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Motion of Level Sets by Mean Curvature 

By L. C. Evans and J. Spruck 

III 

ABSTRACT. We continue our investigation [6,7] (see also [4], etc.) of the gen- 
eralized motion of sets via mean curvature by the level set method. We study 
more carefully the fine properties of the mean curvature PDE, to obtain Haus- 
dorff measure estimates of level sets and smoothness whenever the level sets are 
graphs. 

1. Introduction 

This paper continues our investigation [6,7] of a generalized motion by mean curvature of 
compact sets in ]~n. 

Since a classical such motion starting with a smooth hypersurface F0 will in general develop 
singularities after a finite time, the primary goal of our previous paper [6] was to define and 
construct a reasonable generalized e v o l u t i o n  {~t}t>0, which exists for all time and agrees with 
the classical flow so long as the latter exists. Following Osher and Sethian [15,16], we accomplish 
this as follows: First, given F 0 as above we select a smooth function g : R n ~ R, with 
F0 = {x 6 /t~ n I g(x) = 0}. We next construct the (appropriately defined) weak solution 
u : R~ • [0, e~) ~ ]R of the nonlinear PDE 

( ux~,~ ) in]~ n • (0, cx:)) Ut = ~i j  - -  [Dul 2 Uxlx~ 

( u = g o n ] R  ~ • { t = O } .  
(1.1) 
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As noted in [6], this equation asserts that each level set of u evolves by mean curvature motion, 
at least in regions where u is smooth and D u  ~ O. Consequently, it seems reasonable to define 
Ft ------ {a; E 1R n I u (x ,  t) = 0} for each time t >_ 0. The collection of sets {rt}t_>0 comprises 
our generalized evolution by mean curvature. (Chen, Giga, and Goto [4] simultaneously and 
independently developed a similar approach applied to more general geometric motions.) 

The generalized evolution {Ft}t_>0 in hand, the primary task is then to study the geometric 

properties of the flow F0 ~-+ Ft (t > 0). This undertaking is particularly pressing in view of the 
important and much earlier work of Brakke [2], who also utilized varifold methods from geo- 

metric measure theory to construct generalized mean curvature motions. Unfortunately, Brakke's 

evolutions do not in general agree with that described above: see [6, Sec. 8] for a preliminary 
discussion of this point. 

Our purpose in this paper is to effect at least a partial reconciliation between the viewpoints 
of [6,4] and [2] by applying geometric measure theory techniques to analyze the structure of our 

generalized evolution {Ft}t_>0. 

This study we carry out in several steps. In Section 2 we first make some simple calculations 
that allow us to invoke standard GMT assertions to establish that for a.e. "7 E IR the level 
sets 1~ = {x E IR n I u(a;, t) = "y} are countably nn-l-rect i f iable  for a.e. t > 0. Here 

H n -  1 denotes (n - 1)-dimensional Hausdorff measure in IR '~ . This general assertion is not very 

enlightening as we are interested only in the particular level set l~t = Ft ~ corresponding to 7 = 0. 
We require more refined tools. 

Consequently, in Section 3 we establish for our generalized motion an analog of Brakke's 
important "clearing out" lemma [2, Sec. 6.3]. This asserts that if at some time to the (n - 1)- 
dimensional Hausdorff measure of Fro within a ball is sufficiently small, then r t  does not intersect 
a smaller concentric ball for certain later times t > to. Our proof utilizes approximations by 
smooth motions via mean curvature in one more dimension (cf. [6, Sec. 4.1]). 

An immediate consequence in Section 4 is an estimate of the extinction time of {Ft}t_>0 in 
n 1 terms of H - (P0). A further and somewhat more subtle application asserts that H n-1 (P~) < o~ 

for each time t > 0, provided F0 is compact, Hn-l-rectifiable, with H '~- I (P0)  < c~. Here 

F~ = OFt, the topological boundary of Ft. 

Finally, in Section 5 we demonstrate that if some part of our generalized evolution can be 
written as a graph, then that portion is in fact a smooth hypersurface moving by mean curvature. 
This is a first regularity assertion for our generalized flow. As a corollary of this result, we show 

(Theorem 5.5) that an initial surface consisting of the boundary of an arbitrary convex set becomes 

smooth and convex. We hope in future work to show that in general {F~}t_>o is smooth, except 
for a "small" singular set. 

We thank the referee for a careful reading of this paper, and particularly for suggesting a 

simplification of the proof of Lemma 2.3. Also, we have recently seen a new paper of Ecker and 

Huisken that provides local gradient bounds for graphs moving via mean curvature. This work is 
strongly related to the estimates we obtain in Section 5. 
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2. I - I a u s d o r f f  m e a s u r e  o f  a.e.  level  se t  
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Choose g : I~ n --* IR to be smooth, bounded, and constant outside some ball. As in [6, 

Sec. 4.1] we introduce for each e > 0 the approximating PDE 

- ~ ~ u ~ in I~ n x [0, oc)  
u t =  ~i j  iDu, le+d z~xj (2.1) 

u ' = g o n l R  n x { t = 0 } .  

This quasilinear parabolic initial value problem has a unique, bounded smooth solution u ' .  Ac- 

cording to [6, Sec. 4.2], we additionally have the bounds 

sup Ilu',Dr215 < CO. 
0<e<l  

Furthermore, as e ~ 0, 

{ u ~ ---* u locally uniformly on (]~n X [0, OO) (2.2) 

Du ~ - -  Du, u~ - -  ut weakly-* in L~176 n x [0, oo))  

u denoting the unique weak solution of the mean curvature evolution PDE 

( - ~ ' ~  R~ [0,oo) Ut = ~i j  iDul2 ] Ux~xj in x 
(2.3) 

u = g o n R  n x { t = 0 } .  

See [6, Sec. 2] for the definition of a weak solution. Note that u : R n x [0, o~) --~ R is bounded, 

Lipschitz, and constant outside some compact set. 

Lemma 2.1. We have the estimate 

sups ,Dul dx < fR ,Dgl dx. 
t>O '~ n 

(2.4) 

Proof. Fix 5 > 0 and set 

r = 

# " ~ ( t )  - 

r ~ g -6(1+[x[2)1/2 (X E ~n), 

L~ r162 + s dx. (2.5) 
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We then compute 

(r 

where 

Thus 

L. C. Evans and J. Spruck 

= /R r D u ' . D u ~  
n (iDu,] 2 + e2)1/2 dx 

= _ ~ r div ( inu ,  i z + E2)1/2 u; "q'- 2r 
D e .  Du" 

(IDu'l 2 + c2)1/iu; dx 

= - L- r + ~2)1/2 _~_ 2r162 Du'H ~ dx 

Du" 
H '  -= div \ ( iDu , 7 -  ~ e2)1/2 j .  

(2.6) 

(r -< L~ IDr + E2)'/zdx 
_< (t _> o), 

since (2.5) implies IDOl 2 < a2r Applying Gronwall's inequality we obtain 

s r dxl,=T <_ .[o~ r + e=)'/= dxlt=T 

<_ e,2r f r + e2)l/2dx. 
J R  n 

We recall (2.2) and then send e, ~ ---* 0 to deduce 

/R [Du' dx't=T <-- /R 'Dgl dx 

for each time T > 0. [ ]  

For each real number 3' E R and time t _> 0, let us define 

Pg -- {x ~ ~n l u (x , t  ) = ,7}. 

by (2.1), 

We now utilize estimate (2.4) to study the measure theoretic structure of the level sets I't ~ for 
almost every (% t). We utilize the terminology of Federer [8, Sec. 3.2.14]. 

Lemma 2.2. (i) For a.e. (% t) E ]R n x [0, oo), l"t ~ is (H n-l,  n - 1)-rectifiable. In 
particular, for a.e. "/E K, ['~ is (H n-1 , n -  1)-rectifiable for a.e. t >_ O. 
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(ii) For a.e. 9' E R, we have the estimate 

sup Hn-I(F:) <__ Hn-I(F~) < c~. 
0 < t < ~  
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(2.7) 

Proof .  (1) Define the function U : ]R '~ x [0, ~ )  ---* IR 2 by 

U(x, t) = (x e  n,t > o). 

Then U is Lipschitz, whence Federer [8, Sec. 3.2.15] implies Ft ~ is countably ( H  n- l ,  n - 1)- 
rectifiable for a.e. (% t). 

In addition, the mapping (% t) H H ~-1 (F~) is measurable; see Federer [8, Sec. 2.10.26]. 

(2) Assume �9 : ~ ~ ]R is smooth and nondecreasing. According to [6, Sec. 2.4], 72 ~ k~(u) 
is the unique weak solution of the mean curvature evolution PDE (2.3) corresponding to the initial 
data ~ ~ q2(g). Thus Lemma 2.1 (with ~, ~ replacing u, g) provides the bound 

/R ~'(u)lDuldx <_ f o '(g)lDgldx 

for each t > 0. Approximating, we deduce 

I f {  [Dul dx < 1 ]i iDgl d x 

for each 7 E ~ h > 0, and t > 0. Using the Coarea Formula, we rewrite this inequality to read 

i f  l f~+~Hn-l(F~)d7" Hn-l(r'[)d~/ < ~ ,,,y 

1 f f t W h  1F+h Hn-l(r~) d~,. "~+h Hn-l(r:)  d~ ds <_ -~ j~ 
- ~  J t a "y 

As the integrand on the left-hand side is summable, we deduce upon sending h ~ 0 + that 

Hn-'(Ft ~) _< Hn-I(F~) 

for a.e. (73, , t). [ ]  

For later use, we record the following lemma. 

Integrating in t yields 
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L e m m a  2.3. Let K C ]~n be compact, 0 < H n - I ( K )  < ~ .  Then there exists a smooth, 
open, bounded set V D K such that 

H"-I (Ov)  < C H ~ - ' ( K ) ,  (2.8) 

the constant C depending only on n. 

Proof .  (1) By compactness and the definition of H n-~ there are finitely many open balls 
{U(xi, ri)}iN1 sO that 

N 

K c U(x , - U 
i = l  

and 

N 

y ~  r'~-' <_ C Hn-~(K). 
i=1  

Then 

N 

OU c UOU(xi ,  r~); (2.9) 
i=1  

whence 

N 

Hn-'(OU) < C ~ r  n-1 ~ C H~- ' (K) .  (2.10) 
i = l  

(2) Denote by A the regularized distance function to U constructed in Stein [18, Sec. 1.2.1]. 
Then 

< I{x E R ~ I d is t (x ,U)  < lar)[ 
N N 

_<  lv(xi,r +, l-V(xi, r )l <_ C r V ' r n  , 
i=1  i=1  

for some constant # > 0 and all r small enough. The Coarea Formula implies 

for H ~ - I ( { A  = s})ds  = f{o<zx<r) IDA[dx < Cl{x e IR ~ I A(x )  < r}[ 

N 

<_ C r Z r  n-I < CrHn-I (K) ,  by (2.10). 
i=1  

(2.11) 

Since A is C ~ ,  (2.11) and Sard's Theorem imply the existence of 0 < s < r such that 
V - {x E R n I A(x)  < s} is smooth and Hn-l(OV) < CHn-I(K) .  [] 
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3. Clearing out 

In this section we prove an analog for our generalized mean curvature flow of Brakke's  

fundamental "cleating out" lemma [2, Sec. 6.3]. This asserts that if at time to >__ 0 there is only a 

"small amount" of Ft0 within some ball, then for certain later times t > to, Ft  does not intersect 

a smaller concentric ball at all. 

T h e o r e m  3.1. There exist constants ce,/~, ~ > 0 such that if 

H ~ - l ( r t o  n B(xo, r)) <_ ~r n-~ 

for some time to >__ 0 and some ball B(xo~ r) C IR n, then 

F t N B ( x o ,  r~  = 0  for ar  2 < _ t - t o  </3r  2. 

(3.1) 

(3.2) 

Remark. We will see in the course of the proof (cf. 3.12) that we can take c~ > 0 as 
small as we wish, provided we adjust ~] > 0 to be sufficiently small. Hence we may additionally 

assume 

0 < o~ < -fl- . (3.3) 
4 

This inequality will be useful in a forthcoming paper. 

Proof. 

(1) 
assuming 

Our proof utilizes several key ideas of Brakke [2]. 

We may, upon translating and rescaling, suppose to = 0, x0 = 0, r = 1. Thus we are 

> 0 to be selected. 

Hn- (ro n B(O, 1)) < 7, (3.4) 

(2) Step 1. Classical mean curvature motion. For the moment,  let us also suppose {Ft}t>0 
is a classical flow by mean curvature and n _> 3. Given a C 2 function f :  ~n X [0, C~) ---* [0, 1] 

with compact support, set 

49(t) -- f r  f ( x ' t )  dHn-~(x)  (t > 0). 
t 

A classic calculation (cf. Huisken [10]) shows 

�9 '(t) = f r  (ft - (5iy - U~uy)fx,xj - f H  2) d H  n-l ,  
t 

(3.5) 
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u = ( u l , . . . ,  un) denoting a unit normal vector field to Ft and H is (n - 1) times the mean 
curvature, computed with respect to u. Write 

f (x ,  t) = h(1 - Ixl 2 - ~t) (x e R n, t ~ 0), (3.6) 

the function h and the constant # > 0 to be selected below. Then plugging in above we discover 

= fr  { - # h '  - (5~j - u~u3)(-26~h' + 4x~xjh") - hH 2} dH n-~ 
i 

= f r  { h ( - H 2 )  + h ' ( - #  + 2 ( n -  1)) + h"4 ( (x ,  t/) 2 - Ix [2 )}  dH n-1. 
i 

Taking h to be nonnegative, convex, and nondecreasing, and setting # -- 2n - 1, we obtain 

dp'(t) < - fr  (H2h + h') dH ~-1 <_ O. (3.7) 
t 

(3) Since f has compact support, we may invoke the Sobolev-type inequality 

n - - 2  

(See, for instance, Michael and Simon [14] or Burago and Zalgaller [3, Sec. 28.5.2].) 

Now set 

Z z ~ O  
h ( z )  - 0 z <_ O. 

Then h is C2, convex, and 

h I = 3h 2/3 > 0. (3.9) 

We compute 

= f r f d H n - 1  

<- (fr~ fo~ dHn-1) 1/r ( fr t  fO-o)~ dHn-1) 1/8 ' 
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where 0 < 0 < 1, 1 < r, s < ~ ,  1/r + 1Is = 1. Setting 

n - 1  n + l  n + l  
0 - - -  r -  s - - -  

n + l '  n - 2 '  3 

yields 

n-2 3/n+l 
�9 (t) < f-~=~_~ dHn-1 f2/3 dH~-I 

t t 

< 
n - - I  

c ( f p t  IDfl-~-[fH]dHn-1)-nTT (frt f2/3dHn-1)3/n+l by(3.8 ) 

< 
n - - I  

(fr~ h' dHn-1) 3/n+l by (3.6), (3.9) 

<_ C(-cb'(t)) ~-~' by (3.7). 

Here we have used (3.9) to estimate 

I f i l l  <_ hH < h + hH 2 < C(h' + hH2). 

Rewriting, we deduce 

n + l  

�9 '(t) < - c ~ ( t )  (t > 0); 

whence 

(I)(t) = 0 for t > C(I)(O)n~2. (3.10) 

Now 

f > h ( 1 - ( 7 / 8 )  2 - # t )  > 0  on B ( 0 , 7 / 8 )  

for 0 < t < /3 ,  [3 small enough. In addition, 

r  _< H n - ' ( r 0  n B(0,  1)) _< r/ 

owing to (3.3). Choose r 1 > 0 so small that 

1 

a -- Crl a-~ < 3, 

the constant C taken from (3.10). Then (3.10), (3.11) imply 

H"-'(FtC~B(0,7/8))=O (a  < t < /3 ) .  

(3.11) 

(3.12) 
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Since 1`t is a smooth hypersurface, this forces 

Ft  f3 B (0 ,  3 /4)  = ~ ( a  < t < / 3 ) .  (3.13) 

(4) Step 2: 1" o smooth. Next assume 1"0 is the boundary of a smooth, bounded open set 
U C R n, n _> 2. Choose a smooth function g : R n ----+ R with 1`o = {g = 0}, Dg 7~ 0 on Fo. 

Fix e > 0 and consider the smooth solution u ' of  the approximating PDE (2.1). As in [6, 
Sec. 4.1 ], define 

{ 
ge(y)  g (x )  - 6Xn..kl 

(3.14) 

for t > 0, y = (x,  x,~+l) E ]~n+l. Then v ' satisfies the mean curvature PDE 

' ~' ~J v '  i n n  n+t x [0, cx~) V t -h- ~ i j -  IDvela YlYj 

v '  = g '  on R nq-1 x {t  ~--- 0}.  
(3.15) 

(The implicit summation is from 1 to n + 1 here.) 

In particular, the level sets 

= {y = (x, xn+l) �9 R n+l I Xn+l = lue(x , t )}  
E 

are smooth entire graphs evolving via mean curvature motion in IR n+l , starting from the initial 

surface 

F~ -- { y =  (x, xn+l) E Rn+l [ xn+l = ~g(x)} (3.16) 

(cf. Ecker and Huisken [5]). Consequently, the argument in step 1 above (with n + 1 replacing 
n)  allows us to conclude 

P~ fq B n+l(0,  3 /4)  = 0 (~  < t < / 3 )  (3.17) 
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for appropriate constants 0 < c~ < r ,  provided 

ebb(O) = f f dH "~ 
.IF 

is small enough. Here 

f ( y , t )  = h(1 - l y l  2 - ~t),y = (X, Xn+l) , 
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and B n+l (0, r) denotes the closed ball in R n+l  with center O, radius r. Now 

r <_ Hn(F~) n Bn+l(0,  1)) 

< H'~(V~ n (B(o, 1) • [ -1 ,  1])) 

1 \ 1/2 

= fB(o,l)n{(1/~)lgl<_l}(l+~lDg[2) dx by (3.16) 

1 fs (C2 + 1Dg12)1/2 dx. 
c (o,1)n{191<6 

Since Fo is smooth and Dg ~ 0 on Fo, we see 

,I,'(o) _< 2H'~-~(ro n B(0, 1)) Jr o(1) 
< 277 + o(1) 
_< 3z] 

as c ---* 0 

for 0 < c < Go, e0 small enough. Consequently, (3.17) obtains if ~/is small enough and 0 < e < 

GO. 

and 

(5) More generally now, if ~/E I~ let us write 

1"~ '''/ = { y  e ]l~ n+l  I v ' ( Y ,  t) = ~,) 

= {y=(X,  Xn+l) ElRn+l [Xn+l= ~(U'(X,t)--'y)} 

r ~  = { x  e s n I g ( x )  = ~). 

As Fo and g are smooth, we may assume 

u n - i ( r ~ )  < c s n - l ( r 0 )  

provided I~l is small enough. 
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Applying the argument above with the evolution {F~ ''~ }t>o replacing {1-'~ }t_>o, we deduce 

~,~,'r n B n+l (0, 3/4) = ~ (ct < t < /3 )  (3.18) 

for appropriate 0 < ce </3 ,  provided 0 _< [3`1 -< 3'o, 0 < e < e0, and (3.4) holds for sufficiently 
small 7. Thus 

Ir -> 3'0 on B(0,  3/4) (o~ < t < /3 )  

if 0 < e < Eo. Letting e --* 0, we deduce 

Iq  >- 3'0 on B(o,  3/4)  (oz < t < /3 ) .  

Consequently, 

rtnB(0,3/4)=lO (o~ < t </3). (3.19) 

(6) Step 3: Arbitrary compact I'o. Finally, suppose only that I'o C IR n is compact, with 
(3.4) holding. 

We apply Lemma 2.3 to the compact set K = 1-'0 n B(0,  7/8)  to obtain a smooth open set 
V D K satisfying 

Set 

Then 

and so [6, Theorem 7.2] implies 

Hn-I(OV) < CHn-I(K) <_ Crl. (3.20) 

Ao -- VU(Rn - B(0 ,7 /8 ) ) .  (3.21) 

mo ~ ~0~ 

A t D I't, (3.22) 

{At}t>0 denoting the generalized mean curvature motion starting with A 0. We may as well also 
suppose 

f'o = 0Ao is smooth; (3.23) 

for if not we can enlarge V within the annulus B(0,  7/8)  - / 3 ( 0 ,  3/4)  to achieve (3.23). 
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We turn our attention to the ball B(0, 3/4) and observe from (3.20), (3.21) that 

H n - I ( F  0 n B(0 ,3 /4 ) )  < H n - l ( O v )  ~ C~. 
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Let {Ft}t__0 denote the mean curvature flow starting with F0. Then if r/is small enough, step 2 
implies 

Ft N B(0, 1/2) = 0 (o~ < t < /3 )  (3.24) 

for appropriate constants 0 < a </3 .  

(7) Choose a smooth function g satisfying 

{ 9 = 0 o n F o  
g < 0 in the interior of Ao 
9 > 0 in 1R ~ - A o. 

Then 

g+ = 0 in A0 
g+ > 0 i n R  n - A 0 .  

(3.25) 

Let u denote the weak solution of the mean curvature PDE (2.1) corresponding to the initial func- 
tion 9. From [6, Theorem 2.8] we recall u + is the (unique) weak solution of (2.1) corresponding 
to the initial function g +. Now 

~, = {x ~ R = I u ( x , t ) =  o}, 

and 

~x, = {x e R" I~+(x , t )  = o }  

= {x e ~" I ~(x, t )  <_ o}. (3.26) 

In view of (3.24) we have u • 0 on B(0, 1/2) x Joe,/3]; and so (3.26) allows us to infer either 

At n B(0, 1/2) = 0 (c~ < t < /3)  (3.27) 

or 

AtNB(O, 1/2)=B(O, 1/2 ) (o~ < t </3) .  (3.28) 
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Lemma 3.2 below excludes the latter possibility provided r/is small enough. Consequently, 
(3.27) must hold; whence (3.27) implies 

r t  n B(0,  1/2) = 0 (,~ < t < /3 ) ,  

as desired. [ ]  

L e m m a  3.2. Statement (3.28) is impossible if r 1 is sufficiently small. 

Proof. Let u" be the smooth solution of the approximating PDE (2.1) corresponding to 
the initial function 9 satisfying (3.25). 

(1) Define f ( z ,  t) = h(7/8  - Ixl 2 - ~ t )  (similarly to step 1 of the preceding proof) and 

O~(t) -- fR ,  f (IDu'12 § s dx. 

A calculation shows 

(~)'(t) _< o (t _> 0) 

(cf. inequality (3.7) above). Since 

f > c r > 0  on B ( 0 , 2 / 3 )  x[0,/3] 

for some cr, if # is large enough, and fl small enough, we deduce upon integrating that 

(2) 

f ([Du'l 2 + d) 1/2 dx 5 0  f (IDa12 + d) 1/2 c/x. sup 
O<_t<_~ d B(0,2/3) 3B(0,3/4) 

Choose now a smooth cutoff function ( : ]R n --~ 1~ satisfying 

~ 1 on B(0,  1/2) 

( =-- 0 on R" - B(0,  2/3).  

Then, setting 

e;~(t) - s 1 7 6  ff2(IOu'12 + e2)'/2 &, 

we compute similarly to the calculation in the proof of the Lemma 2.1 that 

(69;)'(t) + ~ ~ (2(H')2(}Dz~'I 2 + •2)1/2 dx <~ 4 . ID([2(IDu~[ 2 + e2) 1/2 d27. 

(3.29) 

(3.30) 
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Integrating and recalling from (2.1) that 

we deduce 

foZ fR CZlu~l dx dt 

u7 = ( I D u ' l  2 + e2)1/2H c, 

< C (r162 

+/R.  r + d)'/~ d~. 

Recall (3.29), (3.30), (2.2) and send e ~ 0: 

fo~ fB(O,~/2) lutldxdt <- C fB(o,3/4) [Dgldx" 
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(3.31) 

(3) Assume now statment (3.28) is valid, in which case u < --0 < 0 on B(0, 1/2) x 

According to [6, Theorem 2.8], ~ is the (unique) weak solution of the mean curvature PDE (2.3) 
corresponding to the initial function ~. Thus (3.31), with 72 and ~ replacing u and 9 gives the 
bound 

L~ /B(O,1/2) [~t[ dx dt <- C /B ID{71 dx 
(0,3/4) 

C f IDgl dx 
~_ -~ _h<9<O}nB(O,3/4) 

(3.32) 

Now z2 = ~ ( u )  = --1 on/3(0,  1/2) • {t = / 3 }  according to (3.28), and ~2 = .~ = ~(9)  = 0 
on (t3(0, 1/2) - V) x {t = 0} according (3.25). 

Since the Isoperimetric Inequality implies IYl _< C H  "-1 (OW) ~/~-' <_ C~ ~/~-1, we have 

I{x E B(0,  1/2)[  ~ =0}1 ~ ~IB(0, 1/2)1 

Set 

ff2' > 0, �9 --= - 1  on (--Cx:~,-hi 
�9 = 0 on [0, o ~ ) , { ~ ' l  < c 

[a, [3] for some constant 0 > 0. Fix 0 < h < 0 and choose a smooth function fig : R --+ R so 
that 
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if ~] is small enough. Consequently, 

f0 3 fB(0,1/2)I  l d x d t  

~[B(0, 1/2)1. 

dx 

On the other hand, 

lim [Dg I dx 
h'--'*O -h -h<_g<_O}AB(0,3/4) 

= CH'~-I({g = 0} n B(0 ,3 /4 ) )  

<_ CHn-I(cOV) 

_< C~. 

This computation, combined with (3.32) and (3.33), leads to a contradiction. [ ]  

(3.33) 

4. Estimates on extinction times and on Hausdorff  measure 

This section presents two fairly straightforward applications of the "clearing out" Theo- 
rem 3.1. 

4.1. Extinction time. Given a compact set F0 C R n, we as usual denote by {I~t}t_>0 the 
subsequent generalized motion via mean curvature. Since F0 lies within a ball of radius 

( n  1j2 
R _< 2 ( n +  1)// diam(r0), 

according to Jung's Theorem [8, Sec. 2.10.41], and this ball in turn vanishes under mean curvature 
flow at time R2/[2(n - 1)] [6, Sec. 7.1], we deduce 

o _< t* < n diam(ro)L (4.1) 
- 4(n 2 -  1) 

Here t* is the extinction time for {Ft}t>o: 

t* = sup{t _> 0 I Ft ~ 0}. 

However, (4.1) is a gross overestimate should F0 be, say, a long, thin ellipsoid. We are conse- 
quently interested in discovering refined upper bounds for t*, which take into account more of 
the geometry of F0. A first step in the direction is the following theorem. 
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T h e o r e m  4.1. There exists a constant C1, depending only on n, such that 
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0 < t* < C1Hn-l(Fo)  2/n-1. (4.2) 

Estimate (4.2) is valid even though the sets {Ft}t_>0 may develop an interior: see Section 4.2. It 
can also happen that t* = 0, even if H n - I ( F 0 )  > 0 (see [6, Theorem 8.1]). 

Proof .  If H n - l ( F 0 )  = +c~,  there is nothing to prove. Assume instead 0 < H n - I ( F 0 )  < 

o~ and choose r > 0 satisfying 

H n- l ( rO)  = ~r n- l ,  (4.3) 

77 the constant from Theorem 3.1. Then for each Xo E N n, 

H n - I ( F o  n B(xo,  r)) < ?It n - 1  

and so 

rt n B(xo, = O for < t < 3r 

As this is true for each point x0, we deduce 

Pt = 0  if t_> oLr 2. 

Thus 

t* ~ ~r2 = t~ ( H n f i ( r ~  2/n-1 

according to (4.3). 

Finally, if H n - l ( F 0 )  = 0, we immediately deduce t* = 0 from Theorem 3.1. [ ]  

An extremely interesting open problem is to derive reasonable lower bounds on t* in terms 

of the geometry of F0. 

1 * 4.2. An es t imate  on H n -  (F t ). Our intention next is to extend estimate (2.7) (asserting 
H n - l ( F t  7) _< H n - I ( F ~ )  for a.e. ('7, t) to an estimate on H n - l ( F t )  for t _> 0. In general, such a 

bound is impossible: as observed in [6, Sec. 8] it is possible that Ft develops a nonempty interior 
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for time t > 0, even if H'~-I(Fo)  < exp. For example, let r~ = 2 and Fo be the " ~ "  shape as 
drawn: 

Then for each small time t > 0, /" t  will look like this: 

This example suggests that we turn our attention instead to the set 

F~ = OFt, (4.4) 

the topological boundary of Ft. But note also in this example that presumably 

lim H n - I ( F ~ )  = 2 H n - l ( F 0 ) ,  
t \ 0  

since P0 instantly "splits" into three pieces that comprise P~ for small time t > 0. Consequently, 
the naive bound 

H n - ' ( r ; )  _< (t > 0), 

suggested by (2.7), is invalid in our model. 

We are, however, able to establish the following theorem. 

T h e o r e m  4.2. Assume Fo C R '~ is compact and ( n -  1)-rectifiable, with H n- l  (Fo ) < cx~. 
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Then 

Hn-~(r~) < C2H"-~(ro) for each time t > O, 

the constant C2 depending only on n. 

(4.5) 

Proof .  (1) Let 9 : ~n __.+ It~ be a Lipschitz function satisfying 

9(x)  = dist(x, F0) for x near F0, 

g(x) ~ 1 outside some ball, 

O _ < g _ < l ,  

ro = {9 = o }  

Since ro is compact and H n-1 rectifiable, Federer [8, Sees. 3.2.37 and 3.2.39] implies 

lira I{x E ]~n ] g(x ) < r} I _< CHn-~(ro); 
r--~0 r 

SO 

o r H n - l ( r ~ )  d7 <_ CrHn- l ( ro )  (4.6) 

for all sufficiently small r > 0. 

This inequality and (2.7) imply there exists a set G C (0, 1) so that 

I f T E G ,  H " - I ( F t  7) < H " - I ( F ~ )  < C H n - l ( F o )  fora.e.t>_O (4.7) 

and 

r 
IGM (0, r)l > ~ for each r > 0. (4.8) 

Let u be the unique weak solution of the mean curvature PDE (2.7) corresponding to the 
initial function 9. Then 

Ft = { x E ~ n  l u ( x , t )  = 0 }  for e a c h t > 0 .  

(2) Fix a time t > 0 and a number s > 0. Since F~ is compact, we can find a finite collection 
{U(xi ,  s)}iM__l of open balls such that 

x~ E V~ (i = 1 , . . . , M )  (4.9) 
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M 

r; c U U(x,,x). 
i = l  

Using Vitali's Covering Theorem, we find an integer N < M such that, upon reindexing if 
necessary, we may assume the closed balls {B(xi, S)}iN=I are disjoint, with 

N 

F; C U B(xi,5s). (4.10) 
i=1 

(3) In view of (4.9), (4.8) and the continuity of u _> 0, we can select an index "7 E G 
satisfying 

P:nB (x,,2) r r (i = 1 , . . . , N ) .  (4.11) 

Let ce,/3 > 0 be the constants from Theorem 3.1. Given "7 as above, select c~ < a < / 3  so that 

Hn-l(r~) < CHn-~(po) 

for 7- = t -- as2: this is possible owing to (4.7). 

Now we claim 

'r18 n-1 < Hn-l(r7 N B(xi, 8)) 

For if not, then 

according to Theorem 3.1. This assertion contradicts (4.11). 

(4) Consequently, we may compute 

N 

H;j~(F:) _< Cy~(ss) ~-~ by(4.10) 
i = l  

(4.12) 

< 

_< CHn-~(F~)  

N 

C ~ Hn-l(P~ N B(xi,s)) by (4.13) 
i=1 

< C H n - l ( r 0 )  by (4.12). 

(i = 1 , . . . , N ) .  (4.13) 
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The constant C depends only on n and not on s. Thus sending s ~ 0 + above, we deduce 
assertion (4.5). [ ]  

5. Local smoothness for graphs 

In this section we will establish the smoothness of  our generalized mean curvature flow 
wherever the motion can be described locally in space and time as the graph of a continuous 

function. Besides being a basic regularity assertion that we hope will be useful for a general 

theory, this gives a complete proof of  the smoothness of  the motion in many interesting special 

cases. 

5.1. T h e  m o t i o n  o f  graphs and weak solutions. Let us suppose that u is a weak 
solution of our mean curvature PDE 

( ux~Uxj'~ 
ut = 6~j iDul 2 ] ux~xj in ]~n X (0, 00), (5.1) 

and that in an open region U • ( t l , t 2 )  C R n • ~ the set F : {u : 0} is the graph of a 
continuous function v. Thus, say, 

((x, t)  l u(x,t)  = O } n U  = {(x,t) l x' e U',xn =v(x ' , t ) }  (5.2) 

where x '  = ( x x , . . .  , x n - 1 ) ,  U '  = U O {xn = 0}, and v is continuous on U '  x ( t l , t2 ) .  

Theorem 5.1. The function v is a weak solution of the PDE 

vt = ~ j  l + lDvl  2 vx~x~ in x ( t l , t2 ) .  

(Note carefully that the implicit summation here is from 1 to n -- 1.) 

(5.3) 

P r o o f .  (1) Let ~b E C~162 n-1 • JR) and suppose that v - ~b has a local maximum at a 

point (x0, to) E U '  • ( t l ,  t2). We must show 

Ct <__ 6~j 1 + IDr 2 ] Cx,x~ at (xo, to). (5.4) 

(2) We may assume that ~P(x0, to) = v(x0,  to) = 0; so that 

v(x',t) < r  in U '  x ( t l , t 2 ) .  (5.5) 
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Replacing u by -lul if necessary (still a weak solution of (1)), we may also assume 

u _< 0 in U • (t l ,  t2). (5.6) 

r  t) _= r  t) - xn. (5.7) 

(4) 

Ek  

Eo 
Define 

Let 

{ , 1} 
- (x , t )  �9 u x (t , , t2)  l f f  _< x ~ - r  _ 

= { ( x , t )  e U x ( t , , t2 )  I ~ -< x~ - r  

ak-sup{ u(x't) l(x't)~ u Ejl'o<_j<_k ) 

(k  = 1 , 2 , . . . ) ,  

Then by (5.2) and (5.6), 

ak < 0 ,  lim ak = 0 ,  a0 < a l  <ce2 < - ' '  < a k  < ' ' '  < 0 .  
k.__.+ o o  . . . . .  

We reindex as necessary to obtain 

aO < a l  < a2 < ' ' '  < ak  < ' ' ' < 0 ,  lim ak = 0 .  

(5) Define (I) : IR ~ ]R by setting 

, I , ( ~ , )  - ' ( k  = o,  ~, .) 2 k - 1  �9 . 

0 linear on [ak, Olk+l] 
�9 (o) = o ,~ (~)  = ~,~ > o  

�9 (r)  = - 2 ,  r _~ ao. 

Then if (x, t) E Ek, u(x, t) _< ak and so 

( I ' (u(z , t ) )  <_ ~ ( ~ ) -  

Thus 

�9 (u (z ,  t)) _< r  t) 

1 
2,_ ,  _< r  t) - Xn = r  t) .  

o o  

on U Ek = { (x , t )  ~ U x (t l , tQ I Xn > r  
k=O 
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On {(x , t )  ~ U • (t~,t2) ] xn < r  we have 

�9 (u(x, t)) _< o < r t). 

Consequently, w(x,  t) -- (I)(u(x, t)) _< r  t) in U • (tl, t2), W(Xo, to) = r to). There- 
fore w - r has a local maximum in U • (tl, t2) at (Xo, to). Since w is a weak solution of (5.1) 
and Dr to) ~ O, we have 

Ct ~-- (f~ij CxiCxj 
iOr ) Cx,x~ at (Xo, to) (5.8) 

But 

Ct = r  Cx~ = - - 1  

Cx, ---- ~b~, l < i < n - - 1  

0 otherwise. 

Hence (5.8) implies (5.4). 

(6) Similarly, if v - ~b has a local minimum at (Xo, to) E U' • (tl, t2) , 

( Cx,r ) 
•t >_ 6ij 1 + IDr 2 Cx,xj at (Xo, to). 

Therefore v is a weak solution of (5.3). [ ]  

(5.9) 

5.2. Interior gradient bounds. Our strategy now is to construct a smooth solution of the 
evolution equation (5.3) for arbitrary continuous initial and boundary data. This will be accom- 
plished in the next section via an approximation argument. In order to obtain a smooth solution, 
it is necessary to have a suitable a priori interior gradient estimate for smooth solutions of 

( vx, vxj 
Vt = ~i j  1 + IDvl2] (5.10) 

It is convenient first to consider negative solutions of (5.10). Set ~T ~ B(0,  R)  x (0, 2T). 
Adapting the method of Korevaar [l l] we have 

Theorem 5.2. 
v(O, T) = -Vo. Then 

Suppose v E C3(f~z) f') C~ is a negative solution of (5.10) with 

IDv(O,T)I < ( 3 + 1 6 R ) e Z K ,  (5.11) 

where K - 2 + 20(v2/T) + 80n(v2/R2). 
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Let v E C3(f~T) fq C~  be an arbitrary solution of(5.10). Then 

tDv(O,T)[ < (3 + 4 8 M )  e 2R (5.12) 

where K =- 2 + 180(MZ/T)  + 720n(M2/R2) ,  M - supf~r Ivl. 

Proof  of  Theorem 5.2. (1) Assume first R = 1 and set 

w =- ~/1 + [Dr[ 2 
Vxl V i = ,g~3 :_ ~ij - tJ~v 3 ( i , j  ---- 1 , . . . , n ) .  
W 

(5.13) 

Define h(x ,  t) =~ ~(x,  t, v (x ,  t ) )w  in f~T, where ~/(x, t, z) is nonnegative, vanishes on the 
set {t(1 -Ixl  =) = 0}, and is smooth where it is positive. Then h is nonnegative and vanishes 
on the parabolic boundary of f~Z. 

(2) We compute L h = f 3 h ~ , x j  - h t ,  using parentheses around ~ to denote total deriva- 
tives. Thus 

Hence 

so that 

ht = Ow~ + w(rl)~ 

h~, = rlw~ ~ + w(~)x~ 
o 

= 

L h  = ~?Lw + 2g ij wz, h 271 ij w ~j - w g  w~,w~j +wL~?; 

2 ij 
L h  - 2gi3W~'hxJw = ~7 L w  - w g  w~,w~:~) + wL~?. (5.14) 

(3) We next show 

Indeed, 

and 

2 ij 
L w  - - -g  w ~ w ~  >_0. 

W 

Wxi  -~- l.]k Vxkxi  

1 

(5.15) 

(5.16) 
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From (5.13) and (5.16), we deduce 

g i J w x l x j  ~ lek g iJvxkx~x~.  

B u t  

12k ffiJ v x k x i x j  

" 2 vz~vzj w = vkv~+vkv~w (v~'~vJ + v x ~ v ~ ) -  w 2 ~]  

2 ~j 
= Wt ~ - - g  Wx~Wzj. 

W 

Combining (5.17) and (5.18) gives (5.15), as claimed. Now (5.14) and (5.15) imply 

i j  Wx i  - 
L h  - L h  - 2g --~--h~ > w L ~ .  
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(5.17) 

(5.18) 

(5.19) 

(4) We choose ~ = f o r  t, v(x, t)), where 

r  z + t  - Iz l  2) , f ( r  ~ r  

On the set where r > 0, 

{ (~z---- 1 1 ~,r  -~12,r = Cx,~ = o 

- -  - 7 6ij C x ix j  - -  2t 

0<__ r 2, ~-~r __< 4t2~ __< 16. 

Thus on the set where h(x ,  t) > O, 

(,), 

Consequently, 

= f ' ( r  + Czvt), (r])~, = f ' ( r  + r 

= f " ( r  + r162 + CzV~)  + f ' ( r  + r 

r ,4, ~ { ,..s Lr/ 

A s  Lv = 0 and the least eigenvalue of the matrix (gij) is 1/w 2, ( 5 . 2 1 )  implies 

f "  E , ij L~? >_ ~-~ (r + CzVxi) 2 "~- f (g Cx,xj -- Ct). 

(5.20) 

(5.21) 

(5.22) 
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1(( 
giJ e x i z  ~ - -  q)t - -  T 2t n ]Dvla~ Ix[2)) > ( 4 n + T )  ] + ( 1 -  _ -  , 

W 2 
v z l l D v l 2 -  16 > 1 iDvl  2 > _ _  

~(r + qSz x,) ~ 8v 2 _ ~ _ 20v2 (5.23) 

provided IDvl >_ max(16v0, 2). Thus, by our choice of f ,  (5.22) gives 

L~I>-KeKr ( 4 n + T )  } (5.24) 

on the set {h > 0, IDvl > max(16Vo, 2)}. Choosing K -- 2 + 20(v2/T) + 80nv g, we deduce 
from (5.19) and (5.24) that 

Lh > 0 on {h > 0, IDvl > max(16Vo, 2)}. (5.25) 

Therefore (5.25) and the maximum principle give 

h(0, T) = (e K/2 - 1)w(0, T) < max h < (e 2K - 1)max(x/5, V/1 + (16Vo)2). 

This estimate can be simplified to read 

w(0, T) _< (3 + 16vo)e 2K, K = 2 + 20-~ + 80nv 2. (5.26) 

This proves (5.11) for R = 1. 

(5) Finally, the case of arbitrary R is recovered from (5.11) via the scaling 

1 2 
v ~ - R v ( R x ,  R t )  

defined on Bl(0) • (0,2T/RE). []  

5.3. Regularity of the height function. We are now ready to prove our main regularity 
assertion. 
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Theorem 5.4. Let {Ft}t_>o denote the generalized evolution by mean curvature corre- 
sponding to some compact set Fo C 1~ '~. Suppose that in a neighborhood U • (to - e, to + e) 
of (:Co, to) the set F is a continuous graph. Then F fq U is a C ~ graph. 

Proofi As in Section 5.1, we may suppose (see 5.2) 

F t n U  = { x l u ( x , t ) = o } n U  

= {(X',Xn) I x ' E U ' , x n = v ( x ' , t ) }  ( t o - - e < t < t o + e )  

where U' = U N {Xn = 0}. Without loss of generality, we take U' = U(0, 1) C R n-1. 
According to Theorem 5.1, v is then a weak solution of the PDE 

( vx~vx~ 
Vt = 5ij l + ] D v [ 2 j v x ~ x j  in U(O, 1) x ( t o - e ,  t o + e ) ,  (5.27) 

subject to the boundary conditions 

v ( x ' , t o - - e ) = V o ( X ' ) o n U ( O ,  1) 

v = ~ ( x ' , t )  on 0U(0,1)  x ( t o - e ,  t o + e )  (5.28) 

with v0 and ~p continuous. Using the technique of [6, Sec. 3.2], we know that v is the unique 
weak solution of (5.27), (5.28). Thus the proof of the theorem is reduced to showing that the 
initial boundary value problem (5.27), (5.28) possesses a classical solution 

v �9 C ~ ( a )  n C~  a -- U(0, 1) • (to - e, t0 + e). 

For smooth v0, qo this is proven in Lieberman [13, p. 385]. Moreover, this technique of Lieberman 
[13, Sec. 2] and Gilbarg and Trudinger [9, Sec. 14.5] give moduli of continuity estimates for v 
when v0, ~ are merely continuous. 

Choose now smooth functions v0 k, ~k converging uniformly to v0, qo on U(0, 1), respectively 
OU(O, 1) • [ t0-  e, to q-e], with corresponding solutions v k of (5.27). Then by Corollary 7.3 (with 
n replaced by n -- 1) {IDvkl}~_l is uniformly bounded on compact subsets Q of U(0, 1) x 
(to - e, to + e). Thus each v k satisfies a uniformly parabolic equation, wherein classic interior 
Holder gradient and Schauder estimates (cf. [12]) imply that 

sup Ilvkllc~+~,~<~) < o~. (5.29) 
k 

ThUS, passing to a subsequence if necessary, {Vk}~=l converges to a classic C ~ solution v of 
(5.27). Moreover, v satisfies the initial and boundary conditions (5.28) by virtue of the modulus 



148 L. C. Evans and J. Spruck 

of continuity estimates mentioned earlier. Therefore we have shown 

F n U - -  { ( x , t )  x'  c U ( O ,  1 ) , X n = V ( X ' , t ) }  

is the graph of a C ~162 function. [ ]  

5.4. M o r e  on convexity. As an immediate application of Theorem 5.4 we can improve 
our previous result [6, Theorem 7.6] concerning the evolution of convex initial hypersurfaces F 0. 
These assertions recover by our methods some of Huisken's results in [10]. 

T h e o r e m  5.5. Assume I" o is the boundary of a convex, bounded, open set U. Then there 
exists a time t* > 0 such that r t  is the boundary of a smooth convex, nonempty open set for 
0 <_ t < t*, and is empty for t > t, .  

Proof .  Choose admissible initial data g such that r0  =-- {g = 0}, g < 0 outside U, 
g > 0 inside U and the level sets {x  E U I g (x )  = •  for small 7 > 0 are smooth and 
strictly convex. Let u be the corresponding solution of our mean curvature evolution PDE (1.1). 
Applying [6, Theorem 7.6] and Theorem 5.4, we conclude that the sets {x ] u(x ,  t) > if}, 
{x [ u ( x ,  t) > --7} for small '7 > 0 are smooth and convex. Since intersections and increasing 
unions of convex sets are convex, it follows that for each t > 0, the sets L( t )  - { x  I u (x ,  t) > 
0} and U(t )  - {x [ u (x ,  t) _> 0} are convex. In particular, OL(t) and OU(t)  are Lipschitz 
and coincide, unless Ft has nonempty interior. However, this last possibility is excluded by the 
uniqueness result of Sorter [18, Secs. 7,9] since F0 is Lipschitz and strictly star-shaped. It follows 
that 

r ,  = or ( t )  = ou( t ) .  

Now fix a point (x0, to) with x0 E Fro, to < t* = the extinction time for F0. By the 
previous reasoning, we can find a neighborhood O of (x0, to) so that we can represent 

r n o =  { ( x , t )  I x I e u ( o , r ) , x .  = v ( x ' , t ) }  

where v is Lipschitz in x t uniformly in t and the Xn direction is chosen appropriately with respect 

to a fixed ball contained inside the Ft. In order to apply Theorem 5.4, it remains to demonstrate the 
continuity of v in t. Consider a sequence (x~, tk) in U(0, r /2 )  x (to - e/2,  to + e/2)  converging 
to point (:~1, t--) in U(0, r )  x (to - e, to + e). Since v is bounded, we can choose a subsequence 
(x~ ,  tk~) so that v (x~ , t k~ )  --* L. On the other hand, l Z ( (X l k~ ,V (X~ i , t k~ ) ) , t k~ ) , t k~ )  : 0 and 
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U is continuous. Therefore, u ( (x ' ,  L),  {) = 0 and hence L = v(~' ,  t~ by our representation of 
F N O .  

Hence v is continuous and Theorem 5.4 implies that Ft is smooth and convex for all t < t*. 
[] 

Example .  Consider F0 consisting of a circle C in the plane union a vertical diameter as 
drawn: 

Then for each small time t > 0, Ft will look like this: 

To see this heuristically, consider the left closed semicircle E as a subset of F0. By [6, 
Theorem 7.2], ~t  C Ft for each t > 0. According to Theorem 5.5, Et is smooth and convex. 
Similarly, F0 contains the motion Ct of the circle C. On the other hand, St  must separate 
immediately from Ct and be contained inside it [6, Theorem 8.2]. By symmetry, the same situation 
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pertains to the right closed semicircle. Thus 1-'t must have nonempty interior and look as drawn 
above. 

Besides giving a nice example of the development of an interior, this example shows the 
hypothesis of Theorem 5.4 that Ft be representable locally as a graph for an interval of time is 
necessary for regularity. 
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