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My goal today is less to give a comprehensive introduction to quasi-categories as a
model for (∞, 1)-categories1 but rather to give one that is as close to the ground as possible.
For every statement that appears below, I’ll try to either explain the proof or at least give
some indication of how it is proven. This strongly influences the order of the topics. Some
of what will appear below is self-plagiarized from [Rie13, Part IV], written for a class I
taught here last spring. Some of the rest is copied from some joint papers with Dominic
Verity, which I hope will appear soon.

Here we go!

Basic notions

Suppose a simplicial set is a quasi-category unless explicitly stated otherwise. An im-
portant feature of quasi-categories that isn’t true for generic simplicial sets is that for every
relation in the homotopy category and any choice of representing 1-simplices, there exists
a 2-simplex that witnesses the relation. More precisely:

Proposition 0.1. Given 1-simplicies f , g, h ∈ X, h = g f in hoX if and only if there exists a
2-simplex in X with boundary
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Date: Spring 2013.
1A (m, n)-category is a (weak) category with cells up to dimension m so that every cell above dimension n is

(weakly) invertible.
1
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We have an adjunction ho: qCat � Cat : N whose right adjoint, the nerve functor, is
fully faithful. Sometimes it’s conventional to regard categories as quasi-categories without
writing the “N.” In every case we know of (certainly in every example we will mention) the
quasi-categorical notion, when restricted to the full subcategory of categories, will coincide
exactly with the categorical notion bearing the same name. So category theory is really a
subset of quasi-category theory.

Proposition 0.2. qCat is cartesian closed (and admits cotensors by arbitrary simplicial
sets) with the internal hom (cotensor) given by the internal hom for simplicial sets.

There is a bit of combinatorics that goes into the proof of this, which we will address
momentarily. The obvious fact is that the larger sSet is cartesian closed. To my mind, the
reason quasi-categories are such a convenient model of (∞, 1)-categories owes largely to
the fact that sSet, as a presheaf category, is so well behaved (in particular complete and
cocomplete closed symmetric monoidal). We’ll see later that a number of the objects used
to build the category theory of quasi-categories are modeled by the analogous simplicial
weighted limits.

Let us think what is being asserted by this statement. From the definition, we are asked
to show that for any quasi-category X and simplicial set A there exist extensions
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for all n ≥ 2, 0 < k < n.2 The two lifting problems correspond by adjunction. Let us think
what is being asserted by the latter. We are asked to choose cylinders ∆m × ∆n → X for
each m-simplex in A in a way that is compatible with the specified horn ∆m ×Λn

k → X and
also with previously specified cylinders ∂∆m × ∆n → X corresponding to the boundary of
the m-simplex. In other words, inductively, we must choose extensions

∂∆m
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∆m × ∆n
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The indicated lifting problems are again transposes, on account of the Leibniz con-
struction applied to the two variable adjunction between the cartesian product and internal
hom.3 Assuming the ambient categories have the necessary pullbacks and pushouts, any
two-variable adjunction

C(a × b, c) � C(a, hom(b, c))
(such as a closed monoidal structure) gives rise to a two-variable adjunction

C2( f ×̂g, h) � C2( f , ˆhom(g, h))

on the arrow categories. The left adjoint is the pushout product bifunctor −×̂− and the right
adjoint, defined dually, might be called the pullback hom (or Leibniz hom) ˆhom(−,−). For
example, the map X∆n

→ XΛn
k is the Leibniz hom of Λn

k → ∆n with X → ∗.
Such extensions always exist on account of the following result.

2With apologies to Mike, I have to change notation. I’ll write ∆n for his ∆[n] and write Λn
k for his Vk[n].

3The name, propagandized by Dominic Verity, is inspired by Leibniz’ formula for the boundary of a product
of polygons.
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Proposition 0.3 (Joyal). The pushout-product of an inner anodyne map with a cofibration
is inner anodyne.

Proof. It suffices to show this is true of the (∂∆m → ∆m)×̂(Λn
k → ∆n)’s because the bifunc-

tor −×̂− preserves colimits in each variable and the inner anodyne maps, as the left class
of a weak factorization system, is weakly saturated. This can be proven directly by decom-
posing these monomorphisms into pushouts of inner horns (see [DS11, A.1]) or via a slick,
but non-constructive, argument that proves the result as stated but doesn’t tell us whether
the maps (∂∆m → ∆m)×̂(Λn

k → ∆n) are cellular inner anodyne (relative cell complexes
built from the inner horn inclusions). �

Remark. By easy formalities involving two-variable adjunctions and lifting properties
there are actually three equivalent statements here, i.e., Proposition 0.3 is equivalent to
either of the following two statements:

• the pullback-hom of a cofibration with an inner fibration is an inner fibration
• the pullback-hom of an inner anodyne map with an inner fibration is a trivial

fibration.

In particular, the pullback-hom of ∅ → A and X → ∗ is XA → ∗, proving that XA is a
quasi-category if X is. We have another immediate corollary.

Corollary 0.4. If X is an∞-category, then X∆n
→ XΛn

k is a trivial fibration.

In particular, the fiber over any point is a contractible Kan complex. This says that the
spaces of fillers to a given horn is a contractible Kan complex. This is the common form
taken by a homotopical uniqueness statement in ∞-category theory and is what is meant
by saying something is “well defined up to a contractible space of choices.”

Equivalences between quasi-categories

By an observation of Joyal, the cofibrations and fibrant objects completely determine
a model structure, supposing one exists. As it turns out, again by work of Joyal, the
monomorphisms and quasi-categories give rise to a model structure on simplicial sets
whose weak equivalences, called simply equivalences when between quasi-categories, are
a good notion.

Theorem 0.5 (Joyal). The cofibrations and fibrant objects completely determine a model
structure.

The following argument parallels his proof of this theorem in our particular case of
interest. Supposing there is such a model structure for quasi-categories, the weak equiv-
alences must be characterized representably as maps f : A → B that induce bijections on
hom-sets in the homotopy category when homming into any quasi-category X. Because
all objects are cofibrant, we can characterize the hom-sets in the homotopy category of the
hypothesized model structure by use of a good cylinder object.

To that end write J for the nerve of the free-standing isomorphism.4 Observe that J → ∗
and hence any projection A × J → A, as its pullback, is a trivial fibration. Consequently,

A t A // // A × J
∼ // // A

4This is a simplicial model for S∞ = B(Z/2,Z/2, ∗), the total space of the classifying space K(Z/2, 1) =

BZ/2 = RP∞.
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defines a very good cylinder object. Using this, by a theorem of Quillen the hom-set from
A to X in the homotopy category is isomorphic to the set [A, X]J defined to be the quotient
of hom(A, X) by the relation generated5 by f ∼ g if there exists a diagram

(0.6)
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So we declare a map f : A→ B of simplicial sets to be an weak equivalence if and only
if it induces a bijection [B, X]J → [A, X]J for all quasi-categories X. We follow Lurie and
call these maps categorical equivalences6 or simply equivalences if the source and target
are quasi-categories because no ambiguity is possible in that case. A good exercise for
the reader is to show that inner anodyne maps and trivial fibrations are weak equivalences
using this definition.

Theorem 0.7 (Joyal). There is a left proper cofibrantly generated model structure on sim-
plicial sets whose cofibrations are the monomorphisms and whose fibrant objects are the
quasi-categories.

Fibrations between fibrant objects, which we shall call isofibrations are characterized
by the right lifting property against the inner horn inclusions and the map ∗ → J, which
is the nerve of the functor whose right lifting property chracterizes the isofibrations in Cat
(hence the name). Note that the trivial fibrations are the same in Joyal’s and in Quillen’s
model structures. Some closing remarks:

• ho a N is a Quillen adjunction with the folk model structure on Cat.
• As a corollary, both adjoint functors preserve equivalences. A functor between

categories is an equivalence if and only if its nerve is an equivalence.
• Categorical equivalences are weak homotopy equivalences.

Quasi-categories as (∞, 1)-categories

A quick inductive definition of an (∞, 1)-category is that it’s something (weakly) en-
riched over (∞, 0)-categories, i.e.,∞-groupoids, i.e., homotopy types.

Aside (the homotopy category of spaces as a base for enrichment). Because I like knowing
why these types of things are true, permit me a digression on why it makes sense to enrich
over the homotopy category of spaces. Everyone knows that simplicial sets is a closed
symmetric monoidal category and has a compatible model structure which makes it a sim-
plicial model category. This is Quillen equivalent to a simplicial model structure on your
favorite convenient category of spaces, e.g., k-spaces or compactly generated spaces. The
Quillen equivalence descends to an equivalence between the homotopy categories, which
we’ll call the homotopy category of spaces and denote byH .

Using this simplicial model structure, there is a uniform way to construct point-set
level and total derived functors of left and right Quillen functors, bifunctors, etc: Just
precompose with cofibrant replacement or fibrant replacement, as appropriate. The fact

5Indeed, the “generated” here is unnecessary because X, and hence XA, is a quasi-category; any f and g in
the same equivalence class admit such diagrams, as we shall prove momentarily.

6Joyal calls these “weak categorical equivalences.”
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that the model structure is closed monoidal implies that the cartesian product and internal
hom are amenable to such deformations, so have derived functors constructed in this way.

We’d like to say that the total derived functors of the closed symmetric monoidal struc-
ture on sSet define a closed symmetric monoidal structure on H . To prove this we need
to show that we can also derived the natural isomorphisms expressing coherence of the
derived monoidal product, existence of the derived adjunction, and so forth. Now com-
posing derived functors is somewhat non-trivial but in this case the axioms that establish
that sSet is a monoidal model category (plus Ken Brown’s lemma) say things like the hom-
space from a cofibrant object to a fibrant object is again fibrant which imply that everything
works out. (See [Rie13, Chapter 10] for more details.)

Furthermore, the localization functor sSet → H is lax monoidal which means any
simplicial enrichment descends to anH-enrichment.

Our goal is define hoX as an H-category so the underlying category — whose arrows
are homotopy classes of maps ∗ → hoX(a, b), i.e., whose hom-sets can be computed by
applying π0 to the hom-spaces — is hoX.

The first, to my mind most obvious construction, makes use of the quasi-category X∆1

of paths in X; vertices are 1-simplices in X, and n-simplices are cylinders ∆n × ∆1 → X.
One candidate mapping space between two fixed vertices x, y ∈ X is the pullback

HomX(x, y)

��

//
y

X∆1

��
∗

(x,y)
// X × X � X∂∆1

By the combinatorics encoded above by Proposition 0.3, HomX(x, y) is a quasi-category.
An n-simplex is HomX(x, y) is a map ∆n × ∆1 → X such that the image of ∆n × {0} is
degenerate at x and and the image of ∆n × {1} is degenerate at y. In particular, 1-simplices
look like

(0.8) x
f //
∼

∼ ��======== y

x g
// y

from which we see that π0HomX(x, y) is the hom-set from x to y in hX.
A less symmetric but more efficient construction is also possible. Let HomR

X(x, y) be the
simplicial set whose 0-simplices are 1-simplices in X from x to y, whose 1-simplices are
2-simplices of the form

x
��>>>>

x

����
���� // y

and whose n-simplices are (n + 1)-simplices whose last vertex is y and whose (n + 1)th face
is degenerate at x. Dually, HomL

X(x, y) is the simplicial set whose n-simplices are (n + 1)-
simplices in X whose first vertex is x and whose d0-face is degenerate at y. Once again,
note that π0HomL

X(x, y) = π0HomR
X(x, y) = hX(x, y).

Remark. The spaces HomL
X(x, y) and HomR

X(x, y) are dual in the sense that HomL
X(x, y) =

(HomR
Xop (y, x))op. The annoying fact, from the perspective of homotopy (co)limits, that a

simplicial set is not isomorphic to its opposite, in which the conventions on ordering of
vertices in a simplex are reversed, is technically convenient here.
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In fact all three of these candidate hom-spaces are good models: they’re all Kan com-
plexes (the explanation for which we’ll postpone for now) and they’re all equivalent. To
explain the equivalence, let us think geometrically about the difference.7 Each simplicial
set has the same zero simplices. An n-simplex in HomL

X(x, y) or HomR
X(x, y) is an (n + 1)-

simplex in X one of whose faces is degenerate. Thus the relevant shapes are given by the
quotients

∆n

d0

��

//

p

∆0

��

∆n

dn+1

��

//

p

∆0

��
∆n+1 // Cn

L ∆n+1 // Cn
R

This simplicial set has two vertices and has a non-degenerate k-simplex for each non-
degenerate k-simplex of ∆n whose image surjects onto ∆1.

Similarly, the shape of an n-simplex in HomX(x, y) is given by

∆n × ∂∆1

��

//

p

∂∆1 � ∗ t ∗

��
∆n × ∆1 // Cn

cyl

We have canonical maps
Cn

L
//

  BBBBBBBB
Cn

cyl

��

Cn
R

~~||||||||
oo

∆1

where the horizontal maps are induced by the inclusions of ∆n+1 ⇒ ∆n ×∆1 as the first and
last shuffles respectively.8

These constructions define three cosimplicial objects C•L,C
•
cyl,C

•
R taking values in the

category of simplicial sets and maps preserving two chosen basepoints. Write sSet∗,∗ for
this slice category ∂∆1/sSet. The simplicial set X with chosen vertices x, y becomes an ob-
ject of sSet∗,∗. The three hom-spaces introduced above are defined from these cosimplicial
objects and the hom-sets of sSet∗,∗ by the equalities

HomL
X(x, y) = sSet∗,∗(C•L, X)

HomX(x, y) = sSet∗,∗(C•cyl, X)

HomR
X(x, y) = sSet∗,∗(C•R, X).

The natural maps HomL
X(x, y) ← HomX(x, y) → HomR

X(x, y) come from the maps be-
tween the cosimplicial objects. We would like to show that these are equivalences. Morally,
this follows because C•L, C•cyl, and C•R are cofibrant resolutions of ∆1 in the Joyal model
structure. Let us give just a few more details.

Remark. The category sSet∗,∗, defined as a slice category, inherits a model structure from
the quasi-categorical model structure on sSet: A map of twice-based simplicial sets is a
cofibration, fibration, or weak equivalence just when the underlying map of simplicial sets

7This proof is due to Daniel Dugger and David Spivak with some modifications by Verity.
8Recall simplices in ∆n ×∆m correspond bijectively to totally ordered collections of vertices (i, j) with i ∈ [n]

and j ∈ [m]. Simplices of maximal dimension are called shuffles. The first shuffle is the unique one containing the
vertices (0, 0), . . . , (n, 0), . . . (n,m). The last is the unique one containing the vertices (0, 1), . . . , (0,m), . . . , (n,m).
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is one. Fibrant objects are quasi-categories with chosen basepoints. An object is cofibrant
if and only if its two chosen basepoints are distinct.

Lemma 0.9. C•R, C•L, C•cyl are Reedy cofibrant.

Proof. There’s a simple criterion (“unaugmentable” in [BK72]) that detects when a cosim-
plicial object is Reedy cofibrant, and if you know it, it’s easy to check that it’s true here. �

The geometrical heart of the argument is in the proof of the following result.

Lemma 0.10. The canonical maps C•L → C•cyl ← C•R are pointwise categorical equiva-
lences.

Proof. Those with patience for combinatorics can check that Cn
L → ∆1, Cn

cyl → ∆1, and
Cn

R → ∆1 by showing that sections are (cellular) inner-anodyne maps [DS11]. �

We might think about these cosimplicial spaces as “weights” whose weighted limits
define our three candidate mapping spaces. To use this information to obtain our desired
conclusion, the starting point is that one can define simplicial mapping spaces for sSet∗,∗ so
that when X is a quasi-category hom(−, X) : sSetop

∗,∗ → sSet is a right Quillen functor. By
Ken Brown’s lemma, it follows that this functor preserves equivalences between objects
with distinct basepoints. The proof is completed by some Reedy category theory.

Consider a cosimplicial object C• : � → sSet∗,∗. Latching and matching objects can be
defined to be certain (dual) weighted colimits and limits from which it is clear that

Mnhom(C•, X) � hom(LnC•, X).

If C• is Reedy cofibrant, the maps LnC• → Cn are cofibrations and hence

hom(C•, X)→ hom(LnC•, X) � Mnhom(C•, X)

are fibrations because hom(−, X) is right Quillen. This says that hom(C•, X) is Reedy
fibrant. Applying this result to the cosimplicial objects C•L,C

•
cyl,C

•
R we see that we have

pointwise weak equivalences between Reedy fibrant objects

hom(C•L, X)← hom(C•cyl, X)→ hom(C•R, X)

in the category of bisimplicial sets.
Remembering only the vertices of each simplicial set in the simplicial objects — a

process which might be called “taking vertices pointwise” — we are left with the diagram
of simplicial sets HomL

X(x, y)← HomX(x, y)→ HomR
X(x, y) that is actually of interest. The

proof that these maps are weak equivalences is completed by the following lemma.

Lemma 0.11. Suppose f : X → Y is a weak equivalence between Reedy fibrant bisim-
plicial sets. Then the associated map of simplicial sets X•,0 → Y•,0 obtained by taking
vertices pointwise is a weak equivalence.

Proof. By Ken Brown’s lemma, it suffices to prove that if f : X → Y is a Reedy trivial
fibration of bisimplicial sets then the associated map X•,0 → Y•,0 is a weak equivalence.
Indeed, this map is a trivial fibration of simplicial sets. Because f is a Reedy trivial fibra-
tion, each relative matching map Xn → Yn ×MnY MnX is a trivial fibration of simplicial sets,
and in particular, the map on vertices Xn,0 → (Yn ×MnY MnX)0 = Yn,0 ×(MnY)0 (MnX)0 is a
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surjection in Set. But this says exactly that any lifting problem

∂∆n

��

// X•,0

��
∆n // Y•,0

has a solution. �

Thus, we have proven:

Theorem 0.12. The natural maps HomL
X(x, y) ← HomX(x, y) → HomR(x, y) are equiva-

lences of quasi-categories.

Using retractions to the maps Cn
L → Cn

cyl ← Cn
R, which can be defined as quotients of

the appropriate projections ∆n ← ∆n×∆1 → ∆n, there are also equivalences HomL
X(x, y)→

HomX(x, y) ← HomR
X(x, y). We’ll see shortly that any equivalence X → Y of quasi-

categories has an inverse equivalence Y → X.

Q (for the audience). Reedy category theory is good for this sort of thing and for proving
simplified formulas for homotopy limits and colimits. What else?

Because equivalences between quasi-categories are homotopy equivalences, the objects
HomL

X(x, y), HomX(x, y), and HomR
X(x, y) define weakly equivalent simplicial sets whose

set of path components is the hom-set hoX(x, y). We would like to conclude that the homo-
topy category hoX is thereby enriched over the homotopy category of spaces — however,
there is no natural composition law definable in sSet using any of these mapping spaces.
These considerations motivate the introduction of a fourth candidate mapping space, which
is weak homotopically equivalent (but not categorically equivalent) to these models, and
associates to each simplicial set a simplicially enriched category.

Homotopy coherent diagrams

The point is there is an adjunction C : sSet � sCat : N between simplicial sets and
simplicial categories. It is a Quillen equivalence with respect to the Joyal and Bergner
model structures. In particular, if C is a locally Kan simplicial category then NC is a
quasi-category. This is important source of quasi-categories in practice; for instance, the
quasi-category associated to a simplicial model category is defined by applying N to the
subcategory of fibrant-cofibrant objects. On the other side, if X is a quasi-category then
the hom-spaces of CX, while not fibrant,9 do have the same weak homotopy type as the
mapping spaces introduced above. So we can use CX to define hoX. In particular hoX =

(π0)∗CX. A consequence of this Quillen equivalence, or really rather an ingredient in the
proof, is that X → Y is a categorical equivalence (of simplicial sets even) if and only if
CX → CY is a DK-equivalence.

As an expository note, Lurie’s entire approach to the proof of the model structure on
quasi-categories is designed to facilitate the proof that this adjunction is a Quillen equiva-
lence, which should serve as some indication of its importance [Lur09, Chapter 2].

A lot of you know a lot about this (and some subset of you have heard me talk about
this before) so I’m not going to say too much except to remind you how this adjunction is

9Even though the hom-spaces of CX aren’t fibrant, they are, in some weird sense, close. More precisely, for
any simplicial set X, the hom-spaces of CX are 3-coskeletal, which implies that any horn of dimension 5 or higher
will have a unique filler. But it is easy in toy examples to find low dimensional horns that cannot be filled.
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defined. The reason I want to do this is that it connects back to the story about homotopy
coherence mentioned by Mike last time that motivated the development of (∞, 1)-category
theory and quasi-categories in particular. In particular, the replacement of the indexing
category I of a diagram by a simplicial category Ĩ• that was used to set up the obstruction
theory for lifting diagrams in the homotopy category is an instance of cofibrant replace-
ment in this model structure. Even more precisely, the map Ĩ• → I is isomorphic to the
component of the counit of the adjunction C a N at the discrete simplicial category I.

There are two isomorphic descriptions of this cofibrant replacement. One, as I just
claimed is CNI.10 But since we haven’t defined these things yet, I’ll give the other, which
is the construction of Dwyer-Kan. There is a comonad F on Cat which replaces a cate-
gory by the category freely generated by its underlying reflexive directed graph (forgetting
composites but remembering identities). Note that I and FI have the same objects. Non-
identity morphisms in FI are strings of composable non-identity morphisms. The counit
FI → I composes the arrows in each string. The cosimplicial object in Cat that defines
the simplicial category serving as the cofibrant replacement of I is the comonad resolution
(augmented by this FI → I). The n-th category is Fn+1I. Its objects are the same as
the objects of I and its morphisms are strings of composable arrows enclosed in exactly
n pairs of parentheses (each indicating a layer of formal composition). The degeneracy
maps “double up on parentheses” while the face maps remove parentheses, which should
be thought of as a form of composition (because it is).

Now the adjunction C : sSet � sCat : N, like any adjunction so that the domain of
the left adjoint is simplicial sets, is given by some “geometric realization–total singular
complex”-type construction (or, if you will, “left Kan extension–nerve”) with respect to
some cosimplicial object � → sCat. This simplicial object is defined by taking the finite
ordinal categories [n] to their cofibrant replacements defined in this way. For example, let’s
compute the cofibrant replacement of [2] = 3, which is the category whose non-identity
morphisms we might label as:

·
f //

j

;;

`

BB·
g //

k

;;·
h // ·

Let us describe the hom-space from the initial object to the terminal one. The vertices of
this simplicial set are the paths of edges `, k f , h j, hg f . The 1-simplices are once parenthe-
sized strings of composable morphisms which are non-degenerate when there is more than
one arrow inside some pair of parentheses. There are five such with boundary 0-simplices
illustrated below

(0.13) `
(k f ) //

(h j)

��

(hg f )
AAA

  AAAAAAAA ((hg)( f ))

((h)(g f ))

k f

(hg)( f )

��
h j

(h)(g f )
// hg f

10The nerve and the homotopy coherent nerve coincide for discrete simplicial categories.
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There are only two non-degenerate 2-simplices whose boundaries are depicted above.
Hence the hom-space is ∆1 × ∆1.11

Those who are familiar with the classical literature on homotopy coherent diagrams
will recognize a lot of these ideas. In the language of Cordier-Porter, Vogt, and others, a
diagram of shape CNI is exactly a homotopy coherent diagram of shape I. In the context
of quasi-category theory, Jacob defines a homotopy coherent diagram in a quasi-category
X to be any map NI → X. (This makes sense geometrically if you think about the higher
simplices of the nerve.) Note if X is one of these quasi-categories which arises as NC for
some locally Kan simplicial category C (and indeed all quasi-categories are equivalent to
some such thing), then by adjunction NI → NC is exactly CNI → C, i.e., a homotopy
coherent diagram in the quasi-category is a homotopy coherent diagram in the associated
simplicial category (which is another model for the (∞, 1)-category).

Isomorphisms in quasi-categories

What I’m proposing here is not standard terminology but was suggested to me recently
by Dominic Verity in the context of a paper we’re writing. I thought I’d use it today to
gauge reactions from the audience.

We say a 1-simplex in a quasi-category is an isomorphism if and only if it represents
an isomorphism in hoX. By remarks made above, for any isomorphism f : x → y we can
choose an inverse isomorphism g : y→ x together with 2-simplices

y
g

��========

=

x
f

��========

=

x

f
@@��������

x y

g
@@��������

y

A key combinatorial lemma, due to Joyal, says that quasi-categories admit “special
outer horn fillers,” that is, any horn Λn

0 → X can be filled provided that its initial edge is
an isomorphism and dually any Λn

n → X whose final edge is an isomorphism has a filler
[Joy02]. Conversely (and this part is obvious) these extension properties characterize the
isomorphisms. There is also this immediate corollary:

Corollary 0.14 (Joyal). X is a Kan complex if and only if X is a quasi-category and hoX
is a groupoid.

Another corollary is that the three models for mapping spaces mentioned above are
Kan complexes. The spaces HomL

X(x, y) and HomR
X(x, y) are defined as pullbacks of right

fibrations, which implies that all of their edges are isomorphisms. We’ve shown these
are equivalent to HomX(x, y) which implies that their homotopy categories are equivalent
which implies that hoHomX(x, y) is a groupoid which implies that HomX(x, y) is also a Kan
complex.

Also:

Lemma 0.15 (Joyal). f : ∆1 → X is an isomorphism if and only if there exists an extension
to J = N(• � •).

Proof. We make use of the following observation: an n-simplex in the nerve of a category
is degenerate if and only if one of the edges along its spine is an identity. In particular,

11Those of you who have heard me talk about this sort of thing before will know that this isn’t my favorite
way to think about these hom-spaces: It’s the “necklace” characterization of Dugger-Spivak.
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there are only two non-degenerate simplices in each dimension in J and furthermore, if σ
is a non-degenerate n-simplex, only its 0th and nth faces are non-degenerate.

The map f lands in ιX; it therefore suffices to show that ∆1 → J is anodyne. In fact, we
will give a cellular decomposition of this inclusion, building J by attaching a sequence of
outer horns. Abusing terminology, we will call the non-degenerate 1-simplex f . The first
attaching map Λ2

2 → ∆1 has 0th face f and 1st face an identity. Call the 1-simplex obtained
by pushing out

Λ2
2

//

�� p

∆1

��
∆2 // ·

g. This also defines the non-degenerate 2-simplex whose spine is f g. Next we use the Λ3
3

horn whose boundary is depicted

·

g

��

>>>>>>>

>>>>>>>

·

f
??������� f //

>>>>>>>

>>>>>>> ·

·

f

??�������

to obtain the non-degenerate 2-simplex with spine g f and the non-degenerate 3-simplex
with spine f g f . Next attach a Λ4

4 horn and so on. �

We say that two objects in a quasi-category are isomorphic if and only if there is an
isomorphism between them. (Exercise: check that this is an equivalence relation.) For
instance, suppose f : X → Y is an equivalence between quasi-categories. In particular, it
induces isomorphisms

[Y, X]J
f ∗
−→ [X, X]J [Y,Y]J

f ∗
−→ [X,Y]J .

Considering the first of these, we conclude that the identity on X is isomorphic in the quasi-
category XX to a vertex in the image of f . By Lemma 0.15, this isomorphism is represented
by a map as displayed on the left

(0.16) X
1

""EEEEEEEEE

��
X × J // X

X

OO

f
// Y

g

OO

Y
1

""EEEEEEEEE

��
Y × J // Y

Y

OO

g
// X

f

OO

Post-composing the equivalence with f we see that f and f g f are isomorphic in YX . From
the second bijection, it follows that f g is isomorphic to the identity on Y via a map as
displayed on the right above.

Some more facts whose proofs are now easy exercises:

• qCat has a full coreflective subcategory Kan. The coreflector takes a quasi-
category to its maximal sub Kan complex spanning the isomorphisms.
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• Any equivalence restricts to an equivalence between maximal sub Kan com-
plexes.

• Conversely, any weak homotopy equivalence between maximal sub Kan com-
plexes extends to a simplicial homotopy equivalence. The representing 1-simplex
is an isomorphism in the hom Kan complex and hence this simplicial homotopy
equivalence is a categorical equivalence (which is a priori stronger).

There are some other facts about isomorphisms that I want to mention though these are
harder to prove. The proofs I know make use of the marked model structure, which again
many of you know about, and in any case I don’t want to get into.

Theorem 0.17 (pointwise natural isomorphisms are isomorphisms). Suppose given a nat-
ural transformation, i.e., a diagram ∆1 → XA. If this is a pointwise isomorphism (for each
a ∈ A) then it’s an isomorphism in XA.

This is a really awesome result, which follows essentially from the cartesian closure of
the marked model structure.

Theorem 0.18 (inverting diagrams). Suppose K is any simplicial set and you have a di-
agram K → X in a quasi-category whose edges are taken to isomorphisms. Then this
diagram admits an extension to the groupoidification K̃.12

Any simplicial set is a colimit indexed over its category of simplicies of the Yoneda
embedding. The groupoidification is formed by replacing the Yoneda embedding here by
the nerves of the groupoidifications of the ordinal categories.

Quasi-categories and Rezk spaces

Actually what I want to talk about is an analog of the Segal condition and of the com-
pleteness condition. We’re going to approach this via weighted limits and now seems as
good a time as any since I’ve just secretly brought up weighted colimits. I learned about all
of this from Dominic Verity, though it’s likely that related ideas have appeared elsewhere.13

LetM be a combinatorial model category (so I can perform left Bousfield localization).
You might be familiar with Dugger’s procedure to replace this by a Quillen equivalent
simplicial model category (which is how we’d get at the quasi-category that has the same
homotopy theory). But I want to do something else.

Given a diagram, for us �op → M, a weighted limit is something that represents not
just cones over the diagram but cones of some arbitrary shape. This is really important for
enriched category theory but actually at the moment I don’t need the enriched notion of
a weighted limit, just the set-based one will do. So what I mean by cones of an arbitrary
shape is that at each object of the diagram I can choose how many legs of the cone point
toward it and then I can specify what sort of commutativity relations are satisfied by these
legs and the maps in the diagram. This is all done by means of a functor W : �op → Set
called the weight. The cardinality of the image of [n] in the weight tells us how many legs
should be above the object in the image of [n] in the diagram. The maps then say which
things compose with which maps in the diagram to which things.

Note of course that in this case the weight is just a simplicial set. Assuming M is
complete, as is the case here, weighted limits always exist and can be computed as the
functor cotensor product of the diagram with the weight.

12Gijs Heuts points out (again) that there is a simpler model categorical proof of this.
13Another disclaimer: My memory of his proof is imperfect, so any errors in the following are mine.
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Example 0.19. By the Yoneda lemma, the limit of X : �op → M weighted by ∆n is just
the object Xn.

Example 0.20. By inspection, the limit of X : �op → M weighted by ∂∆n is the n-th
matching object MnX, in other words, the object of boundary data associated to a hypo-
thetical (but possibly non-existent) n-simplex in X.

Some general facts about weighted limits make this second example less surprising.
The first observation is that weighted limits are contravariant in the weight. For instance,
the matching map Xn → MnX is the map between weighted limits induced by the canonical
inclusion ∂∆n → ∆n. The second, and really the main thing, immediate from the defining
universal property that I didn’t state, is that weighted limits are cocontinuous in the weight.
The simplicial set ∂∆n is built by gluing a collection of (n−1)-simplices together along the
(n − 2)-simplices that serve as their pairwise intersections. So the weighted limits is then
the limit of the corresponding diagram of objects Xn−1 and Xn−2, which is exactly the usual
definition of the matching object. In practice, this means it’s easy to define “made-to-order”
weights whose weighted limits are whatever you want. The fact that the weight ∂∆n has
the “shape” of the thing you’re trying to describe in the weighted limit is no coinicidence.

Let me write limW X for these weighted limits. Other common notation (which I secretly
prefer) is {W, F}.

Definition 0.21. LetM be a model category. Say X ∈ M�
op

is
• Reedy fibrant if lim∆n

X → lim∂∆n
X is a fibration for all n

• a Segal space if it is Reedy fibrant and if lim∆n
X → limΛn

k X is a trivial fibration
for all 0 < k < n, or equivalently, if lim∆n

X → lim∆1∨···∨∆1
X is a trivial fibration

for all n
• a Rezk space if it is a Segal space and if limJ X → lim∆0

X is a trivial fibration.

Notes: The first definition is isomorphic to the standard one. The second reduces to the
standard one for M = sSet. Note these maps are automatically fibrations if X is Reedy
fibrant because of standard lifting arguments involving adjunctions and the fact that the
maps between weights are cofibrations. Here the ∆1∨· · ·∨∆1 is meant to be the spine of the
n-simplex, built by gluing together n 1-simplices along their source and target vertices. By
cocontinuity, the corresponding weighted limit of X is exactly the usual X1×X0 × · · ·×X0 X1.

Finally, for completeness, note by the example above that lim∆0
X = X0. In the context

of quasi-categories or Kan complexes, this limJ X is a good candidate for the thing called
Xequiv before; it’s the object of 1-simplices that are equivalences (isomorphisms). Since we
already know that this map is a fibration, by the 2-of-3 property we could deduce that it’s
a weak equivalence iff this is true of the monomorphism lim∆0

X → limJ X, which is how
the completeness condition (or univalence axiom) is usually stated.

The reason we’ve stated this in this form is that our goal is to prove the following
theorem:

Theorem 0.22 (Verity). IfM is combinatorial and left proper, then the left Bousfield lo-
calization of the Reedy model structure on M�

op
at the pushout products of generating

cofibrations inM with the generating trivial cofibrations in sSet gives what we might call
the model structure for Rezk objects. These are exactly the fibrant objects. The result
is a tensored, cotensored, and enriched simplicial category that is enriched as a model
category over Joyal’s model structure for quasi-categories.

Let’s call the axioms analogous to “SM7” with respect to the Joyal model structure
“JM7,” where we number them so that the only difference is between SM7(iii) and JM7(iii).
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For any model category the standard simplicial tensor, cotensor, and enrichment onM�
op

satisfies the common 2/3rds of SM7 and JM7 [Dug01, 4.4-5]. When we localize we change
the trivial cofibrations inM�

op
so we have to re-prove SM7(ii), but we have the following

simplification:

Lemma 0.23. Let K be a tensored, cotensored, and simplicially enriched and a model
category.

(i) Given JM7(i), if cotensoring with any simplicial set preserves fibrations between
fibrant objects then JM7(ii) holds.

(ii) If K is left proper, given JM7(i) and JM7(ii), then if for any trivial cofibration
K → L in Joyal’s model structure on simplicial sets and any fibrant object Z ∈ K
the map ZL → ZK is a weak equivalence, then JM7(iii) holds.

Proof. The proofs of [Dug01, 3.2] for SM7 apply mutatis-mutandis to JM7. �

We use some observations of Hirschhorn, which can be found somewhere in his book.
Firstly, ifM is left proper, then so is the Reedy model structure onM�

op
so we can apply

Lemma 0.23. If M is combinatorial, then the Reedy model structure on M�
op

is again
so we can localize. By another observation of Hirschhorn, any (Reedy) fibration in the
original model structure between fibrant objects in the localized model structure is still a
fibration. So to recheck JM7(ii), by Lemma 0.23, we need only check that cotensoring with
any simplicial set preserves the new fibrant objects (preservation of the old fibrations being
obvious): This follows because taking products with simplicial sets preserve Joyal trivial
cofibrations, the Joyal model structure being monoidal with all objects cofibrant. Then
JM7(iii) will follow immediately by construction of the localization and Lemma 0.23.

It remains to show that the fibrant objects in the localized model structure are exactly
the Rezk objects. It’s clear that fibrant objects are complete Segal objects so it remains to
show the converse. This is a bit subtle because we have to relate the two variable adjunction
define weighted limits to the simplicial model structure but it can be done. The point is,
by Reedy fibrancy, the desired lifting thing in simplicial sets is an isofibration between
fibrant objects so lifting against an arbitrary trivial cofibration reduces to lifting against the
specific ones mentioned above.

Remark. Rezk’s model structure for complete Segal spaces (which we’ve chosen to call
Rezk spaces) starts with the Quillen’s simplicial model structure on sSet and then does the
localization of Theorem 0.22 — but using a different tensor-cotensor-enrichment structure
for bisimplicial sets. The difference between the tensors is that both are defined by restric-
tion the cartesian product to some embedding of sSet into sSet�

op
but in one the category

of simplicial sets is embedded as constant simplicial objects (Rezk) and in the other as
discrete simplicial objects (Verity). If I am understanding this correctly, the conclusion is
that the model structure on bisimplicial sets for Rezk objects is enriched in one direction
over Quillen’s model structure and in the other direction of Joyal’s model structure.

Basic category theory of quasi-categories

I should say something about how to do category theory with quasi-categories. Here
I’m going to reflect my own personal bias and present things somewhat non-traditionally.
This approach is joint work with Verity. I hope our papers will appear soon. All of our def-
initions of adjunctions, limits, and colimits and so on are the same as those of Joyal/Lurie
but we think our approach makes it easier to generalize the proofs from standard category
theory to the quasi-categorical context.
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If I had to say something general about our strategy it would be that we come as far
as possible through enriched category theory, which has the advantage of being already
developed and not that hard to use. The philosophy of category theory is that important
definitions can be encoded by conditions on maps, i.e., via universal properties, i.e., repre-
sentably. So now you just have to write these definitions only referring to the hom-spaces
(here) between two fixed objects and you’ve proven a theorem in enriched category theory.

So basically what we do is construct preferred models of things as weighted limits in
simplicial sets. There’s a general result, quite easy to prove, that says if the weights have a
certain form (projectively cofibrant; i.e., built cellularly from representables) then if your
diagram is of quasi-categories then the resulting weighted limit is again a quasi-category.
Then we translate these simplicially enriched universal properties into (weak) 2-categorical
universal properties and do the usual formal category theory.

This is a big story. I guess what I want to do now is tell a part of it I haven’t yet
talked about locally, which is to explain how to get the spaces to define universal properties
representably and tell you some things that are true about them.

The definitions of adjunctions and limits and colimits make use of notion of a slice

category so let’s start by introducing the quasi-categorical analog. Given B
f
−→ A

g
←− C

form
g ↓ f

��

//
y

A∆1

��
B ×C

f×g
// A × A

It’s a quasi-category with projections C
e0
←− g ↓ f

e1
−→ B for evaluation at one or other end of

the path. Furthermore, there’s a canonical representative natural transformation ge0 ⇒ f e1
which I want to represent like this:

g ↓ f

e1

��

e0 //

⇓α

C

g

��
B

f
// A

When I draw it in this way I’m actually thinking about just the homotopy class of the path
in the homotopy category of the quasi-category Ag↓ f . These things are exactly 2-cells in
the (strict) 2-category of quasi-categories which is obtained by taking homotopy classes
of natural transformations and then forgetting all the higher dimensional cells in the hom-
spaces between quasi-categories. It turns out this is a good place to make these definitions.

The point is that these comma quasi-categories are weak comma objects, meaning they
satisfy a weak universal property. Given any simplicial set X and 2-cell

X

d1

��

d0 //

⇓β

C

g

��
B

f
// A

there exists some X → g ↓ f so that β factors along this map through α. Now these vertices
in g ↓ f X aren’t unique but any two such are isomorphic (i.e., there’s an isomorphism
between them).
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Note that this weak universal property is enough to determine the quasi-category g ↓ f
up to equivalence. In the special case of this construction that will be relevant to the
construction of limits and colimits, about more which in a moment, those of you who are
more familiar with Lurie’s “slicey” or “decalagey” description will be happy to know that
those quasi-categories are equivalent to this one, which is the “fat slice” in that case and so
satisfy the same universal property. But for definiteness, let us stick with this.

When g or f is an identity, we like to replace it with the name of the object. So for
instance, given f : B � A : u we could form f ↓ A and B ↓ u. Again these come with
isofibrations to A × B.

Definition 0.24. f a u is an adjunction of quasi-categories if and only if there is an
equivalence f ↓ A � B ↓ u over A × B.

Note, because the pullbacks defining these quasi-categories are homotopy pullbacks,
we can pull back this equivalence over vertices and get an equivalence HomA( f b, a) '
HomB(b, ua) between mapping spaces for any a ∈ A and b ∈ B.

Note also the right Quillen functor (−)X preserves everything we’re talking about so we
can see that adjunctions induce adjunctions between diagram categories. The same is true
for precomposition though I’d prove this in a different way.

Using the equivalence and the universal property, the identity 2-cell at u can be used to
define the counit, and the identity at f gives the unit, which in turn induce (possibly new)
equivalences between the slice quasi-categories. There’s a little bit of work here, but the
point is we can do it all at once in more generality than I’ve just described the result.

Example 0.25. Take A = ∆0 so that f is the unique map and write t for u. What this says it
that we have an equivalence A ↓ t � A over A. This A ↓ t, by essentially the same geometry
mentioned above but with the domain freed up is equivalent to A/t whose n-simplices are
arbitrary n+1-simplices with last vertex t. Now the 2-of-3 property says that the projection
A/t → A is a trivial fibration which says that it lifts against any sphere inclusion which says
any sphere (bumping up dimensions) in A with last vertex t has a filler. This is to say that
t ∈ A is a terminal object. So we’ve shown that terminal objects are characterized by
adjunction, just like in general category theory.

I’d like to say a bit about how general limits and colimits work. We begin with a general
definition.

Definition 0.26. In a 2-category, an absolute right lifting diagram consists of the data

(0.27)

⇓λ

C

g

��
B

f
//

`

??�������
A

with the following universal property: given any 2-cell χ there exists a unique factorization
as displayed below.

X

b
��

c //

⇓χ

C

g

��
B

f
// A

=

X

b
��

c //
∃!⇓

⇓λ

C

g

��
B

�̀�

??�����

f
// A
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Example 0.28. The counit of an adjunction f a u defines an absolute right lifting diagram

⇓ε

B

f
��

A

u
??�������

idA

// A

and, conversely, this data defines an adjunction.

Interpreting (0.27) in qCat2 permits us to form comma objects C ↓ ` and g ↓ f with
canonical cones as displayed.

C ↓ `

d1

��

d0 //
⇓γ

C g ↓ f

e1

��

e0 //

⇓α

C

g

��
=

g ↓ f

e1

��

e0 //
∃!⇓

⇓λ

C

g

��
B

`

==zzzzzzzzz
B

f
// A B

z̀zz

==zzzzz

f
// A

Pasting the canonical cone under C ↓ ` onto λ defines a map C ↓ ` → g ↓ f . The universal
property of the absolute right lifting diagram applied to α defines a 2-cell under g ↓ f and
over `, displayed on the right above, which induces a map g ↓ f → C ↓ `.

The following proposition makes two assertions. Firstly, the universal property of the
absolute right lifting (`, λ) implies these maps are equivalences. The second assertion is
that if the map C ↓ ` → g ↓ f , definable without ascribing any universal property to λ, is
an equivalence, then (`, λ) defines an absolute right lifting diagram.

Theorem 0.29. The data of (0.27) defines an absolute right lifting in qCat2 if and only if
the induced maps form an equivalence C ↓ ` ' g ↓ f . Conversely, any equivalence induces
2-cells as displayed above which can be used to define maps between comma objects which
are again an equivalence.

Definition 0.30. A limit of a diagram d : X → A is an absolute right lifting diagram

(0.31)

⇓λ

A

const
��

∆0

`

>>||||||||

d
// AX

and conversely, or equivalently, it’s an equivalence A ↓ ` � const ↓ d over A.

Note the thing on the left-hand side has an obvious terminal object, namely the identity
at `, which passes across to a terminal object in the quasi-category of cones, which is the
Lurie definition (in the equivalent “slicey” version).

A key advantage of this 2-categorical definition of (co)limits in any quasi-category is
that it permits us to use standard 2-categorical arguments to give easy proofs of the ex-
pected categorical theorems.

Proposition 0.32. Right adjoints preserve limits.

Let’s briefly recall the classical categorical proof. Given a diagram X
d
−→ A and a right

adjoint A
u
−→ B to some functor f , a cone with summit b over ud transposes to a cone

with summit f u over d, which factors uniquely through the limit cone. This factorization
transpose back across the adjunction to show that the image of the limit cone under u
defines a limit over ud.
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Proof. Given an absolute right lifting diagram (0.31), an adjunction of quasi-categories
f a u, and hence an adjunction f X a uX , we must show that

⇓λ

A

c
��

u // B

c
��

∆0

`

>>||||||||

d
// AX

uX
// BX

is an absolute right lifting diagram. Given a cone

X

��

b //

⇓χ

B

��
∆0

d
// AX

uX
// BX

we first transpose across the adjunction, by composing with f and the counit.

X

��

b //

⇓χ

B

��

f // A

��
∆0

d
// AX

⇓εX

uX
// BX

f X
// AX

=

X
∃!⇓ζ

⇓λ��

b // B
f // A

��
∆0

`

77nnnnnnnnnnnnnn
d

// AX

Applying the universal property of the limit cone λ produces a factorization ζ, which may
then be transposed back across the adjunction by composing with u and the counit.

X
∃!⇓ζ

⇓λ��

b // B
⇓η

f // A

��

u
// B

��
∆0

`

77nnnnnnnnnnnnnn
d

// AX
uX
// BX

=

X

��

b //

⇓χ

B

��

⇓η

f
// A

��

u
// B

��
∆0

d
// AX

⇓εX

uX
// BX

f X
// AX

uX
// BX

=

X

��

b //

⇓χ

B

��

B

��
∆0

d
// AX

⇓εX

uX
// BX f X //

⇓ηX

AX
uX
// BX

=

X

��

b //

⇓χ

B

��
∆0

d
// AX

uX
// BX

Here the second equality is immediate from the definition of ηX and the third is by the
triangle identity defining the adjunction f X a uX . The pasted composite of ζ and η is the
desired factorization of χ through λ. The proof that this factorization is unique is left to the
reader. It again parallels the classical argument: the essential point is that the transposes
are unique. �

Fibrational perspective

To the best of my understand, the real innovation of the Lurie approach to quasi-category
theory, extending the Joyal one, is his use of what might be called the “fibrational per-
spective,” which involves a quasi-categorical generalization of the so-called “Grothendieck
construction.” This is a big story that I hope someone will talk about in more detail. Here
let me just pave the way with some very elementary observations about the use of fibrations
in model category theory and in quasi-category theory.
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The following result implies that right derived functors of right Quillen functors can be
constructed by precomposing with fibrant replacement.

Lemma 0.33 (Ken Brown’s lemma). Any functor that preserves trivial fibrations between
fibrant objects preserves weak equivalences between fibrant objects.

Proof. In any model category, given any map f : X → Y between fibrant objects, it is
possible to construct a fibrant object Z, fibrations

Z

p�����������

q �� ��???????

X

j
44

f
// Y

and a section j to p that factors f as q j. When f is a weak equivalence, these maps are all
weak equivalences, and the conclusion follows from the hypothesis by a straightforward
application of the 2-of-3 property. �

Another way to think about fibrations is that they allow one to “avoid making choices.”

Construction 0.34 (composition in a quasi-category). We have a pushout in simplicial
sets:14

∆0

p

d0

��

d1
// ∆1

��
∆1 // Λ2

1

Homing into a quasi-category X, by adjunction, turns this pushout into a pullback

XΛ2
1

x������� �� ��???

X∆1

s
������� t

�� ��??? X∆1

s
������� t

�� ��???

X X X

all of whose maps are fibrations. We’ve relabeled the maps induced by d1, d0 : [0] ⇒ [1]
as the source and target projections respectively. We think of XΛ2

1 as the quasi-category of
composable arrows in X and the composite fibrations displayed as the various projections
to the source, middle object, target, first factor, and last factor.

Now the combinatorics discussed above implies that the Segal map X∆2 ∼ // // XΛ2
1 is a

trivial fibration. In particular, there exists a non-canonically defined section which can be
used to construct a composition map XΛ2

1
◦
−→ X∆1

compatible with the source and target
projections.

X∆2

∼}}}}{{{{{{{{
d1

!! !!CCCCCCCC

XΛ2
1

44

�
{

n

s
���� t (( ((QQQQQQQQQQQQQQQQ X∆1

mmmmmmm

svvvvmmmmmmmm t
����

X X

14This example shows that quasi-categories are not closed under colimits.
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