CONVERGENCE TESTS FOR POSITIVE SERIES

The following convergence tests can be applied to positive series:

Integral test
If \(f(x) \geq 0 \) is a decreasing continuous function, then
\[
\sum_{n=1}^{\infty} f(n) \sim \int_{1}^{\infty} f(x) \, dx
\]

Comparison test
\(a_n \)

a) If \(0 \leq a_n \leq b_n \) and \(\sum b_n \) is convergent then \(\sum a_n \) is convergent.

b) If \(0 \leq a_n \leq b_n \) and \(\sum a_n \) is divergent, then \(\sum b_n \) is divergent.

c) If \(\lim_{n \to \infty} \frac{a_n}{b_n} = L \neq 0 \), then \(\sum a_n \sim \sum b_n \).

Ratio test
Let \(\lambda = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \) (assuming the limit exists).

- If \(\lambda < 1 \) then \(\sum a_n \) is convergent.
- If \(\lambda > 1 \) then \(\sum a_n \) is divergent.
- If \(\lambda = 1 \), the test is inconclusive.

Root test
Let \(\rho := \lim_{n \to \infty} a_n^{1/n} \) (assuming the limit exists).

- If \(\rho < 1 \) then \(\sum a_n \) is convergent.
- If \(\rho > 1 \) then \(\sum a_n \) is divergent.
- If \(\rho = 1 \), the test is inconclusive.