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Abstract. In this note, we introduce a guiding principle to define topologies

for a wide variety of spaces built from existing topological spaces. The topolo-
gies so-constructed will have a universal property taking one of two forms. If

the topology is the coarsest so that a certain condition holds, we will give an

elementary characterization of all continuous functions taking values in this
new space. Alternatively, if the topology is the finest so that a certain condi-

tion holds, we will characterize all continuous functions whose domain is the

new space.

Consider a function f : X → Y between a pair of sets. If Y is a topological
space, we could define a topology on X by asking that it is the coarsest topology
so that f is continuous. (The finest topology making f continuous is the discrete
topology.) Explicitly, a subbasis of open sets of X is given by the preimages of open
sets of Y . With this definition, a function W → X, where W is some other space,
is continuous if and only if the composite function W → Y is continuous.

On the other hand, if X is assumed to be a topological space, we could define
a topology on Y by asking that it is the finest topology so that f is continuous.
(The coarsest topology making f continuous is the indiscrete topology.) Explicitly,
a subset of Y is open if and only if its preimage in X is open. With this definition,
a function Y → Z, where Z is some other space, is continuous if and only if the
composite function X → Z is continuous.

In this what follows, we use a mild generalization of this principle (where single
maps are replaced by families of maps) to define topologies on new spaces con-
structed from old. We first describe the construction of the underlying sets of these
spaces.

1. On the construction of new sets

There are many ways to build new sets from existing sets:

Disjoint unions. Given sets A and B, their disjoint union is the set A
∐
B whose

elements are elements of exactly one of A or B.
For example, the integers Z are the disjoint union of the odd integers and the

even integers. Or, iterating the disjoint union construction, the set of n elements
is the disjoint union of n copies of the set ∗ with a single element.

Products. Given sets A and B their (cartesian) product is the set

A×B = {(a, b) | a ∈ A, b ∈ B}
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Elements of A × B are called ordered pairs.1 Infinite products may be formed
similarly: the product of sets A1, A2, . . . is the set∏

n∈N
An = {(a1, a2, . . .) | a1 ∈ A1, a2 ∈ A2, . . .}

More generally, a product can be indexed by any (possibly uncountable) set. Given
a set Aα for each α ∈ I — this I referred to as the index set — an element of∏
α∈I Aα is a collection of elements (aα)α∈I with a coordinate aα ∈ Aα for each

α ∈ I.
For example, the Euclidean plane R2 is the product R×R. The lattice of integer

points is the product Z× Z.

Subsets. The subsets of a set X are again sets in their own right.

Quotients. A quotient of a set X is a set whose elements are thought of as “points
of X subject to certain identifications.” For example, there is a quotient of R which
we might call the set “R mod Z”. Elements are real numbers plus some arbitrary
unspecified integer. There is a bijection between the set R mod Z and the set [0, 1).

If X is equipped with an equivalence relation ∼, then the set X/∼ of equivalence
classes is a quotient of the set X. More generally, any binary relation ∼ generates
an equivalence relation: by definition, the equivalence relation generated by ∼ is
the smallest equivalence relation on X so that x and x′ are in the same equivalence
class if x ∼ x′. In this case, we again write X/∼ for the set of equivalence classes of
X in the equivalence relation generated by ∼ and refer to this set as the quotient
of X by ∼.

Gluings. Suppose X and Y are two sets that are not disjoint but share a common
subset A = X ∩ Y . We can form a new set by gluing X to Y along A. We denote
this set by X ∪A Y . Formally, X ∪A Y is the quotient of X

∐
Y by the relation

that identifies those points in X and in Y that lie in the intersection. If we label
the inclusions, as in the diagram

(1.1) A

i

��

j //

p

Y

��
X // X ∪A Y

we say that points in X ∪A Y are points in X
∐
Y subject to the identifications

i(a) ∼ j(a) for each a ∈ A.2 We arrange inclusions into a square (1.1) to represent
that the inclusions commute: a point a ∈ A has the same image in X∪AY regardless
of whether it is mapped first into X and then into X ∪A Y or mapped first into Y
and then into X ∪A Y .

Gluings are also called pushouts. The symbol “p” is included to remind the
reader that the set in the lower right-hand corner is constructed as a gluing.

For example, when two 2-dimensional closed disks are glued together along their
boundary circles, the result is a 2-dimensional sphere. We visualize one disk and the
“northern hemisphere”, the other as the “southern hemisphere”, and their common
boundary as the “equator”.

1Note that the elements (a, a′) and (a′, a) in the product A×A are distinct.
2Technically we should say “subject to the equivalence relation generated by i(a) ∼ j(a) for

each a ∈ A.” Note, that the maps i and j need not be injective.
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Pullbacks. We can now “dualize”3 the previous picture. A pullback is a subset of
a product space, subject to certain conditions. More precisely, suppose X and Y
are sets equipped with functions f : X → A and g : Y → A. The pullback is the set

X ×A Y = {(x, y) ∈ X × Y | f(x) = g(y)}

For example, the pullback of the “pairity” map Z→ Z/2 along the “inclusion of
0” map ∗ → Z/2 is the set of even integers. In general the pullback of an arbitrary
function f : X → A along a function a : ∗ → A that picks out a single element a ∈ A
is called the fiber : it consists of the set of elements of X whose image under f is a.

Here is another example. Let f : X → Y be any function. The pullback of f
along the identity is a set we might call the graph of f . It is the set of points
(x, f(x)) ∈ X ×Y . To understand our choice of terminology, it might be helpful to
draw a picture in the case of f : R→ R.

2. Functions that remember constructions

Now suppose these existing sets were topological spaces. How can we topologize
the newly constructed sets in a sensible way? It turns out there is a uniform
procedure for doing this that encompasses each of the examples introduced above,
producing the “correct” answer in each context. What “correct” means is that the
result is mathematically interesting, something that one must convince oneself of
gradually through accumulated experience.

A recognition problem. But before we address this issue, we must find a way
for these sets to “remember” how they were constructed. To explain what we mean
by this, let us describe what it means to “forget” the mechanism of construction.
For instance, the sets Z, Z t Z, and Z × Z are isomorphic, all having the same
cardinality. Without extra data it is impossible to tell that the second and third
are respectively a disjoint union and a product of two copies of the first. Or given
finite sets A and X with |A| < |X| there are many possible ways to regard A as

a subset of X. A priori there is no way to prefer one to the
(|X|
|A|
)
· |A|! others.

Similarly, without any extra information, it would be impossible to recognize which
circle on the surface of a 2-sphere is the equator along which the two disks were
glued.

The key insight is to use certain canonical functions between the sets we’ve just
constructed and the sets these sets were built from to remember the constructions.
The reader is encouraged, as an exercise, to revisit the above examples and guess
what these functions might be.

Done? Here are the answers.

Disjoint unions. A disjoint union can be recognized by the injections

A ↪→ A
∐

B ←↩ B

More generally, given sets Aα, there is a canonical injection Aα ↪→
∐
αAα for each

α in the index set. These maps are jointly surjective: each element in
∐
αAα is in

the image of (exactly) one of the canonical injections.

3Informally, dualize means “turn around all the arrows.” This doesn’t have anything to do
with inverse functions. Instead, in any place where the previous discussion refers to a function

X → Y , consider instead a (a priori unrelated) function Y → X.
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Products. Products can be recognized by the projections

A� A×B � B

onto each coordinate. More generally, given sets Aα, there is a canonical projection
function ∏

α

Aα → Aα

(. . . , aα, . . .) 7→ aα

for each α.

Subsets. Subsets are of course recognized from the inclusion map A ↪→ X.

Quotients. When a quotient of X is formed from an equivalence relation ∼ there
is a canonical surjective function X → X/∼ that takes an element to its equivalence
class. More generally, we can think of any surjective function X � Y as defining an
equivalence relation on X. Equivalence classes correspond bijectively to elements
of Y . Explicitly, x ∼ x′ if x and x′ lie in the same fiber, i.e., if x and x′ have the
same image in Y .

With this perspective, a quotient of X is any set Y for which there is a surjective
function X → Y , and such a function witnesses the fact that Y is a quotient of X.

Gluings. The components of a gluing X ∪A Y are identified via the maps in the
diagram (1.1). We refer to the maps X → X∪AY ← Y as the canonical inclusions,
though this terminology is a bit of an abuse: if the maps i and j in (1.1) are not
injective, then these maps will likely not be injections.

Pullbacks. Dually, a pullback X ×A Y is recognized from the maps

X ×A Y
y

��

// Y

g

��
X

f
// A

The arrows X ← X ×A Y → Y are also called projections, mapping an element
(x, y) to x and y respectively. We use the symbol “y” to indicate that the set in
the upper left-hand corner is constructed as a pullback.

The interesting uses of the pullback construction in topology are of a somewhat
less elementary nature, so pullbacks will not be discussed in detail in this paper.

3. The universal definition and its characterizing theorem

Now we are ready to introduce the appropriate topology on the spaces formed
by each of our constructions. To do so, first note that our six examples come in
two flavors. For disjoint unions, quotients, and gluings, the functions that recognize
each construction map to the set so-constructed. By contrast, for products, subsets,
and pullbacks, these functions map from the set so-constructed. The topologies
we assign to the spaces in these two classes of examples will take dual forms and
the resulting spaces will satisfy two different (dual) sorts of universal properties.
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The general definitions.

Definition 3.1. Given spaces Xα, the disjoint union topology on
∐
αXα is the

finest topology so that the canonical injections Xα ↪→
∐
αXα are continuous.

Definition 3.2. Given a space X and a quotient Y , the quotient topology on Y is
the finest topology so that the canonical projection X � Y is continuous.

Definition 3.3. Given spaces and continuous functions X
i←− A

j−→ Y , the gluing
topology on X ∪A Y is the finest topology so that the maps X → X ∪A Y ← Y are
continuous.

Definition 3.4. Given spaces Xα, the product topology on
∏
αXα is the coarsest

topology so that the canonical projections
∏
αXα → Xα are continuous.

Definition 3.5. Given a space X and a subset A, the subspace topology on A is
the coarsest topology so that the canonical inclusion A ↪→ X is continuous.

Definition 3.6. Given spaces and continuous functions X
f−→ A

g←− Y , the pullback
topology on X ×A Y is the coarsest so that the projection maps X ← X ×A Y → Y
are continuous.

Note that the indiscrete topology makes the functions of definitions 3.1, 3.2, and
3.3 continuous — but the indiscrete topology is not very interesting. This is why
we asked for the finest topology and not the coarsest one. Similarly, the discrete
topology makes the functions of definitions 3.4, 3.5, and 3.6 continuous; this is why
we asked for the coarsest topology and not the finest one. The upshot is that we
do not get to choose whether the coarsest or finest possible topologies are used in
our definitions: in each example only one of these will produce an interesting result.

The fact that the topologies specified by these definitions exist follows from the
following general result whose proof is left as an exercise.

Lemma. Let {Tα} be any collection of topologies on a space X. Then there is a
unique topology TF which is finer than each topology Tα and is the coarsest topology
with this property, and there is a unique topology TC which is coarser than each
topology Tα and is the finest topology with this property.

The universal properties. We have not yet given an explicit description of these
topologies. Nonetheless, we can prove the following theorems.

Theorem 3.7 (theorem-schema F4). Consider a family of spaces Xα and a set X
given the finest topology so that certain maps Xα → X are continuous. Then if Z
is any space, a function X → Z is continuous if and only if the composite maps
Xα → X → Z are continuous.

Theorem 3.8 (theorem-schema C5). Consider a family of spaces Xα and a set X
given the coarsest topology so that certain maps X → Xα are continuous. Then if
Z is any space, a function Z → X is continuous if and only if the composite maps
Z → X → Xα are continuous.

We realize that the “certain maps” in these theorem statements is somewhat
vague. The point is in each example, there will be a theorem of this form that is

4For “finest”.
5For “coarsest”.
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provable without any further information about the topologies we have just defined!
Even more remarkably, though we won’t prove this here, these universal properties,6

not only give rise to an explicit description of each of these topologies but also
determine the underlying sets of these spaces uniquely up to isomorphism.

Explicit descriptions. It turns out that it is not difficult to give a direction
characterization of the topologies introduced in definitions 3.1-3.6. For products,
subspaces, pullbacks, or indeed for any topology defined to be the coarsest structure
on X so that a given collection of functions with domain X are continuous, there
is a concrete description of a subbasis for this topology.

Theorem 3.9. Let X be any set equipped with functions fα : X → Xα taking values
in topological spaces Xα, and suppose the topology on X is defined to be the coarsest
topology so that these maps are continuous. Then the collection⋃

α

{f−1α (U) | U ⊂ Xα is open}

defines a subbasis for the topology on X.

Proof. For fα to be continuous, f−1α (U) must be open in X for each open U ⊂ Xα.
These sets define a subbasis for some topology: the open sets in this topology are
precisely the unions of finite intersections of sets of the form f−1α (U). This is clearly
the coarsest topology so that the fα are continuous. �

Remark. Indeed, the conclusion of Theorem 3.9 remains true if we only consider
preimages of basis elements or even subbasis elements for each space Xα. A general
open set U ⊂ Xα is expressible as a union of finite intersections of subbasis elements;
its preimage will then be a union of the (finite) intersections of the preimages of
these subbasis elements.

Similarly, for disjoint unions, quotients, gluings, or indeed for any topology de-
fined to be the finest structure so that a certain collection of maps to a given set are
continuous, there is an explicit characterization of the open sets in this topology.

Theorem 3.10. Let X be any set equipped with functions fα : Xα → X whose
domains are topological spaces Xα, and suppose the topology on X is defined to be
the finest topology so that these maps are continuous. Then U ⊂ X is open if and
only if f−1α (U) ⊂ Xα is open for each α.

Proof. Let T be the finest topology on X so that the maps fα are continuous. If
U ∈ T , then each f−1α (U) ⊂ Xα must be open because each fα is supposed to be
continuous. Conversely, suppose A ⊂ X is any set for which f−1α (A) ⊂ Xα is open.
Define a topology on X consisting of all finite intersections and arbitrary unions
of A and elements of T . The preimage under fα of an open set in this topology is
expressible as a union of finite intersections of f−1α (A) and preimages of elements
of T . By hypothesis, these sets are open in Xα. Hence, fα is continuous, and the
assumption that T is the finest topology with this property implies that A ∈ T . �

Now let’s see how this plays out in our examples.

6As a rough approximation, a universal property refers to the existence of certain maps satis-
fying some specified conditions.
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4. Disjoint unions

Let’s prove this theorem for our first example: disjoint unions. The essential
details in the proofs for arbitrary disjoint unions and for finite, or indeed binary,
disjoint unions are identical, so to simplify our notation, we’ll just consider the
latter.

Theorem (universal property of the disjoint union topology). Suppose A and B
are spaces and give A

∐
B the disjoint union topology. Then any set-function

f : A
∐
B → Z taking values in a topological space Z is continuous if and only

if the restrictions f |A and f |B are continuous.

Note f |A is precisely the composite function A ↪→ A
∐
B

f−→ Z. Hence this
theorem is a special case of our theorem-schema F. Note also that we have yet to
give a concrete description of the disjoint union topology. Nonetheless, we can give
a proof!

Proof. If f is continuous then so are the composite functions f |A and f |B , so one
direction is clear. For the converse implication, consider an open subset U ⊂ Z.
By hypothesis f |−1A (U) is open in A and f |−1B (U) is open in B. Clearly f−1(U) =

f |−1A (U)
∐
f |−1B (U), so to prove that this is open it suffices to show that f |−1A (U)

and f |−1B (U) are open in A
∐
B.

The proof of this fact uses a general argument. Recall A
∐
B was given the

finest topology so that the inclusions A ↪→ A
∐
B ←↩ B are continuous. So to

show that any subset V ⊂ A
∐
B is open, we claim that it suffices to show that

V ∩ A and V ∩ B, the preimages along these inclusions, are open. Provided these
two conditions hold, then V could be added to the topology on A

∐
B without

violating the continuity of these maps. But because A
∐
B has the finest topology

with this property, it must be the case that V is already open in A
∐
B.

Note that (f |−1A (U)) ∩ A = f |−1A (U) and (f |−1A (U)) ∩ B = ∅, both of which are

open. Hence f |−1A (U) is open in A
∐
B. Similarly f |−1B (U) is open. This completes

the proof. �

Indeed, the image of any open subset in A is open in A
∐
B. In general a

continuous map f : X → Y is called open if f maps open sets in X to open sets in
Y and closed if f maps closed sets to closed sets.

Lemma. The canonical inclusions A ↪→ A
∐
B ←↩ B are both open and closed.

Proof. Let V ⊂ A be open. Note V ∩ B = ∅ is open in B. So V could be
added to the topology of A

∐
B without disrupting the continuity of the maps

A ↪→ A
∐
B ←↩ B. Because A

∐
B has the finest such topology, V must therefore

be open in A. Replacing “open” by “closed”, this argument also proves that the
maps A ↪→ A

∐
B ←↩ B are closed. �

The idea that underpinned the proof of these two results allows us to immediately
characterize all open sets in the disjoint union topology. The following definition is
equivalent to definition 3.1.

Definition (the disjoint union topology). Given spaces Xα, a subset is open in the
disjoint union topology on

∐
αXα if and only if it is a union

∐
α Uα of open sets

Uα ⊂ Xα.
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We should argue that the topology defined here is the finest topology that makes
the injections Xα ↪→

∐
αXα continuous. To prove this, it suffices to show that any

non-open subset of the coproduct has some non-open preimage in one of the Xα.
Suppose A ⊂

∐
αXα is not open in this topology. Note we can write

A =
∐
α

(A ∩Xα).

Hence one of the A ∩ Xβ is not open. But this means that if A were open, then
the inclusion Xβ ↪→

∐
αXα would not be continuous. This is a special case of the

proof of Theorem 3.10.

Exercise. Let ∗ denote the one-point space given the only possible topology. Let
S be a set. What is the topology on the set

∐
S ∗ defined to be the S-indexed

coproduct of ∗ with itself?

Exercise. The set R is the disjoint union of the rationals Q and the irrationals.
Suppose R is given the standard topology of 1-dimensional Euclidean space. Is it
possible to topologize the rationals and the irrationals so that the standard topology
on R agrees with the disjoint union topology?

5. Products

Theorem 3.9 provides a concrete description of the product topology:

Definition (the product topology). Given spaces Xα the product topology on∏
αXα has open sets:

∏
α Uα where Uα ⊂ Xα is open and Uα = Xα for all but

finitely many indices α.

The reader is encouraged to give a direct proof that this definition is equivalent
to definition 3.4.

Example. Recall a basis for the standard topology on R is given by open intervals
(a, b). Thus, a subbasis for the product topology on R2 is given by “open strips”
of the form (a1, b1) × R or R × (a2, b2). Taking intersections, we see that a basis
for the product topology is given by open rectangles (a1, b1) × (a2, b2). This basis
defines the standard topology on the Euclidean plane.

Analogously, the product topology on Rn has a basis given by open rectangular
prisms whose edges are parallel to the coordinate axes. This basis defines the
standard topology on n-dimensional Euclidean space.

Example. As the notation suggests, the set 2N of “coin flips” is isomorphic to the
N-indexed product of the set 2 of two elements. Give each two-element set the
discrete topology. An element in the subbasis for the product topology on 2N is an
“observation”, i.e., a set consisting of all sequences of coin flips so that the k-th
term takes a specific value, for some k ∈ N. This subbasis defines the observable
topology on coin flips.

We should prove the analog of Theorem 3.8 for the product topology.

Theorem (universal property of the product topology). Let Z be a topological
space, let Xα be a collection of spaces, and give

∏
αXα the product topology. Then

a function f : Z →
∏
αXα is continuous if and only if each coordinate function

fα : Z → Xα is continuous.
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Note the coordinate function fα is precisely the composite of f with the projec-
tion

∏
αXα → Xα.

Proof. If f is continuous, then the coordinate functions fα are composites of contin-
uous functions and hence continuous. Conversely, suppose each coordinate function
is continuous. To see that f : Z →

∏
αXα is continuous, it suffices to check that

the preimages of subbasis elements are open in Z. By Theorem 3.9 a subbasis is
given by the collection of sets f−1α (U) for some open U ⊂ Xα. But these are open
by hypothesis, completing the proof. �

The box topology. We conclude this section with a quick aside describing another
topology on an infinite product of spaces. Given spaces Xα, the box topology on
the set

∏
αXα has as open sets products

∏
α Uα of open sets Uα ⊂ Xα subject to

no additional restrictions.
At first glance this seems like a reasonable definition. But the following example

illustrates how this topology can be poorly behaved with respect to continuous
functions.

Example. Giving Rω the box topology, the function t 7→ (t, t, t, . . .) : R→ Rω is not
continuous even though its coordinate functions clearly are: the preimage of the
open set

(−1, 1)× (−1

2
,

1

2
)× (−1

3
,

1

3
)× · · ·

is the set consisting of a single point, the origin, which is not open.

6. Subspaces

Theorem 3.9 gives an explicit description of the subspace topology on a subset
A of a topological space X.

Definition (the subspace topology). The subspace topology on A has a subbasis
given by the sets A ∩ U with U ⊂ X open.

Note the collection of sets {A ∩ U | U is open in X} is closed under finite inter-
section and arbitrary union. Thus all open sets in the subspace topology have this
form.

Exercise. What is the subspace topology assigned to Z ↪→ R?

We have the following analog of Theorem 3.8 for the subspace topology.

Theorem (universal property of the subspace topology). Let X and Z be spaces
and let A ⊂ X be given the subspace topology. A function f : Z → A is continuous
if and only if the composite Z → A ↪→ X is continuous.

Proof. Open subsets in the subspace topology have the form A ∩ U where U ⊂ X
is open. The preimage in Z of A∩U under f is the same as the preimage in Z of U
under the composite function Z → X. It is therefore open provided this composite
is continuous. �

In particular, any continuous function Z → X whose image is contained in A
restricts to a continuous function Z → A.

Exercise. Suppose A ⊂ X is given the subspace topology. Is the inclusion A ↪→ X
open?
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More generally, we refer to any continuous injective function A ↪→ X as a sub-
space inclusion if the topology on A coincides with the subspace topology on X.

Example. The space 2N of coin flips is a subspace of the Euclidean unit interval
[0, 1] via the function

(e1, e2, e3, . . .) 7→
∑
n>0

2en
3n

: 2N → [0, 1]

Put another way, this function defines an imbedding from the observable topology
to the Euclidean topology. Its image is a subset of the real line called the Cantor
set.

7. Gluings

The gluing construction introduced above extends to arbitrary (non-injective)

functions. Given sets and functions X
f←− A g−→ Y define the gluing or pushout

(7.1) A
f //

g

�� p

X

g̃

��
Y

f̃

// X ∪A Y

to be the quotient of the disjoint union X
∐
Y by the equivalence relation generated

by the relation f(a) ∼ g(a) for each a ∈ A. Intuitively, this means that points in
the image of f are identified with corresponding points in the image of g. But this
quotienting process can also be used to identify points in X together. For example,
if Y is the singleton set ∗, the underlying set7 of the pushout X ∪A ∗ will be the set
X\f(A)

∐
∗. Every point in the image of f will be collapsed to a single point ∗.

Now suppose the maps f and g are continuous. By definition 3.3, the space
X ∪A Y is assigned the finest topology so that the maps f̃ and g̃ are continuous.
Theorem 3.10 leads to a concrete description of the gluing topology.

Definition (the gluing topology). A set U ⊂ X∪AY is open in the gluing topology

if and only if f̃−1(U) ⊂ Y and g̃−1(U) ⊂ X are open.

In the case where f and g are inclusions, this definition may be restated in the
following form: U ⊂ X ∪A Y is open if and only if U ∩X and U ∩ Y are open.

Example. The real line with two origins is a space which we will denote R � R
obtained as a gluing

R\{0} �
� //

_�

�� p

R_�

��
R �
� // R � R

It has the property that any neighborhood of one origin must intersect any neigh-
borhood of the other.

7We say “underlying set” because the space X ∪A ∗ is not topologized as a disjoint union.
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Example. Let p ∈ Sn be any fixed point. The wedge of two n-spheres is obtained
by gluing Sn to Sn at this point.

∗
p

��

p //

p

Sn

��
Sn // Sn ∨ Sn

For instance the space S1 ∨ S1 is the figure eight. Iterating this construction
produces a bouquet of n-spheres glued together along a single point.

Warning (gluings vs unions). Let X be a space with subspaces A and B so that
X = A ∪B. Consider the commutative square of inclusions

A ∩B

��

// B

��
A // X

If A and B are both closed subspaces, then this square is a gluing square. This
square is also a gluing square if both A and B are open. But in general, the topology
on X might not agree with the gluing topology even though X is the set-theoretic
union of A and B. For instance, if B is the complement of A, A ∩ B is empty,
and the gluing topology assigned to A ∪ B is such that the subsets A and B are
both open and closed. In general, the gluing topology might be finer than the
pre-existing topology on X.

A particular type of gluing has a special name.

Definition (attaching an n-cell). Let X be a topological space and let f : Sn−1 →
X be any continuous function. We may attach an n-cell to X by gluing Dn to X
along the attaching map f by means of the following pushout

Sn−1
f //

_�

�� p

X

��
Dn // X ∪Sn−1 Dn

In this terminology, (discrete) points are also called 0-cells. Their boundary
consists of the empty space S−1 = ∅. “Attaching” a point just means taking a
disjoint union. A vast library of topological spaces can be constructed by repeatedly
attaching cells in various dimensions.

Definition 7.2. A cell complex is a space constructed by repeatedly attaching
cells. A CW-complex is a cell complex constructed from a set of zero cells by first
attaching 1-cells to the 0-cells, then attaching 2-cells to the 0-cells and 1-cells, then
attaching 3-cells to the 0-, 1-, and 2-cells, and so on.

In this context, Theorem 3.7 takes the following form.

Theorem (the universal property of the gluing topology). Consider a space X∪AY
constructed as a pushout (7.1). A function j : X ∪A Y → Z is continuous if and
only if the composite functions X → X ∪A Y → Z and Y → X ∪A Y → Z are
continuous.



12 EMILY RIEHL

Proof. Suppose the composite functions are continuous and consider an open set
U ⊂ Z. By hypothesis, f̃−1j−1(U) and g̃−1j−1(U) are open. Now the explicit
characterization of the gluing topology implies that j−1(U) is open, as desired. �

In fact, the universal property of gluings is even stronger than asserted.

Theorem (the universal property of the gluing topology II). Let h : X → Z and
k : Y → Z be any continuous functions so that hf = kg. Then there exists a unique
continuous function j : X ∪A Y → Z so that its restriction to X is the function h
and its restriction to Y is the function k, i.e., so that the diagram

A
f //

g

�� p

X

g̃

�� h

��

Y
f̃ //

k ,,

X ∪A Y
∃!

j
##G

G
G

G
G

Z

commutes.

In words, a function from a space constructed by gluing X to Y along A is
uniquely determined by a pair of functions defined on X and Y , provided that
these functions agree on A. Note that nothing in this result requires that the
functions f or g are injective. In this context, the restriction of j to X means the
composite of j with g̃; similar remarks apply to the restriction to Y .

Proof. The functions f̃ and g̃ are jointly surjective onto X ∪A Y , meaning that
every point is in the image of either f̃ or g̃. We define the value of j on a point
f̃(y) to be k(y) and define j on a point g̃(x) to be h(x). We must show that this is
well defined.

As a set, the gluing X∪AY is constructed by taking the disjoint union X
∐
Y and

then quotienting by the equivalence relation generated by the relation f(a) ∼ g(a)
for all a ∈ A. But note, given a point f(a) = g(a) in X ∪A Y , the first definition for
the image under j is kg(a) while the second is hf(a); because hf = kg, these two
candidate definitions agree. It follows that j is well defined. Continuity is given by
the previous theorem. �

The following example illustrates how this result might be used in a very simple
case.

Example. Let X be a topological space. A loop in X is a continuous function
S1 → X. It is common to choose a “base point” in S1 at say that the loop S1 → X
is a loop based at the point x in the image of this chosen point.

Equivalently, recall S1 is formed by the following gluing square

(7.3) ∗
∐
∗

i0
∐
i1

��

//

p

∗

��
I // S1

By the previous theorem, a loop in X is given by a function ∗ → X, whose image
determines a point x ∈ X, together with a continuous map I → X, called a path,
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subject to the condition that the starting and ending points of the path are the
point x ∈ X. But this is precisely what it means to define a loop at x in X!

8. Quotients

Let p : X � Y be a surjective function between sets X and Y . Recall that we
can use this function to think of points in Y as equivalence classes of points in X.
Here, the equivalence classes are the fibers of the map p, i.e., the sets p−1(y) for
some y ∈ Y .

Now suppose X is a space. Recall definition 3.2: the quotient topology on Y is
the finest topology so that p is continuous. Once more, Theorem 3.10 provides an
explicit description of the open sets in this topology.

Definition (the quotient topology). Suppose given a surjective continuous function
p : X � Y . A set U ⊂ Y is open in the quotient topology if and only if p−1(U) is
open.

To review the ideas introduced above, let us give a direct proof that this definition
agrees with the topology defined in 3.2. Because X has a topology and the preimage
function p−1 respects intersections and unions, this definition defines a topology on
Y . To show that it agrees with the topology of definition 3.2, we must show that
every open set in this topology is open in the other topology and visa versa. To
show that the topology of definition 3.2 is finer than this topology, it suffices to
note that p is continuous with respect to this topology and 3.2 was defined to be
the finest such topology. To show that this topology is finer than the topology of
3.2, we note that if U is open in 3.2, then p−1(U) is open by continuity, and hence
U is open in the topology defined here.

When Y is given the quotient topology, the map p : X � Y satisfies a particular
property, which is stronger than continuity. Sometimes maps with this property
are found “in nature” in which case it is convenient to have a name by which to
recognize them.

Definition (quotient maps). A surjective map p : X � Y is a quotient map if
U ⊂ Y is open if and only if p−1(U) ⊂ X is open.

If p is a quotient map, then the topology on Y is necessarily the quotient topology
with respect to p. In particular, the universal properties described below apply
equally well to quotient maps found “in nature.”

Example. Form a set T as a quotient of the square I × I by identifying points
(x, 0) ∼ (x, 1) and points (0, y) ∼ (1, y). The resulting space is homeomorphic to
the torus and the map I × I � T is a quotient map with respect to the usual
(subspace) topologies on these spaces.

·
∧

� ·
∧

· � ·
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Example. The Möbius strip M is defined to be the quotient of the space I × I by
the relation (0, y) ∼ (1, 1− y) for all y ∈ I.

·
∧

·
∨

· ·
Example. Attaching an n-disk to a point defines a surjective map Dn � Sn. Points
in the interior of the disk Dn map injectively into Sn whereas points on the bound-
ary Sn−1 ⊂ Dn map to the “south pole” of Sn. This map is a quotient map when
both spaces are given their standard (subspace) topologies.

This example can be generalized. We leave the proof as an exercise:

Lemma. Let i : A ↪→ X be a subspace inclusion and let p : A � Y be a quotient
map. Then the pushout p̃ : X � X ∪A Y is a quotient map.

Example. Let RPn be the set of lines through the origin in Rn+1. There is a
surjective function Sn � RPn that takes a point on the unit sphere to the line it
inhabits. The topology on the space RPn is defined to be the quotient topology
with respect to this map.

Example. The (unreduced) suspension of a space X is the quotient of the space
X × I, given the product topology, by the relation (x, 0) ∼ (x, 1) for all x ∈ X.
For example, the suspension of S1 is the quotient of the cylinder S1 × I by the
relation that collapses the top circle to a point and collapses the bottom circle to
a point. This space is homeomorphic to S2. Similarly, the suspension of Sn is
homeomorphic to Sn+1.

Theorem 3.7 encodes the universal property of the quotient topology.

Theorem (the universal property of the quotient topology). Let p : X � Y be
a quotient map and let Z be a topological space. A set-function g : Y → Z is
continuous if and only if the composite gp : X → Z is continuous.

Proof. The hard part is to show that if gp is continuous then g is. Consider an
open set U ⊂ Z. Because gp is continuous, (gp)−1(U) = p−1(g−1(U)) is open. But
this implies that g−1(U) is open by the definition of the quotient topology, proving
continuity of g. �

Once more, the universal property of the quotient topology can be strengthened.

Theorem (the universal property of the quotient topology II). Let p : X � Y be
a quotient map and let Z be a topological space. Given any continuous function
h : X → Z that is constant on fibers, i.e., so that h(x) = h(x′) whenever p(x) =
p(x′), then there is a unique continuous function g : Y → Z so that gp = h.

X

p
����

h

  @
@@

@@
@@

@

Y
∃!
g
//___ Z

This result is often summarized by the following slogan: to define a continuous
function whose domain is a quotient space, it suffices to define the function “up-
stairs”, provided that the “upstairs” function is constant on fibers. For example,
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to define a function whose domain is RPn, it suffices to define a function whose
domain is Sn and that is constant on antipodes.

Proof. Define g(y) to be h(x) for any point x ∈ p−1(y). Because h is constant on
fibers, this is well-defined. The function g is continuous by the previous theorem.
Uniqueness is obvious. �

We close our discussion of quotient spaces with a final general example. Suppose

given continuous functions X
f←− A g−→ Y . As a set X∪AY is a quotient of X

∐
Y by

the equivalent relation generated by f(a) ∼ g(a) for all a ∈ A. There is a canonical
function X

∐
Y → X ∪A Y which takes points to their equivalence classes.

Theorem. The canonical map X
∐
Y → X ∪A Y is a quotient map from disjoint

union topology to gluing topology.

Proof. U ⊂ X ∪A Y is open if and only if U ∩X and U ∩ Y are open, i.e., if and
only if its preimage in X

∐
Y is open. �

By the universal property of this quotient map, continuous functionsX∪AY → Z
correspond to continuous functions X → Z and Y → Z that agree upon restriction
to A. This is precisely the universal property of the gluing topology.

9. An application of the universal properties

In practice, particularly as the examples get more complicated, universal prop-
erties are a very useful way to define continuous functions. We give a few quick
examples.

Example. Suppose we wanted to define an “interesting” function Sn∨Sn → Sn×Sn.
In the case n = 1, we hope to define a map from the figure eight to the torus.
To define a map taking values in a product space Sn × Sn, it suffices, by the
universal property of the product topology, to define a pair of continuous coordinate
functions Sn ∨ Sn → Sn. Because Sn ∨ Sn is constructed by gluing, for each map
Sn∨Sn → Sn it suffices, by the universal property of the gluing topology, to define
the two components Sn → Sn, provided these functions agree at the point p ∈ Sn
at which the two spheres are attached.

The map we have in mind might be called

Sn ∨ Sn (1∨p,p∨1)−−−−−−→ Sn × Sn.
The first coordinate function is the identity on the first sphere and constant at the
point p on the second. The second coordinate function is the identity on the second
sphere and constant at the point p on the first. In the case n = 1, the image of the
figure eight consists of the union of a loop around the rim of the torus and a loop
around the handle.

Example. The inclusion S1 ↪→ S2 whose image is the “equator” defines a map
RP 1 → RP 2. To see this, note that the composite S1 ↪→ S2 � RP 2 is constant
on antipodes and continuous. Hence, the universal property of the quotient implies
that this map defines a unique continuous function RP 1 → RP 2 so that the diagram

S1

����

// S2

����
RP 1 // RP 2
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commutes. This map RP 1 → RP 2 includes lines through the origin in R2 as
lines through the origin that lie in the xy-plane in R3. This construction can
be generalized to maps of arbitrary increasing dimension Sn → Sn+k and their
quotients RPn → RPn+k.

Our final example, also involving real projective spaces, is more exotic. Let us
first try and get our bearings. The space RP 1 turns out to be homeomorphic to
S1. Note however that the quotient map S1 → RP 1 is not a homeomorphism: it’s
not bijective!8

The space RP 2 can be built as a CW-complex with one 0-cell, one 1-cell, and
one 2-cell. First, the 1-cell is attached the 0-cell as displayed in (7.3) to form the
space S1. Then, the 2-cell is attached to the space S1 along the “squaring” map
S1 → S1; if S1 ⊂ C is the subspace of complex numbers of norm 1, this map squares
each complex number. The pushout

S1
_�

��

(−)2 //

p

S1

��
D2

q
// RP 2

defines a space homeomorphic to RP 2. To see this, note that D2 is homeomorphic
to the northern hemisphere of S2 together with the equator. The squaring map
S1 → S1 is a quotient map; hence its pushout D2 → RP 2 is also a quotient map. It
is easy to see that this quotient map identifies antipodal points along the equator
of the northern hemisphere. But if we superimpose lines through the origin in R3

onto our picture we can easily define a bijection between RP 2 and the resulting
quotient space.

Unlike the case in dimension 1, it turns out that RP 2 and S2 are not homeomor-
phic. We don’t have the tools to prove this result yet, but we can at least provide
some fairly convincing intuition. An important property of the surface RP 2 is that
it is non-orientable. A surface is non-orientable if and only if it contains a subspace
that is homeomorphic to the Möbius strip M . The 2-sphere S2, by contrast, is
orientable and does not have this property.

How might we define the embedding M ↪→ RP 2? Why by appealing to the
universal properties of the quotient space of course! Recall D2 is homeomorphic to
I × I. First define a map f : I × I → I × I by

(x, y) 7→ (x,
1

2
+
y − 1

2

2
).

The image is the strip of radius 1
2 around the horizontal bisector of I × I. Next

consider the composite

I × I f−→ I × I
∼=−→ D2 q−→ RP 2.

Here the middle map is the homeomorphism defined by placing the closed unit disk
D2 on top of the closed square in such a way that their centers of mass coincide and
then “stretching” the points of the square radially so that they map bijectively to
the disk. By design this homeomorphism sends “antipodal points” on the boundary
of I × I to antipodal points on S1 ⊂ D2.

8As an exercise, write down a homeomorphism between these spaces.
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Recall we have a quotient map p : I × I �M . We can check that the composite
map above is constant on fibers of p: the points (y, 0) and (1, 1 − y) map to an-
tipodal points on S1 ⊂ D2 which are identified by the quotient map q. Hence this
continuous function determines a unique continuous map M → RP 2. This is our
desired embedding of the Möbius band as the “prime meridian” of RP 2.

10. Discrete and indiscrete topologies

We end with one final pair of examples. We could imagine a version of definitions
3.1-?? in which there were no maps (and hence no conditions) for the topology on
the set X except that it were the finest or coarsest possible. It turns out these
topologies are quite familiar.

Definition (the discrete topology). The finest possible topology on a set X is
called the discrete topology.

Definition (the indiscrete topology). The coarsest possible topology on a set X is
called the indiscrete topology.

It is easy to argue that every subset of X must be open in the discrete topology,
and that only X and the empty set are open in the indiscrete topology. The reason
for mentioning these examples is to note the following consequences of Theorems
3.7 and 3.8. We leave the proof to the reader.

Theorem 10.1 (universal properties of the discrete and indiscrete topologies). Let
Z be a topological space. Any set-function Z → X is continuous if X is given
the indiscrete topology. Any set-function X → Z is continuous if X is given the
discrete topology.

11. A concluding thought

The insights presented here all derived from a branch of mathematics called
category theory. If you liked this story, you might want to check it out. There’s a
lot more where this came from!
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