THE COMPLETE EQUATION OF ORDER TWO

1. General principles

Consider the complete equation
\[y'' + ay' + by = \phi(x) \]
where \(a, b \) are real numbers and \(\phi(x) \) is a given function. The general solution to this equation is of the form
\[y(x) = y_p(x) + y_0(x) \]
where \(y_p \) is a particular solution of the complete equation (1) and \(y_0 \) is a general solution to the reduced equation
\[y'' + ay' + by = 0 \]
in other words
\[y(x) = y_p(x) + C_1 u_1(x) + C_2 u_2(x) \]
where \(u_1, u_2 \) are the fundamental solutions of the reduced equation, and \(C_1, C_2 \) are some constants. Therefore all that remains is to find a particular solution \(y_p \) to the complete equation (1).

2. Search of \(y_p \): method of undetermined coefficients

This is the method of guessing \(y_p \) by starting with a general form which is "related" somehow to \(\phi(x) \). If this method doesn’t work, one should then try the formulas from the method of the variation of parameters.

Few examples:

a) \(y'' + 2y' + 5y = 10e^{-2x} \). Try \(y_p(x) = Ae^{-2x} \) and determine \(A \).

b) \(y'' - 3y' + 2y = e^x \). Here looking for \(y_p \) of the form \(Ae^x \) will not work, since \(u_1(x) = e^x \) is a fundamental solution of the reduced equation. So in this case one should try \(y_p = Axe^x \).

c) \(y'' - 4y' + 4y = x^3 + x + 1 \). Try \(y_p(x) = Ax^3 + Bx^2 + Cx + D \) and determine the coefficients \(A, B, C, D \).

d) Principle of superposition. To determine a particular solution to the equation, say,
\[y'' - 2y' + y = x^2 + e^{-x} \sin(x) \]
it is better to take the following steps:

i) Find a particular solution \(y_1 \) to the equation \(y'' - 2y' + y = x^2 \), and of course one should try the form \(y_1(x) = Ax^2 + Bx + C \) and determine \(A, B, C \).

ii) Find a particular solution \(y_2 \) to the equation \(y'' - 2y' + y = e^{-x} \sin(x) \), and one should try the form \(y_2(x) = Ae^{-x} \sin(x) + Be^{-x} \cos(x) \), and determine \(A, B \).

iii) A particular solution of the original equation (3) is then given by \(y_p(x) = y_1(x) + y_2(x) \).
3. Initial value problems

When solving a differential equation subject to initial conditions, we first need to determine the general form of the solution to the differential equation (regardless of the initial conditions) up to two coefficients C_1 and C_2, and after that input the initial conditions to determine C_1 and C_2 explicitly.

3.1. Example. Solve the differential equation

\[y'' - 4y' + 4 = 8x + 4 \] \hspace{1cm} (4)

subject to the initial conditions $y(0) = 5, y'(0) = 3$.

Answer.

Step 1. The reduced equation is $y'' - 4y' + 4y = 0$ and the associated characteristic equation is

\[r^2 - 4r + 4 = 0, \quad r_1 = r_2 = 2 \]

Therefore the fundamental solutions of the reduced equation are

\[u_1(x) = e^{2x}, \quad u_2(x) = xe^{2x} \]

Step 2. Determine a particular solution to the complete equation (4). Try $y_p(x) = Ax + B$, and solve

\[y_p'' - 4y_p' + 4y_p = 4A + 4Ax + 4B = 4Ax + (4B - 4A) = \phi(x) = 8x + 4 \]

therefore $A = 2, B = 3$, and hence $y_p(x) = 2x + 3$.

Step 3. Determine the general solution to the complete equation (4). This is

\[y(x) = y_p(x) + C_1u_1(x) + C_2u_2(x) \]

\[= 2x + 3 + C_1e^{2x} + C_2xe^{2x} \]

Step 4. Solve for the initial conditions and determine C_1, C_2. We have

\[y(0) = 3 + C_1 = 5 \]

\[y'(0) = 2 + 2C_1 + C_2 = 3 \]

It follows that $C_1 = 2, C_2 = -3$ so the solution is

\[y(x) = 2x + 3 + 2e^{2x} - 3xe^{-2x} \]