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1. Introduction

Quasi-categories live at the intersection of homotopy theory with category theory.
In particular, they serve as a model for (∞, 1)-categories, that is, weak higher
categories with n-cells for each natural number n that are invertible when n > 1.
Alternatively, an (∞, 1)-category is a category enriched in ∞-groupoids, e.g., a
topological space with points as 0-cells, paths as 1-cells, homotopies of paths as
2-cells, and homotopies of homotopies as 3-cells, and so forth.

The basic data for a quasi-category is a simplicial set. A precise definition is
given below. For now, a simplicial set X is given by a diagram in Set

X0
// X1oo

oo //
// X2

oo
oo

oo //
//
//
· · ·oo

oo

oo
oo

with certain relations on the arrows. Elements of Xn are called n-simplices, and the
arrows di : Xn → Xn−1 and si : Xn → Xn+1 are called face and degeneracy maps,
respectively. Intuition is provided by simplical complexes from topology. There is
a functor τ1 from the category of simplicial sets to Cat that takes a simplicial set
X to its fundamental category τ1X. The objects of τ1X are the elements of X0.
Morphisms are generated by elements of X1 with the face maps defining the source
and target and s0 : X0 → X1 picking out the identities. Composition is freely
generated by elements of X1 subject to relations given by elements of X2. More
specifically, if x ∈ X2, then we impose the relation that d1x = d0x ◦ d2x.

This functor is very destructive. In particular, it only depends on the data of
the simplicial set up to the 2-simplices. Quasi-categories provide a weaker notion
of composition that is non-algebraic (2-simplices exhibiting some composite rather
than the composite), while avoiding this sort of truncation. As before, the 0-
simplices are interpreted as objects and the 1-simplices as morphisms. For given
1-simplices f and g with d0f = d1g, each 2-simplex x with d0x = g and d2x = f
will be interpreted as giving a composite d1x of f and g up to homotopy. The 3-
simplices give homotopies between these homotopies, and so forth. In an ordinary
simplicial set, the simplices exhibiting these composites need not exist; a quasi-
category will be a simplicial set satisfying certain extra “horn-filling” conditions
that suffice to define a non-algebraic composition of the simplices.

The functor τ1 has a right adjointN called the nerve functor that takes a category
C to a simplicial set NC. The nerve functor is full and faithful and all the simplicial
sets in its image are quasi-categories. All of the important data of a category is
contained in its nerve. In particular, τ1NC = C for any category, so categories can
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be studied via quasi-categories. The nerve functor will be described in more detail
below.

A modern introduction to quasi-categories must note that they also serve as a
model for the “homotopy theory of homotopy theories.” In some sense a “homotopy
theory” can be regarded as a category with some class of weak equivalences that one
would like to formally invert. Any such homotopy theory gives rise to a simplicial
category, and conversely simplicial categories arise from homotopy theories up to
Dwyer-Kan equivalence. Thus a model structure on the category of simplicial
categories has the interpretation as a homotopy theory of homotopy theories.

Simplicial categories are easily related to simplicial spaces, also known as bisim-
plicial sets. There are a number of models for the homotopy theory of homotopy
theories with simplicial spaces as objects. Surprisingly, these models are all Quillen
equivalent to the model structure for quasi-categories on sSet, a description of
which is the main objective of this paper1. Quasi-categories, as noted below, are
simplicial sets with a certain lifting property, and are thus much simpler objects
than simplicial categories or simplicial spaces, suggesting that this model may prove
most useful for performing actual computations. We say a few words about these
equivalences in Section 6. A good summary is given in [2].

Alternatively, there is a direct functorial construction of a quasi-category from
a category C with a class of weak equivalences W. This construction is described
at the end of Section 5.

The theory of quasi-categories has been developed extensively by André Joyal
and Jacob Lurie, among others. We mostly follow Joyal’s terminology; Lurie calls
quasi-categories∞-categories, which to a category theorist can be a bit misleading.

1.1. Notation and Classical Results. Classically, simplicial sets were intro-
duced as a combinatorial model for the homotopy theory of topological spaces.
One measure the success of this approach is two theorems by Quillen from his
initial paper on model categories [13], which we record below.

First, we establish some notation and terminology. Let ∆ denote the category
of finite non-empty ordinals and order preserving maps. We write [n] for the set
{0, 1, . . . , n}, corresponding to the ordinal n+ 1. A simplicial set is a contravariant
functor ∆op → Set and morphisms of simplicial sets are natural transformations.
These form a category sSet that is complete and cocomplete (with limits and
colimits formed levelwise), locally small, and cartesian closed.

The morphisms of ∆ are generated by the injective coface maps di : [n−1]→ [n]
whose image misses i ∈ [n] and the surjective codegeneracy maps si : [n+ 1]→ [n]
for which i ∈ [n] has two elements in its preimage. If X is a simplicial set, we
write di : Xn → Xn−1 for Xdi : X[n] → X[n − 1] and si : Xn → Xn+1 for
Xsi : X[n] → X[n + 1] and call these the face and degeneracy maps, respectively.
A simplicial set may alternatively be described as a collection of sets X0, X1, X2, . . .
together with face and degeneracy maps satisfying certain relations dual to those
satisfied by the di and si (see [5] or [12] for details).

Let ∆n be the represented simplicial set ∆(−, [n]). By the Yoneda lemma n-
simplices of a simplicial set X correspond bijectively to maps ∆n → X of simplicial
sets and our notation deliberately conflates the two. ∆n has several important

1Note that the full subcategory QCat ⊂ sSet spanned by the quasi-categories is neither

complete nor cocomplete, so the model structure for quasi-categories will actually be a model
structure on sSet
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simplicial subsets: the i-th face ∂i∆
n, which is the image of di : ∆n−1 → ∆n; the

n-sphere ∂∆n, which is the union of the n + 1 faces of ∆n; and the (n, k)-horn
Λnk , which is the union of all faces except for ∂k∆n. We often write I for ∆1, as
this simplicial set is analogous to the topological interval, and we write ∗ for the
terminal simplicial set ∆0. The geometric realizations of each of these simplicial
subsets are the topological spaces suggested by their names.

Like all categories of presheaves of a small category, sSet is cartesian closed;
we denote the internal-hom by XA. By the defining adjunction, maps ∆n → XA

correspond to maps A × ∆n → X. By the Yoneda lemma, we can take the set
of the latter to be the definition of n-simplices [XA]n, if we wish. The face and
degeneracy maps are given by precomposition by 1× di and 1× si, respectively.

A map Λnk → X of simplicial sets is called a horn of X. We say a simplicial set
X is a Kan complex if every horn of X has a filler, that is, if every Λnk → X can be
extended along the inclusion hnk : Λnk → ∆n. A (small) quasi-category is a simplical
set such that every inner horn (i.e., Λnk with 0 < k < n) has a filler.

Theorem 1.1 (Quillen Model Structure). sSet has a model structure (C,Fk,Wh),
where C is the class of monomorphisms, Fk is the class of Kan fibrations, and
Wh is the class of weak homotopy equivalences. This model structure is cofibrantly
generated by the sets

I = {in : ∂∆n ↪→ ∆n | ∀n ≥ 0}
of generating cofibrations and

J = {hnk : Λnk ↪→ ∆n | ∀n ≥ 1}
of generating trivial cofibrations.

We will refer to (C,Fk,Wh) as the Quillen or classical model structure on sSet.
It is cartesian (see Theorem 4.1) and proper. The following theorem is the reason
why simplicial sets provide a useful model for the homotopy theory of topological
spaces.

Theorem 1.2 (Quillen). Geometric realization and the total singular complex func-
tor induce a Quillen equivalence between sSet with the above model structure and
Top with the model structure where weak equivalences are weak homotopy equiva-
lences and fibrations are Serre fibrations.

The geometric realization functor | − | : sSet → Top has a concise categorical
description as the left Kan extension of the functor ∆ : ∆ → Top that takes the
ordinal [n] = {0, 1, . . . , n} to the standard topological n-simplex ∆n, along the
Yoneda embedding y : ∆ ↪→ sSet. Because the Yoneda embedding is full and
faithful, | − | will be a literal extension of ∆, meaning that |y[n]| = ∆[n]; in more
conventional notation this says that |∆n| = ∆n. The right adjoint of geometric
realization is the total singular complex functor S : Top → sSet, with the n-
simplices of the total singular complex of a topological space X given by the set

SXn := Top(∆n, X).

This type of adjunction involving simplicial sets is quite general. Given any
F : ∆→ E where E is cocomplete and locally small, the functor LanyF : sSet→ E

has a right adjoint R where the n-simplices of Re for any e ∈ obE are defined to
be the set

Ren := E(F [n], e),
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with the face and degeneracy maps given by precomposition by the corresponding
morphisms in the image of F .

Other examples that fit this paradigm include the categorical nerve N : Cat→
sSet and its left adjoint τ1, subdivision and extension, and also the simplicial nerve
functor N that takes a simplicial category (that is a category enriched in sSet) to a
simplicial set and its left adjoint C, both of which are discussed in Section 6. Under
suitably nice hypotheses (see [9]) the left adjoints will preserve finite products.

Finally, we write f � g to mean that a morphism f has the left lifting property
with respect to a morphism g, that is, that every commutative square

·
f

��

// ·
g

��
· //

w

@@�
�

�
�

·
has a lift w such that both triangles commute. Lifting properties are central to the
definition of quasi-categories as well as many other related concepts. For example,
X is a quasi-category iff the map q : X → 1 has the property hnk�q for all 0 < k < n,
for all n > 1.

2. Basic Quasi-categories

Categories provide important examples of quasi-categories, as we see below. Be-
cause the nerve embedding N : Cat→ sSet is full and faithful, we can regard the
theory of quasi-categories as an extension of the theory of categories. Also for this
reason, we will occasionally use the same notation for a category and its nerve.

Lemma 2.1. If K is a category, every inner horn of NK has a unique filler; hence,
the nerve of a category is a quasi-category.

Proof. Horns Λnk → NK correspond bijectively to functors τ1Λnk → K by the ad-
junction τ1 a N . The inner horn inclusion hnk induces an isomorphism of categories;
hence, there is a unique extension of τ1Λnk → K along the functor τ1Λnk → τ1∆n.
The result follows by passing back across the adjunction. �

In fact, the converse also holds: if X is a quasi-category such that every inner
horn has a unique filler, then X is isomorphic to the nerve of a category.

The 0-simplices of a simplicial set are often called its vertices and the 1-simplices
its edges. If a and b are vertices of a simplicial set X, we write X(a, b) for the
simplicial set of 1-simplices f with d1f = a and d0f = b. Alternatively, X(a, b) is
the fiber of the map XI → X{0,1} induced by the inclusion {0, 1} ↪→ I at the vertex
(a, b) of X{0,1}. The simplicial set X(a, b) is a Kan complex if X is a quasi-category;
Theorem 4.2 will imply that its a quasi-category and the rest follows from results
characterizing Kan complexes not contained in this paper.

The fundamental category of a quasi-category is isomorphic to its homotopy
category, described below.

Definition 2.2. Let X be a quasi-category and let f, g ∈ X(a, b). We write f ∼a g
if there is a 2-simplex with boundary (f, g, 1a) and f ∼b g if there is a 2-simplex
with boundary (1b, g, f). The four relations f ∼a g, f ∼b g, g ∼a f and g ∼b f are
equivalent when X is a quasi-category, and we denote the common relation they
define by f ∼ g and say that f is homotopic to g. We write [f ] for the equivalence
class of f up to homotopy. The homotopy category hoX has objects X0, morphisms
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homotopy classes of arrows f ∈ X1, with degenerate arrows acting as identities,
and composition given by filling the horns h21, which is well-defined.

Theorem 2.3. When X is a quasi-category, the natural map τ1X → hoX is a
canonical isomorphism.

The proof is straightforward.

3. Weak Categorical Equivalences

The weak equivalences of Joyal’s model structure for quasi-categories are called
weak categorical equivalences, which we describe below. Joyal’s definition is anal-
ogous to a combinatorial description of weak homotopy equivalences of simplicial
sets, which we also give below. By contrast, Lurie defines weak categorical equiva-
lences (which he calls categorial equivalences) to be those maps whose image under
C is an equivalence of simplicial categories. These definitions are equivalent.

Taking a cue from enriched category theory, when a category E is cartesian
closed and we are given a product preserving functor τ : E→ Set, we can define a
cartesian closed category Eτ with the same objects as E and with hom-sets given
by Eτ (A,B) := τ(BA).

For sSet, we have two relevant product preserving functors: π0 : sSet → Set
that takes a simplicial set X to the set of path components of vertices and τ0 :
sSet→ Set that takes X to the set of isomorphism classes of objects of τ1X. Note
that τ0 is the composite

sSet
τ1→ Cat

J→ Gpd ↪→ Cat
N→ sSet

π0→ Set

In the above J is the functor that takes a category to its groupoid of isomorphisms.
We’ve remarked already that π0 and τ1 preserve finite products; the other functors
all have left adjoints. Hence, τ0 preserves finite products.

There is a natural transformation α : τ0 ⇒ π0 that takes an isomorphism class
to its path component, which gives rise to a functor sSetτ0 → sSetπ0 .

Definition 3.1. A map of simplicial sets is a homotopy equivalence if its image in
sSetπ0 is an isomorphism. We say a map u : A→ B is a weak homotopy equivalence
if

sSetπ0(u,X) : sSetπ0(B,X)→ sSetπ0(A,X)

is a bijection for all Kan complexes X.

Classically, a weak homotopy equivalence between simplicial sets is a map whose
geometric realization is a weak homotopy equivalence of topological spaces — or
equivalently, by Whitehead’s theorem, a homotopy equivalence of topological spaces
— because the geometric realization of a simplicial set is a CW complex. For-

mally, |A| |u|→ |B| is a homotopy equialence of CW complexes iff π0 applied to
Map(|B|, |X|)→ Map(|A|, |X|) is an isomorphism. When X is Kan,

π0X
B ∼= π0|XB | ∼= π0 Map(|B|, |X|),

so which proves that this definition is equivalent to the usual one.
This combinatorial definition of a weak homotopy equivalence has a clear analogy

with the following definition.
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Definition 3.2. A map of simplicial sets is a categorical equivalence if its image
in sSetτ0 is an isomorphism. We say a map u : A → B is a weak categorical
equivalence if

sSetτ0(u,X) : sSetτ0(B,X)→ sSetτ0(A,X)

is a bijection for all quasi-categories X.

A categorical equivalence is necessarily a weak categorical equivalence. Con-
versely, a weak categorical equivalence between quasi-categories is a categorical
equivalence as a consequence of the Yoneda lemma applied to QCatτ0 ⊂ sSetτ0 ,
the full subcategory spanned by the quasi-categories. The analogous facts are true
for homotopy equivalences and Kan complexes. Note that all of these classes satisfy
the 2 of 3 property.

An easy exercise shows that if X is a Kan complex, then its homotopy category
is a groupoid (and the converse holds when X is a quasi-category, though this is
somewhat harder to prove). This result enables the following lemma.

Lemma 3.3. If X is a Kan complex, τ0X = π0X.

If X is a Kan complex, so is XA for any simplicial set A as a consequence of the
first part of Theorem 4.2, which is a classical result. So the previous lemma implies
that sSetτ0(A,X) = sSetπ0(A,X) for any simplicial set A when X is Kan. With
these tools, we can prove the following important theorem.

Theorem 3.4. A (weak) categorical equivalence is a (weak) homotopy equivalence.

Proof. We have a commutative diagram

sSet
ρ

$$IIIIIIIII
ρ

zzuuuuuuuuu

sSetτ0
α

// sSetπ0

By functoriality of α, an arrow that becomes invertible in sSetτ0 remains so in
sSetπ0 , so a categorical equivalence is a homotopy equivalence.

Now suppose u : A→ B is a weak categorical equivalence. Then sSetτ0(u,X) :
τ0(XB)→ τ0(XA) is a bijection for all Kan complexes X. By Lemma 3.3 it follows
that sSetπ0(u,X) is also a bijection. Hence u is a weak homotopy equivalence. �

Quillen’s model structure on simplicial sets has the monomorphisms as cofibra-
tions and weak homotopy equivalences as weak equivalences. Joyal’s model struc-
ture for quasi-categories also has the monomorphisms as cofibrations and has weak
categorical equivalences as weak equivalences. So Theorem 3.4 will imply that the
Quillen model structure is a Bousfield localization of the Joyal model structure.
This fact is recorded as Proposition 5.9.

The next result will be used to establish the Joyal model structure.

Proposition 3.5. A trivial Kan fibration is a categorical equivalence, and thus a
weak categorical equivalence.
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Proof. If f : X → Y is a trivial Kan fibration, it has a section s constructed as a
lift of the diagram

∅ //

��

X

f

��
Y

s

??~
~

~
~

Y

Let J be the groupoid with two objects and exactly one morphism in each hom-set.
By an abuse of notation we also refer to NJ as J . Let j : {0, 1} ↪→ J be the
monomorphism of simplicial sets that includes the vertices of J into J . We obtain
a commutative square

X × {0, 1}
(1,sf) //

1×j
��

X

f

��
X × J

h

::u
u

u
u

u

f ·proj1
// Y

which has a lift because the left hand side is monic. The lift h is adjoint to an arrow
k : J → XX which takes the non-trivial isomorphisms in J to arrows between the
vertices sf and 1X of XX , which become isomorphisms in τ1(XX). Hence, s is an
inverse for f in sSetτ0 , which makes f a categorical equivalence. �

Proposition 3.6. A functor between categories is a categorical equivalence if and
only if its nerve is a categorical equivalence of simplicial sets. Furthermore, τ1 takes
weak categorical equivalences to categorical equivalences.

Proof. A functor in Cat is an equivalence of categories if and only if it is invertible in
Catτ0 . Because τ1 preserves finite products, N preserves exponentials and the nat-
ural bijection τ0(N(LK)) → τ0(NLNK) implies that the functor Catτ0 → sSetτ0

induced by the nerve is fully faithful. So a functor is an equivalence iff its nerve is
a categorical equivalence. Similarly, (NK)X ∼= N(Kτ1X) if K is a category and X
is a simplicial set. If u is a weak categorical equivalence, then sSetτ0(u,NK) and
thus also Catτ0(τ1u,K) is an isomorphism for any category K, and Yoneda implies
that τ1u is invertible in Catτ0 . �

4. Mid, Right, and Left Fibrations

The results in the section are only tangentially relevant to the model structure
for quasi-categories but encode a lot of the combinatorial work necessary to prove
things such as the fact that XA is a quasi-category if X is a quasi-category and A is
a simplicial set. The main point of this section is to describe five weak factorization
systems on sSet that have nice properties encoded in Theorems 4.1 and 4.2. Two
of these are classical: the weak factorization systems (C,Fk∩Wh) and (C∩Wh,Fk)
arising from Quillen’s model structure. These are both cofibrantly generated by
sets I and J (see Theorem 1.1). Morphisms in C ∩Wh are called anodyne.

Let Jm ⊂ J be the set of inner horn inclusions described in Section 1.1. Let Fm
be the class of mid fibrations (Lurie writes inner fibrations), that is, those maps
that have the right lifting property with respect to Jm. As the domains of the
maps in Jm are small in sSet, it follows from Quillen’s small object argument that
there is a cofibrantly generated weak factorization system (Am,Fm) on sSet, where
Am is the saturated class generated by Jm. The elements of Am are exactly those
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morphisms that have the left lifting property with respect to Fm; we call these
morphisms mid anodyne (Lurie writes inner anodyne).

Analogously, we have cofibrantly generated weak factorization systems (Al,Fl)
and (Ar,Fr) generated by sets

Jl = {hnk : Λnk ↪→ ∆n | 0 ≤ k < n, n ≥ 1} and

Jr = {hnk : Λnk ↪→ ∆n | 0 < k ≤ n, n ≥ 1}
respectively. The left classes are the left and right anodyne maps and the right
classes are the left and right fibrations, respectively. Recalling that the weak fac-
torization system (C∩Wh,Fk) is cofibrantly generated by J ⊂ Jl, Jr ⊂ Jm, we have
the obvious inclusions

Fm ⊂ Fl,Fr ⊂ Fk.

If E is a complete and cocomplete category, for any morphism u we have an
adjunction

u � − : E2 //
⊥ E2 : 〈u,−〉oo

on the arrow category, where u � v ∼= v � u is the pushout product and 〈u, f〉 is
the dual pullback product, as illustrated below

A×K 1×v //

u×1
�� p

B ×K

u×1

��

��
A× L

1×v ,,

// · u � v

%%JJJJJJ

B × L

XB

f∗

%%

u∗

��

〈u,f〉
""D

D
D

D
D

· //

��

y
Y B

u∗

��
XA

f∗

// Y A

The product −�− gives sSet2 the structure of a closed symmetric monoidal cate-
gory, with 〈−,−〉 acting as the internal hom.

If u and v are monic, it is easy to verify that the pushout product u � v is monic.
The following results are less trivial.

Theorem 4.1. If u is monic and v is anodyne (resp. mid anodyne, left anodyne,
right anodyne), then so is u � v.

Proof. This can be proved directly by a lot of messy combinatorics, which is worth
it because it makes a lot of other proofs relatively easy (the next theorem is one
example). See [10, §2.3.2] for a direct proof or [8, §4] for a more high level approach.

�

Theorem 4.2. If f is a Kan fibration (resp. mid fibration, left fibration, right fibra-
tion), then so is 〈u, f〉 for any monic u. Moreover, 〈u, f〉 is a trivial Kan fibration
if in addition u is anodyne (resp. mid anodyne, left anodyne, right anodyne).

Proof. Suppose f is a mid fibration and u is monic. Then (u � v) � f for all mid
anodyne v by Theorem 4.1. By adjunction, this is equivalent to v � 〈u, f〉, which
tells us that 〈u, f〉 is mid anodyne. The other proofs of the first statement are
analogous.

Now suppose f is a mid fibration and u is mid anodyne. Then (v � u) � f for
all monic v by Theorem 4.1. By adjunction, this is equivalent to v � 〈u, f〉, which
says that 〈u, f〉 is a trivial Kan fibration. The other proofs are analogous. �
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An easy and important corollary is that if X is a quasi-category, then so is
XA for any simplicial set A. This allows us to prove the following alternative
characterization of weak categorical equivalences.

Corollary 4.3. A map u : A→ B is a weak categorical equivalence iff

Xu : XB → XA

is an equivalence of quasi-categories for every quasi-category X.

Proof. Follows from the Yoneda lemma and the fact that sSetτ0 is cartesian closed.
�

Corollary 4.4. Every mid anodyne map is a weak categorical equivalence.

Proof. If X is a quasi-category and u is mid anodyne then Xu is a trivial fibration
by Theorem 4.2 and thus a categorical equivalence by Proposition 3.5. The result
follows from Corollary 4.3. �

5. Quasi-fibrations and Model Structure

In Section 3, we noted that Joyal’s model structure for categories will have
monomorphisms for cofibrations and weak categorical equivalences for weak equiv-
alences. In this section, we will attempt (with only partial success) to characterize
the fibrations, called quasi-fibrations, more precisely, and we will complete the proof
that these classes constitute a model structure on sSet.

Let J be the nerve of the groupoid with two objects and exactly one morphism
in each hom-set. Call a map between quasi-categories a quasi-fibration if it is a
mid fibration that has the right lifting property with respect to the inclusion j0 :
{0} ↪→ J . This lifting property characterizes those maps between quasi-categories
that have lifts for quasi-isomorphisms, which are arrows that become invertible in
the homotopy category. This lifting property is exactly analogous to that of iso-
fibrations in Cat. In fact, a functor is an iso-fibration if and only if its nerve is a
quasi-fibration.

We have the following analog of 4.2.

Lemma 5.1. Let f be a quasi-fibration between quasi-categories. Then so is 〈u, f〉
for any monomorphism u.

Quasi-fibrations between quasi-categories are characterized by the following the-
orem.

Theorem 5.2. If f : X → Y is a map between quasi-categories, the following are
equivalent:

(i) f is a quasi-fibration.
(ii) f has the right lifting property with respect to every monic weak categorical

equivalence.
(iii) 〈u, f〉 is a trivial Kan fibration for every monic weak categorical equivalence

u.

Proof. (ii)⇔ (iii) follows easily from Theorem 4.2 and the adjunction on sSet2. (ii)
⇒ (i) is also straightforward: by Corollary 4.4, the inner horn inclusions are monic
weak categorical equivalences. The monomorophism j0 is the image under the nerve
functor of a categorical equivalence, so it is a monic weak categorical equivalence
by Proposition 3.6. (i) ⇒ (iii) follows easily from two facts: Lemma 5.1 and a



10 EMILY RIEHL

result that will be strengthened in Theorem 5.5, which says that a quasi-fibration
between quasi-categories is a trivial fibration iff it is a categorical equivalence. See
[8, §7]. �

Lemma 5.3. C∩Wc = �F0 where F0 is the class of quasi-fibrations between quasi-
categories and Wc is the class of weak categorical equivalences.

Proof. In light of Theorem 5.2, we need only show that �F0 ⊂ C ∩Wc. Given a
u : A→ B with this lifting property, we obtain a lifting problem

A
v //

u

��

X

f

��
B // ∗

by factoring A → ∗ using the weak factorization system (Am,Fm). In particular,
X is a quasi-category and for the reasons explained in the proof of Theorem 5.7,
f ∈ F0. So u � f and hence v factors through u; since v is monic, u is as well. It
follows from the adjunction on sSet2 and Lemma 5.1 that 〈u, f〉 is a trivial Kan
fibration for any f ∈ F0. In particular, Xu : XB → XA is a trivial Kan fibration
for all quasi-categories X, and thus a weak categorical equivalence by Proposition
3.5. �

More generally, call a map of simplicial sets a quasi-fibration if it has the right
lifting property with respect to C∩Wc. By Theorem 5.2, this extends the previous
definition for QCat ⊂ sSet. Let Fq denote the class of quasi-fibrations.

Theorem 5.4. If f is a quasi-fibration then so is 〈u, f〉 for any monic u. Moreover,
〈u, f〉 is a trivial fibration if in addition u is a weak categorical equivalence.

Proof. Given u ∈ C and v ∈ C ∩Wc, we can use Lemmas 5.1 and 5.3 to show that
u � v ∈ C∩Wc. By adjunction, this tells us that 〈u, f〉 ∈ Fq. The same adjunction
proves the second part. �

Theorem 5.5. A quasi-fibration is a weak categorical equivalence iff it is a trivial
Kan fibration.

Proof. Half of this was done already in Proposition 3.5. Given f ∈ Fq ∩Wc factor
f as qu with u ∈ C and q a trivial Kan fibration. By 3.5, q ∈Wc so u ∈Wc by the
2 of 3 property. Hence the lifting problem

·
u

��

·
f

��
·

q
//

s

@@�
�

�
�

·

has a solution s, which is used to display f as a retract of q. The classes of a weak
factorization system are closed under retracts, so f is a trivial Kan fibration. �

In other words, Fk∩Wh = Fq∩Wc, which says that we can use the phrase trivial
fibration unambiguously to describe members of either of these classes. It follows
that (C,Fq ∩Wc) is a cofibrantly generated weak factorization system.

The class C ∩ Wc of monic weak categorical equivalences is not known to be
generated by an easily described set, as is the case for the classical model structure.
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However, this class is accessible (see [8]), which means that it is cofibrantly gen-
erated by some set. This allows us to apply the small object argument to obtain
factorizations, completing the proof of the following.

Theorem 5.6. If Fq is the class of quasi-fibrations then (C∩Wc,Fq) is a cofibrantly
generated weak factorization system.

As remarked previously, Wc satisfies the 2 of 3 property. Thus, we have proven
that (C,Fq,Wc) is a model structure on sSet, which we call Joyal’s model structure
for quasi-categories. In general, the pushout along a cofibration of a weak equiva-
lence between cofibrant objects is a weak equivalence. Since every object of sSet
is cofibrant, this model structure in left proper. However, it is not right proper.
The inclusion d1 : I ↪→ ∆2 is a quasi-fibration between quasi-categories, which
can be checked by verifying the required lifting properties directly. As noted in
Section 2, h21 : Λ2

1 → ∆2 induces an equivalence of categories, and thus must be a
weak categorical equivalence. However, the pullback of h21 along d1 is the inclusion
i1 : ∂I → I, which is not even a weak homotopy equivalence.

To see that the model structure (C,Fq,Wc) is indeed a model structure for quasi-
categories, we need the following theorem.

Theorem 5.7. The fibrant objects of (C,Fq,Wc) are the quasi-categories.

Proof. If X is a quasi-category, then X → 1 is a mid fibration between quasi-
categories. Given a vertex x ∈ X, s0x ∈ X1 is a quasi-isomorphism with source x.
This shows that X → 1 has the right lifting property with respect to j0 : {0} → J
and by Theorem 5.2, X is fibrant.

Conversely, if X is fibrant it has the right lifting property with respect to monic
weak categorical equivalences, which by Corollory 4.4 includes the mid anodyne
maps. So X → 1 is a mid fibration and X is a quasi-category. �

Every simplicial set is cofibrant in the Joyal model structure and the quasi-
categories are the fibrant objects. For any simplicial set A, A × J is a cylinder
object. For any quasi-category X, XJ is a path object.

A Quillen adjunction F : K
//

⊥ L : Goo is a homotopy localization if the right
derived functor RG : HoL → HoK is full and faithful. This happens if and only if
the counit of the adjunction LF a RG is an isomorphism.

Proposition 5.8. The adjunction τ1 a N is a homotopy localization between model
structures (C,Fq,Wc) on sSet and the model structure (functors injective on ob-
jects, iso-fibrations, categorical equivalences) on Cat.

Proof. τ1 takes monomorphisms to functors which are injective on objects. The
nerve takes an iso-fibration to a map between quasi-categories that has the right
lifting property with respect to j0 because this is exactly the condition for lifting
of isomorphisms in Cat. Thus τ1 a N is a Quillen pair. The homotopy localization
follows from the fact that τ1N = 1. �

A model structure (C,F2,W2) is a Bousfield localization of a model structure
(C,F1,W1) on the same category if W1 ⊂ W2. The following result is immediate
from Theorem 3.4.

Proposition 5.9. The model structure (C,Fk,Wh) is a Bousfield localization of
(C,Fq,Wc).
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For any Bousfield localization with W1 ⊂W2, the identity functors form a homo-

topy localization (K,W1)
//

⊥ (K,W2)oo . An analog of the following proposition

holds for any Bousfield localization, with “Kan complex” and “quasi-category” re-
placed by the appropriate fibrant objects for each model structure.

Proposition 5.10. A map between Kan complexes is a Kan fibration if and only
if it is a quasi-fibration and a (weak) homotopy equivalence if and only if it is a
(weak) categorical equivalence.

From the small object argument, we have a fibrant replacement functor R that,
for any simplicial set X, yields a monic weak categorical equivalence X → RX,
with RX a quasi-category. Using this functor, we can describe the construction
of a quasi-category modeling a particular small ordinary category K with weak
equivalences W, promised in the introduction.2 Given such a category, form the
pushout ∐

w∈W I
w //

_�

�� p

NK

��∐
w∈W J // X

Because τ1 is cocontinuous, the pushout X is a simplicial set whose fundamental
category τ1X is equivalent to the homotopy category K[W−1]. Taking a fibrant
replacement of X yields a monic weak categorical equivalence X → RX, which τ1
takes to an equivalence of categories. So RX is a quasi-category whose fundamental
category is equivalent to the homotopy category K[W−1], as desired.

6. Quillen Equivalences

A simplicial category is a category enriched in sSet, though for sake of consis-
tency it would be better if this terminology described functors ∆op → Cat, which
are instead called simplicial objects in Cat. Indeed the two notions are related.
A simplicial category C gives rise to a simplicial object D : ∆op → Cat in which
each category Dn has the same objects as C and all face and degeneracy functors
are constant on objects. Conversely, any simplicial object in Cat satisfying these
properties gives rise to a simplicial category. The category sCat of small simplicial
categories can be given a model structure with weak equivalences the Dwyer-Kan
equivalences. These are sSet-enriched functors F such that the component maps
C(a, b) → D(Fa, Fb) are weak homotopy equivalences of simplicial sets and such
that the induced map π0F : π0C → π0D on the so-called component categories
of the simplicial categories C and D are equivalences of categories. Similarly, the
fibrations are enriched functors such that the component maps are Kan fibrations
that satisfy a lifting condition for homotopy equivalences in D(Fa, b)0.

As mentioned in the introduction, simplicial categories provide one model for
homotopy theories, but there are others. Two other models are Segal categories
and complete Segal spaces, both of which are simplicial spaces satisfying certain
additional properties. A simplicial space, also known as a bisimplicial set, is a
functor ∆op → sSet. Simplicial categories are closely related to simplicial spaces.

2Note that this construction has the usual size issues if K is large. In particular, K[W−1] will
not in general be locally small and the resulting X and RX will not be simplicial sets. However,

we can sensibly regard RX as a large quasi-category.
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As mentioned above, a simplicial category gives rise to a simplicial object in Cat.
This construction is functorial and the resulting functor is full and faithful. Post-
composing with the nerve functor takes a simplicial object in Cat to a simplicial
space.

There exist model structures for Segal categories and for complete Segal spaces
as subcategories of larger categories in the sense that there is a model structure
for quasi-categories on sSet. The model structure on sCat is Quillen equivalent
to the model structure for Segal categories, which is Quillen equivalent to the
model structure for complete Segal spaces, though these Quillen equivalences go in
opposite directions and so cannot be composed.

More surprisingly, Joyal’s model structure for quasi-categories is directly Quillen
equivalent to all three model categories. We only describe the Quillen equivalence
with sCat, which is a simplicially enriched analog of the adjunction τ1 a N between
sSet and Cat that also fits in to the paradigm described toward the end of Section
1. We will begin by defining a functor C∆− : ∆ → sCat. Given this functor, the
simplicial nerve N : sCat→ sSet is given by

NCn := sCat(C∆[n],C).

Its left adjoint C : sSet→ sCat is, as usual, the left Kan extension of C∆− along
the Yoneda embedding. As the notation suggestions, by construction C∆n = C∆[n].

We have yet to define the simplicial category C∆n. The objects are the elements
of the set [n]. We define the simplicial sets

C∆n(i, j) := ∅ for all j < i,

C∆n(i, i) = C∆n(i, i+ 1) := ∗, and

C∆n(i, i+ k + 1) := Ik

to be the enriched homs. Each of these simplicial sets is the nerve of a partially
ordered set. More precisely, the simplicial set C∆n(i, j) is the nerve of the poset of
subsets of

Pi,j := {k ∈ [n] | i ≤ k ≤ j}
that include the endpoints. Composition maps C∆n(j, l) × C∆n(i, j) → C∆n(i, l)
need only be defined when i ≤ j ≤ l (otherwise at least one of these hom-objects
is empty), in which case they are induced by taking unions of the corresponding
subsets. Similarly, a morphism f : [n] → [m] in ∆ gives the object function for
the corresponding enriched functor C∆n → C∆m. The maps of simplicial sets
C∆n(i, j)→ C∆m(fi, fj) are induced by the map S 7→ fS of subsets.

For example, C∆2 consists of three objects — 0, 1, and 2 — and non-empty hom-
objects: C∆2(0, 0) = C∆2(0, 1) = C∆2(1, 1) = C∆2(1, 2) = C∆2(2, 2) = ∗ and
C∆2(0, 2) = I. Consequently, for any simplicial category C, NC2 = sCat(C∆2,C)
consists of the following data: x, y, z ∈ C; f ∈ C(x, y)0, g ∈ C(y, z)0, h ∈ C(x, z)0;
and a 1-simplex in C(x, z)1 of the form h⇒ gf .

Some work is required to show that the adjoint pair of functors

C : sSet
//

⊥ sCat : Noo

defined above is a Quillen equivalence. As mentioned above, Lurie presents Joyal’s
model structure for quasi-categories on sSet with this objective in mind. Describing
the details of his proof would nearly double the length of this paper, so we refer
the reader to [10, §2.2] instead.
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A simplicial category C is locally Kan when each hom-object C(a, b) is a Kan
complex. In particular, this is true for the subcategory of fibrant-cofibrant objects
of a simplicial model category as a consequence of one of the axioms or any topo-
logical category, which can be regarded as a simplicial category by applying the
total singular complex functor S to each hom-object. When C is locally Kan, the
simplicial set NC is a quasi-category: by adjunction NC is a quasi-category iff every
simplicially enriched functor F : CΛnk → C can be extended along CΛnk → C∆n. On
objects, these simplicial categories agree and the inclusion functor is the identity.
Each hom-object also coincides with the lone exception of CΛnk (0, n)→ C∆n(0, n).
The latter simplicial set is the cube In−1 while the former can be identified with
the same cube with the interior and one of its faces removed. This inclusion is
manifestly anodyne, so the desired extension exists since C(F0, Fn) is Kan, which
proves the claim.

As a consequence of this result, the simplicial nerve functor N is an important
part of a procedure that forms a quasi-category from a model category because the
simplicial localization of a model category is a simplicial category that is locally
Kan [4]. Simplicial localization preserves higher homotopical information that is
lost by the ordinary localization K → HoK of a model category. This information
is retained when we pass to quasi-categories, which is part of the reason why their
study is so fruitful.
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