2(iDgl2 + ~2)1/2 dx. (4.6) 
n n 

Given a compact set K C IR n, we choose ~b = 1 on K and then recall estimate (2.2) to complete 
the proof. [ ]  

Consider next the quantities 

{H'(IDu'I  2 + ~2)1/2}0<E_< l . 

According to the PDE (2.1),, 

U~ = ( [ D u E [  2 + ~2)I /2HE,  

and so employing estimate (2.2) we deduce 

H,(IDu,  I2 + e2)l/2 ....x ut weakly * in L~176 n • (0, (x))) .  (4.7) 
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Lemma 4.2. ut = 0 a.e. o n  {[Du[ = 0 } .  

Proof .  Let A be any bounded, measurable subset of { I Du [ = 0} C ]K n x (0, oo). Then 

A ut dx dt = lirn fa H'(IDu~[2 + ~72)1/2 dx dt 

(fA < limsup (H')e(IDu'I 2 + e2)l/2dxdt 
E---~O 

• (fA(,Du~[2 q-62)l /2dxdt)  1/2 

_< Cl imsup ([DuEI 2 + e2)l/2dxdt , 
~:---~0 

the last inequality valid owing to (4.5). Now 

and so 

[([Du,[2 +e2)1/2_ [Du'l[ <_ E, 

fA Ut dx dt < C lira sup ( IDu ' l dxd t  
('---~ 0 

( f A  ~ I/2 = C [Duldxd t  by (4.3) 

= 0 .  

Next define 

H - -  [ ut/IDu[ 
I 0 

We reinterpret (4.7) and Lemma 3.2 to read 

and 

In addition, 

i f l D u  > 0 

if I Du = O. 

H~(IDu~[ 2 +E2)  1/2 ---~ HIDul weakly * in L~176 x (0, oo)) 

HIDuL = 0a.e. on {IDu[ = 0}. 

(4.8) 

[] 

(4.9) 

(4.10) 

(4.11) 

H IDu[ is essentially bounded in R n x (0, oo). (4.12) 
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We also have an L z bound on H :  

97 

L e m m a  4.3. For each T > 0 and each compact set K C IR n, 

H2lDuldxdt < oo. (4.13) 

Proof. Set 

#(A) = fA IDuldxdt 

for Borel sets B C ]R n x (0, oo),  and suppose ~b E L~(K x (0, T)) .  Then 

fo r fx dt : lim dpHE(IDu[ 2 q- ~2) l/2dx 
~--+ 0 

) < lim sup (H~)2(IDu~ 12 + e2) 1/2 dx dt 
e--+0 

(foT fKqj2(lDu~12-k-C?2)l/2dxdt) 1/2 

(f[f  ,~1/2 _< C q~2 d # )  , 

fo r s rbHlDul dx dt 

as in the proof of  Lemma 4.2. Hence 

for fKcbHdlz <_C(foT fKqb2dl..Z) 1/2 

for each q~ ~ L~(K x (0, T)) .  By approximation, the same inequality obtains if ~ E L2(K x 
(0, T ) , / z ) ,  whence 

f0f  r H2dg = H21Duldxdt < 00. [] 

5. Passage to limits, II 

Next we employ the terminology and convergence assertions from Section 4 to deduce for u 

"level-set versions" of  (a) the first variation formula for area and (b) the inequality for motion by 

mean curvature. The idea is to interpret the function H introduced in Section 4 as mean curvature 

and the vector - H  (Du/IDuD as the mean curvature vector, at least on the set {IDul > 0}. 
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T h e o r e m  5.1. For a.e. t > O, we have the identity 

f~n (~ij lAxlUxj "~ i " lax (5.1) 

1 n ~  for each vector field g E C c (R , Rn), g = (gl . . . . .  gn). (Each integrand is interpreted as being 
zero on the set {IDul = 0}.) 

P r o o f .  1. Given g = (gl . . . . .  g")  and 0 < E < 1, we compute 

f t  gi U~ x~ ~ U ~ 2 ( iOu, lZ q_Ez)l/2H (ID I +~2) 1/2dx 

f. i , ( i D u ,  t ~ _ e 2 ) 1 / 2  = , g Ux, dx  
xj 

f = - , gxj xi (iDu, l z + E2)1/2 dx  - , g Ux, xj (IDu'l z + Ez)l/z dx  

= _ f~ gi U~xiU~J f~ gi (iDu~12 + E2) l /2dx 
. (IOu'l  2 7 I- E2)1/2 dx  + . x, 

f~ ( u~_u~j ) g i  ( iDu, lZ +E2)V2dx" 

Hence for each q~ E L ~ ( 0 ,  T) ,  g E C~ (•" ~") ,  we have 

fo r fR U~x' H~(IDu~I2 q- e2)l/Zdxdt . q~gi ( IDu ' I  2 -t- ~72)1/2 

= n(~ ~ i j -  (iDu, 12+E2)l/2]gxj(I u ] +e2)t/2dxdt. (5.2) 

2. We wish to pass to limits as e --+ 0. Now according to (4.3) and (4.4), 

xiUx) i D E 2 E 2 ) 1 / 2  
~) ~ i j - -  D ~ - ~ _ E z )  gxj(I u l + d x d t  

"nllOul>OI (I 

T 
' J "  ' ' D u '  -----~ fo f~.f~{lOu,>O (~ ( , i j  Ux'Ux' " i--~ul2) gxjl I d x d t .  
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On the other hand, 

fo s Uxi xj 
"n{IOul=0} (I 

(IDu" 12 + e2) 1/2 dx dt 
C "n{lDu[=O}nspt(g) 
0, according to (4.3). 

Thus the right-hand side of  (5.2) as r --~ 0 converges to 

s Uxiblxj--~gi lOuldxdt, 
iOul2 / x~ 

the integrand interpreted as being zero on the set {IDul = 0}. 

3. Employing (4.4) and (4.10) we see 

~gi Ux, H'(IDu'I 2 + E2) 1/2 dx dt 
"nlIo, l>ol  ( I D u ' I  2 -Jr- E2) 1/2 

fo r s 4~g~ ~ HlOu' dx dt" 

Additionally, 

for s ~ E2)I/2H (IDu I ~2) 1/2dxdt ~gi Uxi E E 2 _~_ 
"n{Io, l=0} ( I D u ' l  z + 

f:f  In'l(lDu'l 2 + eZ)l/2 dxdt 
~_~ C .n{[Oui=O}Nspt(g) 

< C (H')2(IDu" "1- E2) 1/2 dx 
t(g) 

• (fo r fR,,nllDul=Olnspt(g)(lOuel2-l-~i2)l/2dxdt) 1/2 

T )1/2 
( fo fR ( 'Ou"2 + ' 2 ) ' / 2 d x d t  

C "N{IDul=O}Nspt(g) 
--+ 0, according to (4.3). 

Consequently the left-hand side of  (5.2) converges as E ~ 0 to 

for s dPg~HIDul  dxdt, 

the integrand interpreted as being zero on the set {IDu I = 0}. 

by (4.5) 
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4. Thus 

f o T f R _ i U x , . . ,  T ( blxiUxj) i 
cpg I--~ul rtlDuldxdt= dO f dR f n ~ )  ~ij IDul 2 gxjlDuldxdt 

1 n. for all q5 c L ~ ( 0 ,  T), g E C , ( R  , R~). Hence for a given vector field g E C~(N"; Nn), equal- 
ity (5.1) holds for a.e. t > 0. Choosing a countable dense subset of C 1 (R~; IR n) we conclude (5.1) 

l "- R " ) .  holds for a.e. t > 0 and each g E C~, (R , [ ]  

T h e o r e m  5.2. For all 0 < tl < t2 < cx~ and (~ E C 1 (~"), dp > O, we have the inequality 

s qblDul dx 
n t t = 2  

f t, s Du H I D u l d x d t  + ,, cblnl21Dul + D4~" IDul 

<- f R , ~ l D u l d x  t=,2' (5.3) 

where the integrands are interpreted as being zero on the set {IDu I = 0}. 

IRn Proof .  1. Fix qb E C C ( ), q~ > 0, and compute, as in the proof of Theorem 4.1, 

d 
fR D u ' .  Du 7 (P(IDu'I2 -t-62)t/2 dx  = " qS"(IDu'12 -t- 6.2)1/2 dx  

= - f~~ dP(H')2(IDu'I 2 + 6.2)1/2dx 

_ f~. D O .  Du" (I D-U--q 2- ~ 2 ) 1 / 2  H'( IDu"  12 + e2) 1/2 dx.  

Integrate in time from tl to t2: 

fR qS(IDu'12 + 

+ 

f"s 6.2)1/2 dxlt=, 2 + . qb(H~)2(lDu, 12 + 6.2)1/2 

DO �9 Du" H , , , D  ,,2 + 6.2)1/2 dx dt 
(IOuEI 2 -Jr- 6.2)1/2 I,I U I 

= s176 . 
t = l  I 

(5.4) 

2. Now (4.1) implies 

~ ~b(lDu'[ 2 -}-~i2)l/2dxt=t,,t2 ---+ fRdplDuldxt=t , , t  2 �9 (5.5) 
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3. Furthermore, 

s tl f~"N{lDul>O 
Ock. DI~ ~ 

( I D u ' l  2 + E2)1/2 HE(IDu~I2 + c:2)l/2 dxd t  

---~"fR,,nllDul>OI D49" 
O n  

HIDu] dx dt, 
IOul 

owing to (4.4) and (4.10). As in the previous proof, 

ft2 t' f~"Cq{IOul=0} D~b �9 
O n  ~ 

, , ,2n'( lDu'[  2 +~2)'/2 dxd t  --~ O. 
(IDu' l  2 + 62)  ' '  

Hence 

~" fR,, Dck. 
O u  ~ 

(IDu' l  2 + E2)I/~H,(IDu,[2 + ~2)1/2 dx dt 

~t~ f~ Du Ddp �9 - - H l D u l  dx dt, 
_ ,, I O u l  

(5.6) 

the integrand being zero on {IDu I = 0}. 

4. We next claim 

dpHZlDul dx dt < lim inf + E2) 1/2 dx dt. 
_ n E - - - ~ O  

(5.7) 

To prove this let us observe for each lp E L ~ ( ~  ~ • (0, ~x))), 

~"  fR,, ck~pHIDuldxdt lim f" f~ "~oJt2 ,, qS~H'([Du'I2 + E2)'/2dxdt 

(s163 lim~oinf ,, ~(H~)2(IDu~ 12 + e2) ~/2 dx dt)~/2 

(f2" L, 4~P2lDul dx dt) '/2 

Set $ = P m  (H), where 

Pro(Z) = 
m z > m  

z - - m < z < m  

--m z < --m 



102 Lawrence C. Evans and Joel Spruck 

to deduce 

(Ltl ~ -~1/2 s 
d p H p m ( H ) l D u l d x d t )  _< l iminf  ( f "  . ,--,o \j ,2 . dP(H ' )Z( IDu ' [2  + ~52) l /2dxd t )  1/z 

since [pm(H)l  < [HI.  Let m --+ c~ and apply the Monotone Convergence Theorem. 

5. Inequality (5.3) now follows from (5.5), (5.6), and (5.7). [ ]  

6. I n t e r p r e t i n g  H as m e a n  c u r v a t u r e  

Our intention in this section and the next is to interpret (a) formula (5.1) as saying H (defined 
by (4.9)) is the mean curvature of  the level sets of  u, and (b) formula (5.3) as saying these level 

sets are evolving by mean curvature motion. First we demonstrate that a.e. level set of  u for a.e. time 

intersects {IDut = 0} only on a negligible set. 

L e m m a  6.1. For a.e. (y ,  t)  6 R x (0, oc),  

Hn-l({x E ]~n I U(X, t)  = F, u is not differentiable at (x,  t)  or I D u ( x ,  t)l = 0}) = 0. (6.1) 

(Recall our notation: D u  = Dxu = (ux,, �9 �9 ", Ux,) is the gradient taken with respect to x E IR".) 

v (x ,  t)  ~ (u (x ,  t) ,  t) 

Then the full gradient of  v is 

{ Ux, . . .Ux .  
Dx ,iv \ 0.. .0 

and so the Jacobian of v is 

Proof .  Define the Lipschitz function v : R" x (0, oe )  - +  1~2 by 

(x ~ l~", t > 0). 

\ 

ut ~ a.e. in 1R" x (0, (X)), 
1 ] 2x(n+l) 

J v  = (det(Dx,tV. (Dx,tV)V)) 1/2 

= (det [Dul2 + u '  u, 
ut 1 )1/2 

= I Dul a.e. in IR n x (0, oo) .  

The Coarea Formula (Federer [11, w asserts that 

fAJVdxdt = L2 H("+l)-2(a f-lv-l{z})dz 
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for each Lebesgue measurable set A _ ~ • (0, ~ ) .  Substituting J v  
{u is not differentiable or I Dul = 0},  we deduce 

H " - I ( A  A v-I{z})  = 0 fo ra . e .  z = (F, t)  E ]K 2. 
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= IOul and A = 

[ ]  

N o t a t i o n .  Let us henceforth set 

Du 
v = on {IDul  > 0}. 

IDul 

Also, for each y E IlL t > 0, we write 

(6.2) 

ry - {x ~ ~" I u(x, t) = • 

to denote the level set {u = y} at time t. We know 

H"-~(ry) < ~ ,  (6.3) 

and also F~ is ( H  " - I  , n - 1)-rectifiable for a.e. (y ,  t) ,  according to [10, Lemma 2.2]. Furthermore, 

Lemma 6.1 says 

for a.e. (F,  t ) ,  I 
(6.4) 

I n " - ~ ( r y  n {IDu(- ,  t)l  = 0}) = 0. 

[ ]  

We next decompose formula (5.1) into a corresponding equality for a.e. level set: 

T h e o r e m  6.2. For a.e. (y,  t )  we have the equality 

fvy(~ij - vivj)gix~dH"-i = f r  Y 

foreach vector field g E C~(~" ;  ~") ,  g = (gi . . . . .  g,,). 

givi H d H  "-I (6.5) 

Proof.  1. Owing to (5.1), 

cb(~u - vivs)gjj IDul dx dt  = ~bg~viHIDul d x  d t  (6.6) 
n n 

for each T > 0, q~ E L~ T) ,  g E C~ (]~n; Rn). By approximation, the equality obtains i f g  is 

Lipschitz, with compact  support. 
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Let qb : R ~ ~ be any smooth function. Then replacing g by dp(u)g in (6.6) we find 

/0'f  1's ~ - v i v j ) ( ~ ( u ) g i ) x j l D u l d x d t  = , d ~ ( u ) g i v i I - I l D u l d x d t .  (6.7) 

Now on the set {IDul > 0}, 

(~ij - v i v j ) ( ~ ' ( u ) g i L j  = ~ ( u ) ( ~ i j  - viv~)g,~j + ~ ' ( u ) ( ~ i j  - vivj)ux~g, ~ 

= -- ivj)gxj , 

since (3ij -- vi vj)u~g i = 0. Hence (6.7) becomes 

n ( ] ) r  - -  vivj)gixj [Du[ dx dt  = ,, cp~(u)giv iHlDul  dx  dt,  

and so, according to the Coarea Formula, 

f o T f  ~(f)f~(Y) (fFy,('ij-- PiPj)gijdHn-1) dY dt 

(: ) = ~ b ( t ) ~ ( y )  g i v i H d H " - I  d y d t .  

This equality obtains for each 4~ 6 L ~ ( 0 ,  T )  and �9 6 C~176 whence (6.5) follows for a.e. 

(y ,  t) .  [ ]  

Remark. As in Allard [1, w we have 

d H,,_ 1 (h(s, V~)) ~=0 = f r ,  ~(8/j vivj)gi: dH"- I  
ds 

where h �9 R n • ( - I ,  1) --~ ~n is smooth, 

Oh 
h(0,  x)  = x ,  ~ - ( 0 ,  x )  = g(x)  

Os 
(x ~ II~n). 

(6.8) 

The left-hand side of  (6.8) is thus thefirst variation of the (n - 1)-dimensional area of g't y under 
the vector field g. Theorem 6.2 asserts the first variation equals f u  g" v H  d H  "-1 for a.e. (y ,  t) ;  so 

that - H  v can be interpreted geometrically as the mean curvature vector. Note further from Lemma 
4.3, fv~, H2 dH"-I  < c~ for a.e. (y ,  t).  [ ]  
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Finally we decompose inequality (5.3) into constituent inequalities for a.e. level set. 
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T h e o r e m  6.3. For  a.e. y E ~ w e  have  f o r  a.e. 0 < tl < t2 < o o  the inequal i t y  

CdH"-I + CH2 + Dr vH dH"-l dt < CdH "-t 

for all r ~ CJ (~"), r >__ O. 

(6.9) 

Proof .  l. Let do " R --+ R b e  smooth, with do' > 0. Owing to [8, Theorem 2.8], fi ~ do(u) 
is the unique weak solution of the mean curvature evolution PDE 

( ) } ""% fix, x, in R" x (0, cx:~) fit = ~ij 

f i = ~  inR" x {t : 0 } ,  

for ~ = do(g). Since dO' > 0, we check using Lemma 2.1 

f div( D~ ) sup dx < ~ .  
0<~_<1 " ( IDgt  2 + E2) 1/2 

Applying the theory developed before to fi in place of u we find that 

fyt ((]ij - - i d H ' - I  f g, dH ~-~ --  Vil)j)gx; : ~ i~I  

for a.e. (y, t), all g E CJ (~"; ~") ,  and 

fR, r =,2 + ~" f~, r + Dr D[4lDfildxdt < fw r =t, 

1 ~ n  f o r a l l 0 < t l  <t2<ooanda l lCeC , (  ) , r  B u t s i n c e f i = d o ( u )  a n d d o ' > 0 ,  

= v OulDul, [4 H -- u, = ---- a.e. on {IDul > 0} = {IOfil > 0}. 
IOul 

Thus 

f~, do' (u)r dx ,=,2 + fat' f~" do ' (u)( r  -k- D e "  vH)lDuldxdt  

S L" do'(u)r dx t=t2. 
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One final time we employ the Coarea formula and deduce 

This inequality is valid for all 0 _< tl < t2 < ~ ,  all q5 E C~ (II~"), q5 _> 0, and each smooth positive 

function r the theorem follows. [ ]  

7. Varifolds and varifolds moving by mean curvature 

Let us now quickly recall the standard terminology for the theory of  varifolds, from Allard [1], 

Brakke [2], and Simon [21]. 

Var i fo lds .  Let G (n, n - 1) denote the Grassman manifold of  unoriented, (n - 1)-dimensional 

planes in ~n. If  S E G (n, n - 1), we will use the symbol S to denote also the orthogonal projection 
of  R 'z onto S. Write A �9 B = trace(A t �9 B) for linear mappings A,  B : ]~n ~ ]/~n. 

We say V is an (n - 1)-dimensional varifold in :I~" if V is a Radon measure o n  Gn_l(~ n) 
]I~ n x G(n,  n - 1). V,_I (I~ ") denotes the collection of all (n -- 1)-dimensional varifolds in R ~. If  

V E V~-I (ll~n), we define its weight II V II to be the Randon measure on ~"  given by 

IIVII(A) = V { ( x , a )  l x ~ A , S  ~ G ( n , n  - 1)} 

for each Borel set A C I1~ n. 

If  F is an ( H  "-1 , n - 1)-rectifiable subset of  ~"  (cf. Federer [11, w we associate the 

corresponding varifold v ( F )  E Vn-l (R ~) defined by 

v ( r ) ( A )  = H=-l{x E ]I~ ~ I (x, Tan~-l(Hn-lLr,  x ) )  E A} 

for each B orel A C G , _  l (II~n). Here Tan 'z- l ( a n - l L  F, X) is for a.e. x E F the approximate tangent 

space to F a tx .  We say V E V,_l (/I~ ~) is an (n -- 1)-dimensional rectifiable varifold if there exist 
c o o  _ 1-, ~ positive real numbers { k}k=l and ( H  "- l  , n l)-rectifiable sets { k}k=l such that 

O~ 

V = ~ ckv(rk). 
k=l 

If  the  {Ck}k~176 can be selected to be nonnegative integers, we say V is an (n - 1)-dimensional 

integral varifold. We denote by R Vn-1 (~")  (resp. I Vn-1 (Rn)) the collection of  (n -- 1)-dimensional 
rectifiable (resp. integral) varifolds in R n. 
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F i r s t  v a r i a t i o n .  If V c V,_l (Rn), we define itsfirst variation 

~V(g) ---- f Dg(x) �9 S d V ( x ,  S) 

for each vector field g E CJ(R~;  II~). The corresponding total variation is the measure II~Vll 
defined by 

118VII(G) - -  sup{~V(g)  I g E CJ(Rn;  ]~n), spt(g) C C, Igl _< 1} 

for open sets G C II~ ~. If  II ~ v II is a Radon measure and is absolutely continuous with respect to II v II 
(in which case we write II ~ V II si.g = 0), there exists a II V I I-measurable function h (V,  x)  : ~ --+ 1t~ n 

such that 

 v(g) : _  f g(x). h(V, X) dll vii(x) 

for all g as above; h (V,  .) is the generalized mean curvature vector. More generally, if tp E C,! (R~), 
let us write 

_ f h(V, x ) .  g(x)dp(x) all vii(x) + f S• �9 g(x) dW(x, S), 8(V, r  

S • denoting the projection onto the line perpendicular to S. In particular, we set 

g (V,  q~)(h(V, .)) = - f Ih(V,  x)12~p(x) dllVIl(x) 

+ f S• �9 h(V, x) dV(x ,  S) (7.1) 

if 118VII is a Radon measure with II~VIIsi,g = 0, f Ih(V, x)12~P(x)dll VII(x) < c~. Otherwise, 
set 

6(V, qb)(h(V, .)) = - o o .  (7.2) 

Varifolds moving by mean curvature. Consider a family { Vt }t>_0, where Vt ~ Vn_l (~n) 

for each t _> 0. Following Brakke [2, w we define {Vt}t>_0 to be an (n -- 1)-dimensional varifold 
moving by its mean curvature provided 

Oil V, II(4,) _< 8(V,, dp)(h(Vt, .)) (7.3) 

for each ~b E CJ (R" ) ,  q~ > 0, and each time t > 0. Here bllV~ll(~) denotes the upper derivate 
lim sups__, t IIV, ll(4,)-IIVsll(4O . We say { Vt}t>0 is a unit density varifold moving by its mean curvature if 

�9 I - - S  

in addition for a.e. t > 0, 

O"-~(llV, II, x) = 1 for IIVtll a . e .x  e Nn, (7.4) 
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II V, II(B(x, r)) 
O"-~(llV, ll, x) = lim 

r~0+ o~(n -- l ) r  n-1 

is the (n -- 1)-dimensional density of II V~ II at x E ~".  

See Brakke [2] for much more explanation about these definitions. 

Level  sets. Our intention next is to interpret a.e. level set of  our solution u of the mean 

curvature evolution PDE (2.4) as comprising a unit density varifold moving by its mean curvature. 

For this, let us recall Section 6 and hereafter fix an index y E ~ for which the corresponding 

level sets 

r" l =  {x ~ ~" I u(x, t) = y} (t >o)  

satisfy 

H " - ' ( F t  v) < nn - l ( l - ' S ) ,  (7.5) 

Ft is ( H  n-I , n - 1) rectifiable, with | 

I Du n n - I  approximate normal v = IOul a.e., 
(7.6) 

fv  < ~ '  
H 2 dH n-1 (7.7) 

fF~t ((~ij - -  Pivj)g~ dH n-l = fu, giviH dHn-1 
1 n for all g ~ C~ (IR ; II{~), 

(7.8) 

and 

fl'~ dpdHn-' + fttlZ fv~' ~H2 + O~ " pH dHn-l dt <- fr( ~dHn- I  } 

for all g 6 Cc ~ (1~"; Rn), ~b > 0 
(7.9) 

for a.e. t, tl, t2 >_ 0, q < t2. 

Let T denote the set of  times t E [0, ~ )  such that (7.5)-(7.9)  are valid for all t, tl, t2 E "T, 
tl < t2. Then 

I[o, o o )  - 7"1 = o.  



Definition of { Vt • }t>_o. 
varifold { Vt r }t>0 moving by its mean curvature. We begin by setting 

v/= v(U) for t E 7-. 

Thus V, • is for t ~ 7- a unit density, rectifiable varifold, with 

II W II = Hn- I  LILY, 
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Our aim is to associate with the level sets {l-'y }t_>o a unit-density 

(7.1o) 

(7.11) 

and 

for ~ e C~ (1R"). 

h(Vt  ~, .) = - H v  n n-1 a.e. on F • , (7.12) 

6(V, ,  q~)(h(Vt • .)) = - I H2q b + Dq~ . v H  d H  ~-~ 
Jr  

(7.13) 

We must now extend the definition (7.10) to times t ~ 7-. Following Brakke [2, w we first 
note using (7.5), (7.9), and (7.11) that i f t l ,  t2 E 7-, tt < t2, 

f,,2 IIV,~ll(~) - IIV,,YlI(~) ~ - H2~ + Ddp . vH dH"- '  dt 

< [DVpl2qbdH n-I d t  

< K(t2 - tl) (7.14) 

for 

Thus the mapping t 
the limit 

II v/II (40 - K t  is nonincreasing on the set T;  therefore, if t > 0, t ~ 7-, 

IIV/l l(~) = lim IIW/ll(~b) (7.16) 
s ~ t -  
s e t  

exists for all ~b E C~ (/Rn), q~ > 0. In particular, we can define the Radon measure II V/II for t ~ T 
by declaring 

II VtY II = lim ][ V~ II, (7.17) 
s ~ t  
s ~ ' T  



110 Lawrence C. Evans and Joel Spruck 

the limit taken in the sense of weak convergence of Radon measures. Recalling (7.10) and (7.13), 
we deduce 

ftl t2 II v~ I1(~) ~ It V,,~ II(~b) + a(v, ~, ~b)(h(Vt • (7.18) 

for all times 0 < tl _< t2 < o4~ and nonnegative test functions r as above. Now (7.17) defines the 
measure II Vt r II for all times t ~ T,  and we must extend this to define the varifold Vt • for t r T.  
As in Brakke [2, w i f t  r 7- we define Vt • r Vn_l(~ n) by setting 

IIVtll({x ~ R" I (x, Tan"-~(llW, ll ,x)) ~ A}) 

+ IIVtll({x ~ n~" I Wank-~(llW, ll, x) ~ G(n, n -- 1)and 

(x, T)  E A for some T ~ G(n ,  n - 1)}) (7.19) 

~ r ( A )  

for each Borel set A C G,,-1 (~n). Here 

Tan"-l(ll V, ll, x)  

is the approximate (n--  1)-dimensional tangent space to spt II V~ II at x. Owing to Allard [ 1, w 
the second term on the right-hand side of (7.19) is zero, provided Vt • is rectifiable. 

T h e o r e m  7.1. Define Vt • by (7.10) i f t  6 T,  andby (7.17), (7.19) i f t  ~ T.  Then • {V, },_>o 
is a unit-density varifold moving by its mean curvature. 

Our proof closely follows Brakke [2, w 4.29]. 

Proof .  l. Fix~b E C~(R"),q~ > 0. According to (7.3) we must verify 

DII V, Y II (4,) _ ~ ( W ,  40(h(V, Y, ")) (7.20) 

for each time t > 0. If b II V, ~ II (05) = - o o ,  we are done, and so we may as well suppose 

bllV,~ll(4,) > - o o .  (7.21) 

2. Assume in fact 

D-II V~ ~ II (4) > - o o ,  (7.22) 

D -  denoting the upper left derivate. 
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For each 0 < B < ~ ,  we define 

E8 = {r ~ T I 6(V~ v, r  y, ")) > - B } .  

Note also, as in (7.14), 

8(Vr z, r  Y, .)) < K for a.e. r > 0, 

K defined by (7.15). Thus i f 0  < s < t, (7.18) yields 

II V, ~ II (r  - II W II (r  

Rearranging we deduce 

f 
t 

< 8(Vr  v , qb)(h(V~ Y , .))  d r  

, , , ,r+f , dr 
, t ] -E8 B 
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(7.23) 

(7.24) 

(7.25) 

[Is, t] -- EBI 
lim sup < - [ g  - D-II  V, y II (4~)]. (7.26) 

s ~ t  t - -  S 

3. Suppose tk E [0, t )  f3 E B ( k  = 1 , 2  . . . .  ), tk ---> t - .  Then (7.13), (7.23) easily imply the 

bound 

sup II~V,~ll(W~) < 
k 

where r/ > 0, Wo = {x E ]~n [ r  > /7 > 0}. Since 

sup IIV,[ll(Wo) < ~ ,  
k 

{Vt~ LWo}k= 1 is precompact Allard's Compactness Theorem for Integral Varifolds [ 1, w implies • 
in I Vn-i (R"). Thus, passing to a subsequence if necessary and reindexing, we have 

v,~ L w, ,  ~ u ,  L w, ,  

for some Ut E I V ._  I (R" ) .  In particular, 

IIV, YIILW, ~ IIU, IILW o. 

But 

III1,[11 ~ IIWII 

according to (7.17) Wo = II V, r II- W~. Thus V, y.  W, is an integral varifold. This conclusion obtains 
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for each 17 > 0 and so 
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VtL{~) > O} C I g n _ l ( ~ n ) .  (7.27) 

4. Now Brakke [2, w utilizes (7.27) to establish the upper semicontinuity assertion: 

limsupg(Vt~, dp)(h(Vt~, .)) < 6(Vt, d~)(h(Vt, .)). 
k---> ~ 

Fix r/ > 0, and then choose B so large 

g - D-II V, y II (4') < - -  
B - 4K 

Then using (7.26) and (7.29) we may select s '  < t so that 

and 

I[s, t l -  E s I  < - -  (t -- s)r/ i f s '  < s < t, 
2K 

3(V~ y, ~b)(h(Vr r ,  -)) < 3(Vt• ~b)(h(Vt • .)) + 1 / i f s '  < r < t, r e EB. 
2 

Thus (7.25) imply that if s' < s < t, then 

f s  t IIV,• IILYlI(r ~ a ( W ,  ~)(h(  W ,  .))dr 

Utilizing (7.30) we obtain 

< [ ~ ( v y  ' r  ' .)) + 17 dr 
- -  J[t.s]AEB 2 

4- ft,,sl-E~ K dr by (7.24), (7.31). 

D-IIV, Y 11(4,) ~ 6(Vt • dp)(h(Vt• .)) + rl 

for each r/ > 0. Consequently, (7.22) implies 

O-II VV II(q~) <_ 8(V ~, dp)(h(V • .)) 

for each ~p e C~ (Rn), q~ > 0. 

5. Suppose now 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

D+ II V,~ II (4') > - ~ ,  (7.33) 
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D + denoting the upper right derivative. In particular then, 

Now, similarly to step 2, we have 
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lit, s ] -  EBI 1 
lim sup < ~ [ g  - O + II V, y II (r  (7.35) 

.~,+ s - t 

But then, in view of (7.34), 

Suppose tk E (t, ~ )  (3 EB(k = 1, 2 . . . .  ), tk --+ t +. As in step 3 we have the bounds 

sup II~V,,YlI(W0, IIV, y l l (W0 < 
k 

for r/ > 0, W 0 as before. Hence Allard's Compactness Theorem for Integral Varifolds implies 
Y {Vtk uW~}~=j is precompact in IV,_1 (R"). Consequently, passing as necessary to a subsequence 

and reindexing, we may assume 

L w .  u, L w .  

for some Ut E I V._ ~ (~"). In particular, 

II V,~ ll. wo ~ II U, II. W o. 

Passing to a further subsequence, we may in fact show 

ttv, tlLw   ttu, it % 

for some sequence r/j ----> O, and in particular 

II W,~ II (r  ~ II U, II (4,). 

II V, y II (~) = II U~ II (r  (7.36) 

However, according to (7.14)-(7.18),  we have II U, II -< II V, Y II as measures. Thus (7.36) forces 

IIV, IIL{r > 01 = IIU, I ILI r  0}. Hence 

Vr•162 > 0} is an integral varifold. (7.37) 

We now mimic step 4 above to show 

O+llV, V 11(r < fi(V, ~, O)(h(V, y, .)) 

provided (7.33) obtains. [ ]  

lim II wy II (r  = II V, ~ II (r (7.34) 
,v---+ t+ 
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