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Abstract

In Part I of this thesis, we introduce algebraic model structures, a new context for homotopy

theory in which the cofibrations and fibrations are retracts of coalgebras for comonads and alge-

bras for monads and prove “algebraic” analogs of classical results. Using a modified version of

Quillen’s small object argument, we show that every cofibrantly generated model structure in the

usual sense underlies a cofibrantly generated algebraic model structure. We show how to pass

a cofibrantly generated algebraic model structure across an adjunction, and we characterize the

algebraic Quillen adjunction that results. We prove that pointwise algebraic weak factorization

systems on diagram categories are cofibrantly generated if the original ones are, and we give an

algebraic generalization of the projective model structure. Finally, we prove that certain funda-

mental comparison maps present in any cofibrantly generated model category are cofibrations

when the cofibrations are monomorphisms, a conclusion that does not seem to be provable in the

classical, non-algebraic, theory.

In Part II, we define monoidal algebraic model structures and discuss examples. The main

structural component requires a new notion: an algebraic Quillen two-variable adjunction. The

principal technical work is to develop the category theory necessary to define and characterize

them. Our investigations reveal an important role played by “cellularity”—loosely, the property

of a cofibration being a relative cell complex, not simply a retract of such—which we particularly

emphasize. A main result is a simple criterion which shows that algebraic Quillen two-variable

adjunctions correspond precisely to cellular structures on the pushout-products of generating

(trivial) cofibrations, extending a similar result from Part I.

vii



Preface

Quillen’s model structures axiomatize a general framework for homotopy theory, providing tools

to study the objects of a category up to some specified notion of weak equivalence. In a model cat-

egory, the interactions between the weak equivalences and two additional classes of morphisms—

the cofibrations and the fibrations—enable a concrete construction of the homotopy category; the

category obtained by restricting to the fibrant-cofibrant objects and taking homotopy classes of

maps is equivalent to the formal localization at the weak equivalences. Furthermore, model struc-

tures enable one to perform constructions at the “point-set level”—i.e., in the original category,

which typically has more limits and colimits than the homotopy category—that are homotopically

meaningful in the sense that they agree with their derived functors.

For these reasons, model categories have proliferated far beyond the original topological set-

ting. But despite their popularity, ordinary model structures only provide a context for homotopy

theory and don’t contribute directly to calculations. In this thesis we present a new, more rigid,

algebraic extension of Quillen’s notion that has this calculational capacity because certain struc-

tures previously only supposed to exist are now specified. This thesis lays the foundations for

the theory of algebraic model structures, introducing a number of basic definitions, describing

conditions that give rise to important examples, and discussing general features.

Algebraic model structures, introduced in Part I of this thesis, provide a setting for homotopy

theory in which the trappings of an ordinary model structure—the cofibrations, fibrations, trivial

cofibrations, and trivial fibrations—can be thought of algebraically: as maps together with extra

data witnessing their membership in the particular class. Each algebraic model structure deter-

mines an underlying ordinary model category, in the sense of Quillen [Qui67], but one whose

functorial factorizations have richer algebraic structure. Despite the fact that this new definition

is much stricter than the original, an algebraic model structure exists whenever an ordinary model

structure is cofibrantly generated. The abundance of such examples means that this theory offers

a new perspective on classical model categories, which we believe will be of interest to experts,

even if they see no immediate need for the algebraic structures we can guarantee.

What does it mean to consider fibrations algebraically? A classical example is provided by the

Hurewicz fibrations, which can be characterized as those maps of spaces that admit a path lifting
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function. Importantly, a path lifting function assigned to some map p is precisely an algebra

structure for p with respect to a particular monad on the arrow category, whose objects are maps

of spaces and whose morphisms are commutative squares [May75]. The monad is constructed

from the Moore paths monad and describes, among other things, a functorial factorization of

each arrow as a cofibration and homotopy equivalence followed by a fibration. The monad on the

arrow category is the functor that replaces a map by a fibration, its right factor.

Furthermore, the functor that sends a map to its left factor with respect to this functorial

factorization, the trivial cofibration part, is itself a comonad on the arrow category. Its coalgebras

are necessarily homotopy equivalences and Hurewicz cofibrations. Furthermore, the coalgebra

structure assigned to a particular trivial cofibration can be used to construct a canonical solution

to any lifting problem against a fibration equipped with a path lifting function. These are the

general features of what it means to describe the trivial cofibrations and fibrations as “algebraic”:

such maps are equipped with specified retractions to their left or right factors which can be used

to solve all lifting problems.

In an algebraic model structure, both functorial factorizations have this flavor: the right fac-

tors are monads and the left factors are comonads. Algebras are necessarily fibrations and trivial

fibrations, and coalgebras are necessarily trivial cofibrations and cofibrations, respectively. Addi-

tionally, a natural comparison between the two functorial factorizations induces functors that map

algebraic trivial cofibrations to algebraic cofibrations and algebraic trivial fibrations to algebraic

trivial fibrations. These functors compatibly assign a canonical solution to any lifting problem

between an algebraic trivial cofibration and an algebraic trivial fibration.

The data of an algebraic model structure determines a fibrant replacement monad and cofi-

brant replacement comonad; algebras and coalgebras are algebraic fibrant objects and algebraic

cofibrant objects. Furthermore, the canonical solution to a particular lifting problem defines a

distributive law of the monad over the comonad, which specifies the algebraic fibrant-cofibrant

objects. Future work will explore the implications of the previously unnoticed fact that any cofi-

brantly generated model category has a fibrant replacement monad and cofibrant replacement

comonad, which, in particular, allows one to construct (co)simplicial resolutions using point-set

derived functors.

A paradigmatic cofibrantly generated algebraic model structure is Quillen’s original model

structure on spaces, generated by the sets I = {S n−1 → Dn} and J = {Dn → Dn × I}. An

algebraic fibration is a Serre fibration equipped with chosen lifts of cylinders in the base space
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extending specified disks in the total space. An algebraic trivial fibration is a map equipped

with lifted contractions filling spheres in the total space which are contractible in the base. Such

maps are necessarily both Serre fibrations and weak homotopy equivalences; that is, they are

necessarily trivial fibrations in the underlying ordinary model structure. Conversely, all trivial

fibrations admit some algebra structure: one need only make a choice among the various fillers

for such spheres which necessarily exist. Indeed, whenever the algebraic model structure is

cofibrantly generated, all fibrations and all trivial fibrations are algebraic.

Interestingly, the dual statements do not hold: the cofibrations and trivial cofibrations need

not admit coalgebra structures, even when the algebraic model structure is cofibrantly generated.

Accordingly, we say a cofibration is cellular if it admits a coalgebra structure, that is, if there

is some algebraic cofibration with this underlying map. The name is motivated by the most

familiar example: a relative cell complex is a map of spaces, necessarily a cofibration, that can

be described by repeatedly attaching cells to the domain. Such a description is called a cellular

decomposition for the map and defines a coalgebra structure for the comonad. By convention,

whenever two cells can be attached “at the same time” in a particular cellular decomposition, we

do so, so that the filtration defined by the cellular decomposition will have fewer, in fact typically

only countably many, stages. As is familiar for CW-complexes, a special case, the resulting

coalgebra structures are not at all unique, even granting this convention.

Not all cofibrations for this model structure are cellular. The best one can say is that the

cofibrations are retracts of relative cell complexes, that is, retracts of cellular cofibrations. Analo-

gously, in any algebraic model category, any cofibration is a retract of a cellular one. More specif-

ically, any cofibration is a retract of a cofibration admitting a free coalgebra structure, namely, its

left factor in the cofibration–trivial fibration factorization.

For some algebraic model structures, the cellular cofibrations behave quite differently. For

example, in Quillen’s model structure on simplicial sets, generated by the sphere and horn in-

clusions, every cofibration is cellular and furthermore admits a unique coalgebra structure. Here

the cofibrations are precisely the monomorphisms and the filtration defined by their cellular de-

composition is always countable. The first step attaches all simplices whose boundary appears in

the domain. In particular this includes all 0-simplices of the codomain. The second step attaches

all simplices whose boundary is present at the end of stage one; in particular, this includes all

1-simplices. In this way, we see that the n-th simplicial set of the resulting filtration contains at

least the (n − 1)-skeleton of the codomain.
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When comparing algebraic model structures on different categories, cellularity is more than

just a curiosity. A cellularity condition precisely characterizes algebraic Quillen adjunctions, a

rigid analog of the classical notion. In an ordinary Quillen adjunction, the left adjoint preserves

the (trivial) cofibrations and the right adjoint preserves the (trivial) fibrations. In an algebraic

Quillen adjunction, a new definition introduced below, the left adjoint lifts to a functor between

the algebraic (trivial) cofibrations and the right adjoint lifts to a functor between the algebraic

(trivial) fibrations, and furthermore these lifts determine each other, in a sense that is rather del-

icate to make precise. Modulo a compatibility condition which is not the main point, an adjunc-

tion is an algebraic Quillen adjunction if and only if the images of the generating cofibrations and

trivial cofibrations under the left adjoint are cellular with respect to the appropriate comonads.

Furthermore, a choice of cell structures completely determines the lifted functors and hence the

full algebraic Quillen adjunction.

The geometric realization–total singular complex adjunction between simplicial sets and

spaces is a member of a large class of examples. The geometric realizations of the generat-

ing cofibrations are homeomorphic to the elements of the set I; we assign these maps the sim-

plest possible I-cellular structures. Similarly, the geometric realizations of the horn inclusions

are homeomorphic to the elements of J; again, we assign these maps the simplest J-cellular

structures. In this case, the naturality condition, glossed over above, demands a good choice of

I-cellular structures for the realizations of the horn inclusions: first attach the “missing face” to

the geometrically realized horn to make a sphere, and then fill the sphere.

The theme of cellularity, entirely present but not fully apparent to the author in Part I [Rie11],

is unmistakable in Part II, which introduces monoidal algebraic model structures, algebraicizing

the definition of [Hov99]. Extending the results for the single-variable case, algebraic Quillen

two-variable adjunctions exist precisely when the pushout-products of the generating cofibrations

and trivial cofibrations are cellular; furthermore, these cellular structures completely determine

the algebraic Quillen two-variable adjunctions. The main technical work of Part II is to precisely

state the definition of an algebraic Quillen two-variable adjunction and prove these theorems,

which are much harder than the single-variable versions, but once this technical work is complete,

the definition of a monoidal algebraic model structure is apparent. Monoidal model structures

necessarily precede consideration of enriched ones but also inherit nearly all of their complexity,

so the definition of an enriched algebraic model structure is also evident. However, we leave this

topic for another paper where we have time to more fully consider examples.
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In order to state the definitions and prove the theorems appearing in this thesis, we had to

develop a fair amount of pure category theory. The precise definition of an algebraic Quillen ad-

junction proved particularly fruitful, requiring a new notion of morphism between the categorical

components of an algebraic model structure. Our discovery of the correct notion was motivated

by a desire to replicate the classical situation where a Quillen adjunction can be detected by con-

sidering the left adjoint and the (trivial) cofibrations or the right adjoint and the (trivial) fibrations

alone. Alternatively, these definitions can be intuited from a purely categorical lens. The compo-

nents of an algebraic Quillen adjunction are lax morphisms of monads and colax morphisms of

comonads related by the calculus of mates [KS74], which governs the interactions between the

monads and comonads arising from the same functorial factorization.

An alternate approach uses the fact that the (co)algebra structures assigned to a composable

pair of (co)fibrations are themselves composable in such a way that the algebraic (co)fibrations

become a double category; algebraic Quillen adjunctions consist of compatible lifted double

functors. In fact, the main reason the proofs in Part II are much harder than the corresponding

arguments in Part I is that the functors between arrow categories arising from a two-variable

adjunction do not preserve composability of underlying maps, much less (co)algebras. Thus, in

the two-variable case, we are forced to rely upon the mates approach, but even here the necessary

category theory does not exist. To describe the correct correspondence between the three lifted

functors of an algebraic two-variable adjunction, we introduce parameterized mates and prove

a few fundamental lemmas. In this paper, we consider only two-variable adjunctions, the case

of interest, but the same ideas extend to n-variable adjunctions and can be used to define the 2-

cells of a category object in the category of multicategories of a particular sort. Of all the topics

developed here, we believe this to be of greatest independent categorical interest.
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Part I

Algebraic model structures



I.1 Introduction

Weak factorization systems are familiar in essence if not in name to algebraic topologists. Loosely,

they consist of left and right classes of maps in a fixed category that satisfy a dual lifting prop-

erty and are such that every arrow of the category can be factored as a left map followed by a

right one. Neither these factorizations nor the lifts are unique; hence, the adjective “weak.” Two

weak factorization systems are present in Quillen’s definition of a model structure [Qui67] on

a category. Indeed, for any weak factorization system, the left class of maps behaves like the

cofibrations familiar to topologists while the right class of maps behaves like the dual notion of

fibrations.

Category theorists have studied weak factorization systems in their own right, often with other

applications in mind. From a categorical point of view, weak factorization systems, even those

whose factorizations are described functorially, suffer from several defects, the most obvious

of which is the failure of the left and right classes to be closed under all colimits and limits,

respectively, in the arrow category.

Algebraic weak factorization systems, originally called natural weak factorization systems,

were introduced in 2006 by Marco Grandis and Walter Tholen [GT06] to provide a remedy. In

an algebraic weak factorization system, the functorial factorizations are given by functors that

underlie a comonad and a monad, respectively. The left class of maps consists of coalgebras for

the comonad and the right class consists of algebras for the monad. The algebraic data accompa-

nying the arrows in each class can be used to construct a canonical solution to any lifting problem

that is natural with respect to maps of coalgebras and maps of algebras. A classical construction

in the same vein is the path lifting functions which can be chosen to accompany any Hurewicz

fibration of spaces [May75].

More recently, Richard Garner adapted Quillen’s small object argument so that it produces

algebraic weak factorization systems [Gar07, Gar09], while simultaneously simplifying the func-

torial factorizations so constructed. In practice, this means that whenever a model structure is

cofibrantly generated, its weak factorization systems can be “algebraicized” to produce algebraic

weak factorization systems, while the underlying model structure remains unchanged.

The consequences of this possibility appear to have been thus far unexplored. This paper

begins to do so, although the author hopes this will be the commencement, rather than the culmi-

nation, of an investigation into the application of algebraic weak factorization systems to model
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structures. At the moment, we do not have particular applications in mind to justify this exten-

sion of classical model category theory. However, these extensions feel correct from a categorical

point of view, and we are confident that suitable applications will be found.

Section I.2 contains the necessary background. We review the definition of a weak factoriza-

tion system and state precisely what we mean by a functorial factorization. We then introduce

algebraic weak factorization systems and describe a few important properties. We explain what

it means for a algebraic weak factorization system to be cofibrantly generated and prove a lemma

about such factorization systems that will have many applications. More details about Garner’s

small object argument, including a comparison with Quillen’s, are given later, as needed.

Section I.3 is in many ways the heart of this paper. To begin, we define an algebraic model

structure, that is, a model structure built out of algebraic weak factorization systems instead of

ordinary ones. One feature of this definition is that it includes a notion of a natural comparison

map between the two functorial factorizations. As an application, one obtains a natural arrow

comparing the two fibrant-cofibrant replacements of an object, which can be used to construct

a category of algebraically bifibrant objects in our model structure. We prove that cofibrantly

generated algebraic model structures can be passed across an adjunction, generalizing a result

due to Daniel Kan.

The adjunction between the algebraic model structures in this situation has many interesting

properties, consideration of which leads us to define an algebraic Quillen adjunction. For such

adjunctions, the right adjoint lifts to a functor between the categories of algebras for each pair

of algebraic weak factorization systems, which should be thought of as an algebraization of the

fact that Quillen right adjoints preserve fibrations and trivial fibrations. Furthermore, the lifts for

the fibrations and trivial fibrations are natural, in the sense that they commute with the functors

induced by the comparison maps. Dually, the left adjoint lifts to functor between the categories

of coalgebras and these lifts are natural. In order to prove that the adjunction described above

is an algebraic Quillen adjunction, we must develop a fair bit of theory, a task we defer to later

sections.

In Section I.4, we describe the pointwise algebraic weak factorization system on a diagram

category and prove that it is cofibrantly generated whenever the inducing one is. This result is

only possible because Garner’s small object argument allows the “generators” to be a category,

rather than simply a set. One place where such algebraic weak factorization systems appear is in

Lack’s trivial model structure on certain diagram 2-categories [Lac07], and consequently, these
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algebraic model structures are cofibrantly generated in the new sense, but not in the classical one.

We then use the pointwise algebraic weak factorization system together with the work of Section

I.3 to obtain a generalization of the projective model structure on a diagram category.

In Section I.5, we showcase some advantages of algebraicizing cofibrantly generated model

structures. Using the characterization of cofibrations and fibrations as coalgebras and algebras,

we have techniques for recognizing cofibrations constructed as colimits and fibrations constructed

as limits that are not available otherwise. We use these techniques to prove the surprising fact

that the natural comparison map between the algebraic weak factorization systems of a cofibrantly

generated algebraic model category consists of pointwise cofibration coalgebras, at least when

the cofibrations in the model structure are monomorphisms. We conclude by applying these

techniques to prove that the fibrant replacement monad in this setting preserves certain trivial

cofibrations, a fact relevant to the study of categories of algebraically fibrant objects, some of

which can be given their own lifted algebraic model structure by recent work of Thomas Nikolaus

[Nik10].

In Section I.6, we begin to develop the theory necessary to prove the existence of an impor-

tant class of algebraic Quillen adjunctions. First, we describe what happens when we have an

adjunction between categories with related algebraic weak factorization systems, such that the

generators of the one are the image of the generators of the other under the left adjoint, a question

that turns out to have a rather complicated answer. In this setting, the right adjoint lifts to a func-

tor between the categories of algebras for the monads of the algebraic weak factorization systems

and dually the left adjoint lifts to a functor between the categories of coalgebras, though the proof

of this second fact is rather indirect. To provide appropriate context for understanding this result

and as a first step towards its proof, we present three general categorical definitions describing

comparisons between algebraic weak factorization systems on different categories. The first two

definitions, of lax and colax morphisms of algebraic weak factorization systems, combine to give

a definition of an adjunction of algebraic weak factorization systems, which is the most important

of these notions.

The most expeditious proofs of these results make use of the fact that the categories of alge-

bras and coalgebras accompanying an algebraic weak factorization system each have a canonical

composition law that is natural in a suitable double categorical sense; in particular each alge-

braic weak factorization system gives rise to two double categories, whose vertical morphisms

are either algebras or coalgebras and whose squares are morphisms of such. This composition,
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introduced in Section I.2, provides a recognition principle that identifies an algebraic weak fac-

torization system from either the category of algebras for the monad or the category of coalgebras

for the comonad. As a consequence, it suffices in many situations to consider either the comonad

or the monad individually, which is particularly useful here.

The existence of adjunctions of cofibrantly generated algebraic weak factorization systems

demands an extension of the universal property of Garner’s small object argument. We conclude

Section I.6 with a statement and proof of the appropriate change-of-base result, which we use

to compare the outputs of the small object argument on categories related by adjunctions. This

extension is not frivolous; a corollary provides exactly the result we need to prove the naturality

statement in the main theorem of the final section.

In Section I.7, we apply the results of the previous section to prove that there is a canoni-

cal algebraic Quillen adjunction between the algebraic model structures constructed at the end

of Section I.3. The data of this algebraization includes five instances of adjunctions between

algebraic weak factorization systems. Two of these are given by the comparison maps for each

algebraic model structure. The other three provide an algebraic description of the relationship

between the various types of factorizations on the two categories.

For convenience, we’ll abbreviate algebraic weak factorization system as awfs, which will

also be the abbreviation for the plural, with the correct interpretation clear from context. Simi-

larly, we write wfs for the singular or plural of weak factorization system. The wfs mentioned in

this paper beyond Section I.2.1 underlie some awfs and are therefore functorial.

The author would like to thank Peter May for feedback on innumerable drafts of this paper.

The author is also grateful for several conversations with Mike Shulman and Richard Garner,

some of the results of which are contained in Theorem I.5.1 and Lemma I.5.3. The latter also

conjectured Lemma I.6.9, which enabled a simplification of the initial proof of Theorem I.6.15,

while the former also commented on an earlier draft of this paper and suggested the definitions

of Section I.6 and the statement and proof of Corollary I.6.17. Anna Marie Bohmann suggested

the notation for the natural transformations involved in an awfs.

I.2 Background and recent history

There are many sources that describe the basic properties of weak factorization systems of various

stripes (e.g., [KT93] or [RT02]). We choose not to give a full account here and only include the
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topics that are most essential.

First some notation. We write n for the category associated to the ordinal n as a poset, i.e., the

category with n objects 0, 1, . . ., n−1 and morphisms i→ j just when i ≤ j. Let d0, d1, d2 : 2→ 3

denote the three functors which are injective on objects; the superscript indicates which object is

not contained in the image. Precomposition induces functors d0, d1, d2 : M3 → M2 for any cat-

egory M; where we write MA for the category of functors A → M and natural transformations.

We refer to d1 as the “composition functor” because it composes the two arrows in the image of

the generating non-identity morphisms of 3.

Definition I.2.1. We are particularly interested in the category M2, sometimes known as the

arrow category of M. Its objects are arrows of M, which we draw vertically, and its morphisms

(u, v) : f ⇒ g are commutative squares1

· u //

f
��

·

g
��

· v
// ·

There are canonical forgetful functors dom, cod: M2 → M that project to the top and bottom

edges of this square, respectively.

The material in Sections I.2.1 and I.2.2 is well-known to category theorists at least, while the

material in Sections I.2.3 - I.2.6 is fairly new. Naturally, we spend more time in the latter sections

than in the former.

I.2.1 Weak factorization systems

Colloquially, a weak factorization system consists of two classes of arrows, the “left” and the

“right”, that have a lifting property with respect to each other and satisfy a factorization axiom.

The lifting property says that whenever we have a commutative square as in (I.2.2) with l in the

left class of arrows and r in the right, there exists an arrow w as indicated so that both triangles

commute.

1. We depict morphisms of M2 with a double arrow because (u, v) is secretly a natural transformation
between the functors f , g : 2→M, though we do not often think of it as such.
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Notation. When every lifting problem of the form posed by the commutative square

·

l
��

u // ·

r
��

·
w

??�
�

�
�

v
// ·

(I.2.2)

has a solution w, we write l l r and say that l has the left lifting property (LLP) with respect to

r and, equivalently, that r has the right lifting property (RLP) with respect to l. If A is a class

of arrows, we write Al for the class of arrows with the RLP with respect to each arrow in A.

Similarly, we write lA for the class of arrows with the LLP with respect to each arrow in A.

In general, A ⊂ lB if and only if B ⊂ Al; in this situation, we write A l B and say that

A has the LLP with respect to B and, equivalently, that B has the RLP with respect to A. The

operations (−)l and l(−) form a Galois connection with respect to the posets of classes of arrows

of a category, ordered by inclusion.

Definition I.2.3. A weak factorization system (L,R) on a category M consists of classes of

morphisms L and R such that

(i) Every morphism f in M factors as r · l, with l ∈ L and r ∈ R.

(ii) L = lR and R = Ll.

Any class L that equals lR for some class R is saturated, which means that L contains all

isomorphisms and is closed under coproducts, pushouts, transfinite composition, and retracts.

The class R = Ll has dual closure properties, which again has nothing to do with the factoriza-

tion axiom. The following alternative definition of a weak factorization system is equivalent to

the one given above.

Definition I.2.4. A weak factorization system (L,R) in a category M consists of classes of mor-

phisms L and R such that

(i) Every morphism f in M factors as r · l, with l ∈ L and r ∈ R.

(ii) L l R.

(iii) L and R are closed under retracts.
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Any model structure provides two examples of weak factorization systems: one for the trivial

cofibrations and the fibrations and another for the cofibrations and trivial fibrations. Indeed, a

particularly concise definition of a model structure on a complete and cocomplete category M is

the following: a model structure consists of three class of maps C, F, W such that W satisfies the

2-of-3 property and such that (C ∩W,F) and (C,W ∩ F) are wfs.2

I.2.2 Functorial factorization

Definition I.2.5. A functorial factorization is a functor ~E : M2 → M3 that is a section of the

“composition” functor d1 : M3 →M2.

Explicitly, a functorial factorization consists of a pair of functors L,R : M2 → M2 such that

f = R f · L f for all morphisms f ∈M and such that the following three conditions hold:

codL = domR, domL = dom, codR = cod.

Together, L = d2 ◦ ~E and R = d0 ◦ ~E contain all of the data of the functor ~E. The fact that L and

R arise in this way implies all of the conditions described above.

It will often be convenient to have notation for the functor M2 → M that takes an arrow to

the object it factors through, and we typically write E for this, without the arrow decoration. With

this notation, the functorial factorization ~E : M2 →M3 sends a commutative square

· u //

f
��

·

g
��

· v
// ·

to a commutative rectangle

· u //

L f
��

·

Lg
��

E f
E(u,v)//

R f
��

Eg

Rg
��

· v
// ·

(I.2.6)

We’ll refer to E : M2 →M as the functor accompanying the functorial factorization (L,R).

Definition I.2.7. A wfs is called functorial if it has a functorial factorization with L f ∈ L and

R f ∈ R for all f .

2. It is not immediately obvious that W must be closed under retracts but this does follow by a clever
argument the author learned from André Joyal [Joy08, §F].
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There is a stronger notion of wfs called an orthogonal factorization system, abbreviated ofs,

in which solutions to a given lifting problem are required to be unique.3 These are sometimes

called factorization systems in the literature. It follows from the uniqueness of the lifts that the

factorizations of an ofs are always functorial. For this stronger notion, the left class is closed

under all colimits and the right under all limits, taken in the arrow category.

Relative to orthogonal factorization systems, wfs with functorial factorizations suffer from

two principal defects. The first is that a functorial wfs on M does not induce a pointwise wfs on

a diagram category MA, where A is a small category. The functorial factorization does allow us

to factor natural transformations pointwise, but in general the resulting left factors will not lift

against the right ones, even though their constituent arrows satisfy the required lifting property.

This is because the pointwise lifts which necessarily exist are not naturally chosen and so do not

fit together to form a natural transformation.

The second defect is that the classes of a functorial wfs, as for a generic wfs, fail in general

to be closed under all the limits and colimits that one might expect. Specifically, we might hope

that the left class would be closed under all colimits in M2 and the right class would be closed

under all limits. As those who are familiar with working with cofibrations know, this is not true

in general.

These failings motivated Grandis and Tholen to define algebraic weak factorization systems

[GT06], which are functorial wfs with extra structure that addresses both of these issues.

I.2.3 Algebraic weak factorization systems

Any functorial factorization gives rise to two endofunctors L,R : M2 →M2, which are equipped

with natural transformations to and from the identity, respectively. Explicitly, L is equipped with

a natural transformation ~ε : L⇒ id whose components consist of the squares ~ε f =

·

L f
��

·

f
��

·
R f
// ·

.

We call ~ε the counit of the endofunctor L and write ε f := R f for the codomain part of the

morphism ~ε f . Using the notation of Definition I.2.1, ~ε = (1, ε). The component ε : E ⇒ cod is a

natural transformation in its own right, where E is as in (I.2.6).

3. An example in Set takes the epimorphisms as the left class and the monomorphisms as the right
class. When we exchange these classes the result is a wfs.
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Dually, R is equipped with a natural transformation ~η : id⇒ R whose components are squares

~ηg =

·

g
��

Lg // ·

Rg
��

· ·

. We call ~η the unit of the endofunctor R and write η = dom~η for the natural

transformation dom ⇒ E. We write ~η = (η, 1) in the notation of Definition I.2.1. We call a

functor L equipped with a natural transformation to the identity functor left pointed and a functor

R equipped with a natural transformation from the identity functor right pointed, though the

directional adjectives may be dropped when the direction (left vs. right) is clear from context.

Lemma I.2.8. In a functorial wfs (L,R), the maps in R are precisely those arrows which admit

an algebra structure for the pointed endofunctor (R, ~η). Dually, the class L consists of those maps

that admit a coalgebra structure for (L, ~ε).

Proof. Algebras for a right pointed endofunctor are defined similarly to algebras for a monad, but

in the absence of a multiplication natural transformation, the algebra structure maps need only

satisfy a unit condition. If g ∈ R then it lifts against its left factor as shown
·

Lg
��

·

g
��

·

t
??�

�
�

�

Rg
// ·

. The

arrow (t, 1) : Rg⇒ g makes g an algebra for (R, ~η). Conversely, if g has an algebra structure (t, s)

then the unit axiom implies that
·

g
��

Lg // ·

Rg
��

t // ·

g
��

· · s
// ·

is a retract diagram (hence, s = 1). Thus, g is

a retract of Rg ∈ R, which is closed under retracts. �

The notion of a algebraic weak factorization system is an algebraization of the notion of

a functorial wfs in which the above pointed endofunctors are replaced with a comonad and a

monad respectively.

Definition I.2.9. An algebraic weak factorization system (originally, natural weak factorization

system) on a category M consists a pair (L,R), where L = (L, ~ε, ~δ) is a comonad on M2 and

R = (R, ~η, ~µ) is a monad on M2, such that (L, ~ε) and (R, ~η) are the pointed endofunctors of some

functorial factorization ~E : M2 → M3. Additionally, the accompanying natural transformation

∆ : LR⇒ RL described below is required to be a distributive law of the comonad over the monad.
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Because the unit ~η arising from the functorial factorization necessarily has the form ~η f =

·

f
��

L f // ·

R f
��

· ·

, it follows from the monad axioms that ~µ f =

·

R2 f
��

µ f // ·

R f
��

· ·

where µ : ER ⇒ E

is a natural transformation, with E as in (I.2.6). Hence, R is a monad over cod: M2 → M,

which means that codR = cod, cod~η = idcod and cod ~µ = idcod. This means that R f has the

same codomain as f , and the codomain component of the natural transformations ~η and ~µ is the

identity.

Dually, L is a comonad over dom (in the sense that it is a comonad in the 2-category CAT/M

on the object dom: M2 → M). We write δ : E ⇒ EL for the natural transformation cod~δ

analogous to µ = dom ~µ defined above. As a consequence of the monad and comonad axioms,

·

LR f
��

δ f // ·

RL f
��

·
µ f
// ·

commutes for all f . (Indeed, the common diagonal composite is the identity.)

These squares are the components of a natural transformation ∆ : LR ⇒ RL, which is the dis-

tributive law mentioned above. In this context, the requirement that ∆ be a distributive law of L

over R reduces to a single condition: δ · µ = µL · E(δ, µ) · δR. Because the components of ∆ are

part of the data of L and R, this distributive law does not provide any extra structure for the awfs;

rather it is a property that we ask that the pair (L,R) satisfy.4

Given an awfs (L,R), we refer to the L-coalgebras as the left class and the R-algebras as the

right class of the awfs. Unraveling the definitions, an L-coalgebra consists of a pair ( f , s), where

f is an arrow of M and (1, s) : f ⇒ L f is an arrow in M2 satisfying the usual conditions so that

this gives a coalgebra structure with respect to the comonad L. The unit condition says that s

solves the canonical lifting problem of f against R f . Dually, an R-algebra consists of a pair (g, t)

such that g is an arrow of M and (t, 1) : Rg⇒ g is an arrow in M2, where t lifts Lg against g.

The algebra structure of an element g of the right class of an awfs should be thought of as a

4. Grandis and Tholen’s original definition did not include this condition, but Garner’s does. Using
Garner’s definition, awfs are bialgebras with respect to a two-fold monoidal structure on the category of
functorial factorizations (see [Gar07, §3.2]); the distributive law condition says exactly that the monoid
and comonoid structures fit together to form a bialgebra. This category provides the setting for the proofs
establishing the machinery of Garner’s small object argument. We recommend that the first-time reader
ignore these details; to repeat a quote the author has seen attributed to Frank Adams, “to operate the
machine, it is not necessary to raise the bonnet.”
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chosen lifting of g against any element of the left class. Given an L-coalgebra ( f , s) and a lifting

problem (u, v) : f ⇒ g, the arrow w = t · E(u, v) · s

· u //

L f
��

·

Lg
��

·
E(u,v)//___

R f
��

·

Rg
��

t
OO�
�
�

·

s
OO�
�
�

v
// ·

(I.2.10)

is a solution to the lifting problem. In particular, all L-coalgebras lift against all R-algebras.

If we let L and R denote the arrows in M that have some L-coalgebra structure or R-algebra

structure, respectively, then it is not quite true that (L,R) is a wfs. This is because retracts of

maps in L will also lift against elements of R, but the categories of coalgebras for a comonad

and algebras for a monad are not closed under retracts. We write L for the retract closure of L

and similarly for R and refer to the wfs (L,R) as the underlying wfs of (L,R). It is, in particular,

functorial.

Remark I.2.11. Because the class of L-algebras is not closed under retracts, not every arrow in

the left class of the underlying wfs (L,R) of the awfs (L,R) will have an L-coalgebra structure.

The same is true for the right class. (But see Lemma I.2.30!)

However, as we saw in Lemma I.2.8, every arrow of L will have a coalgebra structure for the

left pointed endofunctor (L, ~ε) and conversely every coalgebra will be an element of L. It follows

that coalgebras for the pointed endofunctors underlying an awfs are closed under retracts; this can

also be proved directly. In fact, the coalgebras for the pointed endofunctor underlying a comonad

are the retract closure of the coalgebras for the comonad. The proof of this statement uses the

fact that the map (1, s) : f ⇒ L f makes f a retract of its left factor L f , which has a free coalgebra

structure for the comonad L. Similar results apply to the right class R.

Example I.2.12. Any orthogonal factorization system (L,R) is an awfs. Orthogonal factoriza-

tion systems are always functorial, with all possible choices of functorial factorizations canoni-

cally isomorphic. The comultiplication and multiplication natural transformations for the func-

tors L and R are defined to be the unique solutions to the lifting problems
·

L
��

LL // ·

RL
��

·
δ

??�
�

�
�

·

and
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·

LR
��

·

R
��

·

µ
??�

�
�

�

RR
// ·

. Every element of R has a unique R-algebra structure and the structure map is an

isomorphism. Similarly, every element of L has a unique L-coalgebra structure, with structure

map an isomorphism. It follows that the classes of R-algebras and L-coalgebras are closed under

retracts. The remaining details are left as an exercise.

In light of Remark I.2.11, why does it make sense to use a definition of awfs that privileges

coalgebra structures for the comonad L over coalgebras for the left pointed endofunctor (L, ~ε),

and similarly on the right? We suggest three justifications. The first is that coalgebras for the

comonad are often “nicer” than coalgebras for the pointed endofunctor. In examples, the for-

mer are analogous to “relative cell complexes” while the latter are the “retracts of relative cell

complexes.” A second reason is that we can compose coalgebras for the comonad in an awfs,

meaning we can give the composite arrow a canonical coalgebra structure. This definition, which

will be given in Section I.2.5, uses the multiplication for the monad explicitly, so is not possible

without this extra algebraic structure. Finally, and perhaps most importantly, coalgebras for a

comonad are closed under colimits, as we will prove in Theorem I.2.16. There is no analogous

result for (L, ~ε)-coalgebras. The upshot is that when examining colimits, the extra effort to check

that a diagram lands in L-coalg is often worth it.

Remark I.2.13. The original name natural weak factorization system is in some sense a mis-

nomer. In most cases, the lift of a map r in the right class against its left factor is not natural;

it’s simply chosen and recorded in the fact that associate to the arrow r a piece of algebraic data.

Solutions to lifting problems of the form (I.2.2) are constructed by combining the coalgebraic and

algebraic data of l and r with a functorial factorization of the square. These lifts are not natural

with respect to all morphisms in the arrow category. They are however natural with respect to

morphisms of L-coalg and R-alg, but that is true precisely because morphisms in a category of

algebras are required to preserve the algebraic structure.

In an important special case, however, there are natural lifts; namely, for the free morphisms

that arise as left and right factors of arrows. Hence, the adjective “natural” appropriately describes

these factorizations. The multiplication of the monad R gives any arrow of the form R f a natural

R-algebra structure µ f . Similarly, the arrows L f have a natural L-coalgebra structure δ f using the

comultiplication of the comonad. Of course, it may be that there are other ways to choose lifting

data for these arrows, but the natural choices provided by the comultiplication and multiplication
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have the property that the map from L f to Lg or R f to Rg arising from any map (u, v) : f ⇒ g

preserves the lifting data.

We conclude this section with one final definition that will prove very important in Section

I.3 and beyond.

Definition I.2.14. A morphism of awfs ξ : (L,R) → (L′,R′) is a natural transformation ξ : E ⇒

E′ that is a morphism of functorial factorizations, i.e., such that

·
L f

~~~~~~~~~~ L′ f
  BBBBBBBB

E f
ξ f //

R f   @@@@@@@@ E′ f

R′ f~~||||||||

·

(I.2.15)

commutes, and such that the natural transformations (1, ξ) : L ⇒ L′ and (ξ, 1) : R ⇒ R′ are

comonad and monad morphisms, respectively, which means that these natural transformations

satisfy unit and associativity conditions. It follows that a morphism of awfs ξ induces functors

ξ∗ : L-coalg → L′-coalg and ξ∗ : R′-alg → R-alg between the Eilenberg-Moore categories of

coalgebras and algebras.

I.2.4 Limit and colimit closure

It remains to explain how an awfs rectifies the defects mentioned at the end of I.2.2. We will

speak at length about induced pointwise awfs later in Section I.4, but we can deal with colimit

and limit closure right now.

Let R-alg denote the Eilenberg-Moore category of algebras for the monad R and let L-coalg

similarly denote the category of coalgebras for L. It is a well-known categorical fact that the for-

getful functors U : R-alg → M2, U : L-coalg → M2 create all limits and colimits, respectively,

that exist in M2. It follows that the right and left classes of the awfs (L,R) are closed under limits

and colimits, respectively. We have proven the following result of [GT06].

Proposition I.2.16 (Grandis-Tholen). If M has colimits (respectively limits) of a given type, then

L-coalg (respectively R-alg) has them, formed as in M2.
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Remark I.2.17. It is possible to interpret I.2.16 too broadly. This does not say that for any diagram

in M2 such that the objects have a coalgebra structure, the colimit will have a coalgebra structure.

This conclusion will only follow if the maps of the colimit diagram are arrows in L-coalg and not

just in M2.

However, we do now have a method for proving that a particular colimit is a coalgebra:

namely checking that the maps in the relevant colimiting diagram are maps of coalgebras. While

this can be tedious, it will allow us to prove surprising results about cofibrations, which the author

suspects are intractable by other methods. (See, e.g., Theorem I.5.1. It is also possible to prove

Corollary I.6.16 directly in this manner.)

Example I.2.18. An example will illustrate this important point, though we have to jump ahead

a bit. As a consequence of Garner’s small object argument (see I.2.28), there is an awfs on Top

such that the left class of its underlying wfs consists of the cofibrations for the Quillen model

structure. It is well-known that the pushout of cofibrations is not always a cofibration. For

example, the vertical maps of

Dn+1 ∗

j
��

oo ∗

Dn+1 S n //
jn+1oo ∗

(I.2.19)

are all cofibrations and coalgebras in the Quillen model structure,5 but the pushout Dn+1 �

S n+1 is not. This tells us that one of the squares of (I.2.19) is not a map of coalgebras, and

furthermore there are no coalgebra structures for the vertical arrows such that both squares are

maps of coalgebras.

By contrast, the pushout of

Dn

iN
��

S n−1

jn
��

//jnoo ∗

j
��

S n Dn // //iSoo S n

(I.2.20)

5. The arrow j inherits its cofibration structure as a pushout of the generating cofibration jn as shown

S n−1

jn
�� p

u // ∗

j
��

Dn
v
// S n

. Explicitly, if cn : Dn → Q jn gives jn its coalgebra structure, then the cone (C j,Q(u, v)·cn)

gives j its coalgebra structure, where Q is the functor accompanying the functorial factorization of this
awfs.
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is a cofibration and a coalgebra because all three vertical arrows have a coalgebra structure and the

squares of (I.2.20) preserve them. (The maps iN , iS : Dn → S n include the disk as the northern

or southern hemisphere of the sphere.) Of course, this fact could be deduced directly because the

pushout S n → S n ∨ S n is an inclusion of a sub-CW-complex, but in more complicated examples

this technique for detecting cofibrations will prove useful.

I.2.5 Composing algebras and coalgebras

Unlike the situation for ordinary monads on arrow categories, the category of algebras for the

monad of an awfs (L,R) can be equipped with a canonical composition law, which is natural in

a suitable “double categorical” sense, described below. Furthermore, the comultiplication for the

comonad L can be recovered from this composition, so one can recognize an awfs by considering

only the category R-alg together with its natural composition law. Later, in Section I.6.2, we

will extend this recognition principle to morphisms between awfs. In concrete applications, this

allows us to ignore the category L-coalg, which we’ll see can be a bit of a pain.

In this section, we give precise statements of these facts and describe their proofs. Their most

explicit appearance in the literature is [Gar10, §2], but see also [Gar09, §A] or [Gar07, §6.3].

The dual statements also hold.

Recall that when R is a monad from an awfs (L,R), an R-algebra structure for an arrow f

has the form (s, 1) : R f ⇒ f ; accordingly, we write ( f , s) for the corresponding object of R-alg.

Let ( f , s), ( f ′, s′) ∈ R-alg. We say a morphism (u, v) : f ⇒ f ′ in M2 is a map of algebras

(with the particular algebra structures s and s′ already in mind) when (u, v) lifts to a morphism

(u, v) : ( f , s) ⇒ ( f ′, s′) in R-alg. It follows from the definition that this holds exactly when

s′ · E(u, v) = u · s, where E : M2 → M is the functor accompanying the functorial factorization

of (L,R). This condition says that the top face of the following cube, which should be interpreted
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as a map from the algebra depicted on the left face to the algebra on the right face, commutes.

·
E(u,v) //

s
��>>>>>>>

R f

��

·
s′

��>>>>>>>

R f ′
��

· u //

f

��

·

f ′

��

·

>>>>>>>

>>>>>>> v
// ·

>>>>>>>

>>>>>>>

· v
// ·

Definition I.2.21. Let ( f , s), (g, t) ∈ R-alg with cod f = domg. Then g f has a canonical R-algebra

structure

E(g f )
δg f // EL(g f )

E(1,t·E( f ,1))// E f s // dom f

where δ : E ⇒ EL is the natural transformation arising from the comultiplication of the comonad

L.

Write (g, t) • ( f , s) = (g f , t • s) for this composition operation. It is natural in the following

sense.

Lemma I.2.22. Let (u, v) : ( f , s) ⇒ (h, s′) and (v,w) : (g, t) ⇒ (k, t′) be morphisms in R-alg.

Then (u,w) : (g f , t • s)⇒ (kh, t′ • s′) is a map of R-algebras.

· u //

f
��

·

h
��

· v
//

g
��

·

k
��

· w
// ·

Proof. The proof is an easy diagram chase. �

Remark I.2.23. It follows from Lemma I.2.22 that algebras for a monad arising from an awfs

(L,R) form a (strict) double category AlgR: objects are objects of M, horizontal arrows are

morphisms in M, vertical arrows are R-algebras, and squares are morphisms of algebras. The

content of Lemma I.2.22 is that morphisms of algebras can be composed vertically as well as

horizontally. It remains to check that composition of algebras is strictly associative, but this is a

straightforward exercise.
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Lemma I.2.22 has a converse, which provides a means for recognizing awfs from categories

of algebras.

Theorem I.2.24 (Garner). Suppose R is a monad on M2 over cod: M2 → M. Specifying a

natural composition law on R-alg is equivalent to specifying an awfs (L,R) on M.

Proof. Because R is a monad over cod, the components of its unit define a functorial factorization

on M (see the beginning of Section I.2.3). In particular, the functor L and counit ~ε have already

been determined. It remains to define δ : E ⇒ EL so that ~δ = (1, δ) : L⇒ L2 makes L = (L, ~ε, ~δ)

into a comonad satisfying the distributive law with respect to R.

Given a natural composition law on the category of R-algebras and a morphism f ∈ M, we

define δ f : E f → EL f to be

δ f := E f
E(L2 f ,1)// E(R f · RL f )

µ f •µL f // EL f ,

where µ f • µL f is the algebra structure for the composite of the free algebras (RL f , µL f ) and

(R f , µ f ). Equivalently, δ f is defined to be the domain component of the adjunct to the morphism

·

f
��

L2 f // ·

R f ·RL f =U(R f ·RL f ,µ f •µL f )
��

· ·

with respect to the (monadic) adjunction R-alg
U
//⊥ M2

Foo
.

By taking adjuncts of the unit and associativity conditions for a comonad, it is easy to check

that such δ makes L a comonad. The distributive law can be verified using the fact that µ f • µL f

is, as an algebra structure, compatible with the multiplication for the monad R. We leave the

verification of these diagram chases to the reader; see also [Gar10, Proposition 2.8]. �

I.2.6 Cofibrantly generated awfs

There are a few naturally occurring examples of awfs where the familiar functorial factorizations

for some wfs underlie a comonad and a monad. One toy example is the so-called “graph” fac-

torization of an arrow through the product of its domain and codomain. There are more serious
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examples, including the wfs from the Quillen model structure on ChR and the folk model struc-

ture on Cat. However, the examples topologists find in nature are less obviously “algebraic,”

and consequently awfs have not generated a lot of interest among topologists. Recently, Garner

has developed a variant of Quillen’s small object argument, modeled upon a familiar transfinite

construction from category theory, that produces cofibrantly generated awfs. In any cocomplete

category satisfying an appropriate smallness condition, general enough to include the desired ex-

amples, Garner’s small object argument can be applied in place of Quillen’s, and the resulting

awfs have the same underlying wfs as those produced by the usual small object argument. The

functorial factorizations are different but also arguably better than Quillen’s in that the objects

constructed are somehow “smaller” (in the sense that superfluous “cells” are not multiply at-

tached) and also the transfinite process by which they are constructed actually converges, rather

than terminating arbitrarily at some chosen ordinal. Furthermore, Garner’s small object argument

can be run for a generating small category, not merely for generating sets, a generalization whose

power will become apparent in Section I.4.

In this section, we explain in detail the defining properties of cofibrantly generated awfs,

produced by Garner’s small object argument. A more detailed overview of his construction is

given in Section I.4, where it will first be needed. See also [Gar07] or [Gar09].

First, we extend the notation (−)l to categories over M2, as opposed to mere sets of arrows.

Definition I.2.25. We define a pair of functors

(−)l : CAT/M2 //
⊥ (CAT/M2)op : l(−)oo

that are mutually right adjoint. If J is a category over M2, the objects of Jl are pairs (g, φ), where

g is an arrow of M and φ is a lifting function that assigns each square
·

j
��

u // ·

g
��

· v
// ·

with j ∈ J a lift

φ( j, u, v) that makes the usual triangles commute. We also require that φ is coherent with respect

to morphisms in J. Explicitly, given (a, b) : j′ ⇒ j in J, we require that φ( j′, ua, vb) = φ( j, u, v)·b,

which says that the triangle of lifts in the diagram below commutes.

·

j′
��

a // ·
j
��

u // ·

g
��

·
b
//

77ooooooo · v
//

??�
�

�
�

·
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Morphisms (g, φ) → (g′, φ′) of Jl are arrows in M2 that preserve the lifting functions. The

category Jl is equipped with an obvious forgetful functor to M2 that ignores the lifting data.

When J is a set, the image of Jl under this forgetful functor is the set Jl defined in Section I.2.1.

Garner provides two definitions of a cofibrantly generated awfs [Gar09], though his termi-

nology more closely parallels the theory of monads. An awfs (L,R) is free on a small category

J : J→M2 if there is a functor

J
γ //

J %%LLLLLL L-coalg
Uyyr

rrr

M
2

(I.2.26)

that is initial with respect to morphisms of awfs among functors from J to categories of coalge-

bras of awfs. A stronger notion is of an algebraically-free awfs, for which we require that the

composite functor

R-alg
lift
−→ (L-coalg)l

γl

−→ Jl (I.2.27)

is an isomorphism of categories. The functor “lift” uses the algebra and coalgebra structures

of R-algebras and L-coalgebras to define lifting functions via the construction of I.2.10. The

isomorphism (I.2.27) should be compared with the isomorphism of sets R � Jl, which is the

usual notion of a cofibrantly generated wfs (L,R).

We will say that the awfs produced by Garner’s small object argument are cofibrantly gener-

ated. Garner proves that these awfs are both free and algebraically-free; we will find occasion to

use both defining properties.

Theorem I.2.28 (Garner). Let M be a cocomplete category satisfying either of the following

conditions.

(∗) Every X ∈M is αX-presentable for some regular cardinal αX .

(†) Every X ∈ M is αX-bounded with respect to some proper, well-copowered orthogonal

factorization system on M, for some regular cardinal αX .

Let J : J → M2 be a category over M2, with J small. Then the free awfs on J exists and is

algebraically-free on J.

We won’t define all these terms here. What’s important is to know that the categories of

interest satisfy one of these two conditions. Locally presentable categories, such as sSet, satisfy
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(∗). Top, Haus, and TopGp all satisfy (†). We say a category M permits the small object

argument if it is cocomplete and satisfies either (∗) or (†).

Remark I.2.29. This notion of cofibrantly generated is broader than the usual one — see Example

I.4.4 for a concrete example — as ordinary cofibrantly generated wfs are generated by a set of

maps, rather than a category. We will refer to this as the “discrete case”, discrete small categories

being simply sets.

As is the case for ordinary wfs, cofibrantly generated awfs behave better than generic ones.

We conclude this introduction with an easy lemma, which will prove vital to proofs in later

sections.

Lemma I.2.30. If an awfs (L,R) on M is cofibrantly generated, then the class R of arrows that

admit an R-algebra structure is closed under retracts.

Proof. When (L,R) is generated by J, we have an isomorphism of categories R-alg � Jl over

M2. The forgetful functor U : R-alg → M2 sends (g, φ) ∈ Jl to g. We wish to show that its

image is closed under retracts. Suppose h is a retract of g as shown

·

h
��

i1 // ·

g
��

r1 // ·

h
��

·
i2
// · r2

// ·

Define a lifting function ψ for h by

ψ( j, u, v) := r1 · φ( j, i1 · u, i2 · v).

The equations from the retract diagram show that ψ is indeed a lifting function. It remains to

check that ψ is coherent with respect to morphisms (a, b) : j′ ⇒ j of J. We compute

ψ( j′, u · a, v · b) = r1 · φ( j′, i1 · u · a, i2 · v · b) = r1 · φ( j, i1 · u, i2 · v) · b = ψ( j, u, v) · b,

as required. �

The upshot of Lemma I.2.30 is that every arrow in the right class of the ordinary wfs (L,R)

underlying a cofibrantly generated awfs (L,R) has an R-algebra structure. When our awfs is
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cofibrantly generated, we emphasize this result by writing (L,R) for the underlying wfs. We will

also refer to a lifting function φ associated to an element of g ∈ Jl as an algebra structure for g,

in light of (I.2.27) and this result.

Remark I.2.31. Garner proves the discrete version of Lemma I.2.30 in [Gar09]: when the generat-

ing category J is discrete, R is closed under retracts and the wfs (L,R) is cofibrantly generated in

the usual sense by this set of maps. As a consequence, the new notion of “cofibrantly generated”

agrees with the usual one, in the case where they ought to overlap.

As a final note, the composition law for the algebras of a cofibrantly generated awfs is partic-

ularly easy to describe using the isomorphism (I.2.27).

Example I.2.32. Suppose (L,R) is an awfs on M generated by a category J. Consider composable

objects ( f , φ), (g, ψ) ∈ Jl � R-alg, i.e., suppose cod f = dom g. Their canonical composite is

(g f , ψ • φ) where

ψ • φ( j, a, b) := φ( j, a, ψ( j, f · a, b)),

and this is natural in the sense described by Lemma I.2.22.

In the remaining sections, we will present new results relating awfs to model structures, taking

frequent advantage of the machinery provided by Garner’s small object argument.

I.3 Algebraic model structures

The reasons that most topologists care (or should care) about weak factorizations systems is

because they figure prominently in model categories, which are equipped with an interacting pair

of them. Using Garner’s small object argument, whenever these wfs are cofibrantly generated,

they can be algebraicized to produce awfs. This leads to the question: is there a good notion of

an algebraic model structure? What is the appropriate definition?

Historically, model categories arose to enable computations in the homotopy category defined

for a pair (M,W), where W is a class of arrows of M called the weak equivalences that one would

like to manipulate as if they were isomorphisms. But with all of the subsequent development of

the theory of model categories, this philosophy that the weak equivalences should be of primary

importance is occasionally lost. With this principle in mind, the author has decided that an

algebraic model structure is something one should give a pair (M,W), rather than a category M;
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that is to say, one ought to have a particular class of weak equivalences in mind already. This

suggests the following “minimalist” definition.

Definition I.3.1. An algebraic model structure on a pair (M,W), where M is a complete and

cocomplete category and W is a class of morphisms satisfying the 2-of-3 property, consists of a

pair of awfs (Ct,F) and (C,Ft) on M together with a morphism of awfs

ξ : (Ct,F)→ (C,Ft)

such that the underlying wfs of (Ct,F) and (C,Ft) give the trivial cofibrations, fibrations, cofibra-

tions, and trivial fibrations, respectively, of a model structure on M, with weak equivalences W.

We call ξ the comparison map.

The comparison map ξ gives an algebraic way to regard a trivial cofibration as a cofibration

and a trivial fibration as a fibration. We will say considerably more about this in a moment.

Let Ct denote the underlying class of maps with a Ct-coalgebra structure and define C, Ft,

and F likewise. By definition (Ct,F) and (C,Ft) are the underlying wfs of (Ct,F) and (C,Ft),

respectively, where the bar denotes retract closure. The triple (C,F,W) arising from an algebraic

model structure gives a model structure on M in the ordinary sense; we call this the underlying

ordinary model structure on M.

We say that an algebraic model structure is cofibrantly generated if the two awfs are cofi-

brantly generated, in the sense described in Section I.2.6. In this case, F = F and Ft = Ft by

Lemma I.2.30.

It is convenient to have notation for the two functorial factorizations. Let Q = cod C = dom Ft

be the functor M2 →M accompanying the functorial factorization of (C,Ft), i.e., the functor that

picks out the object that an arrow factors through. Let R be the analogous functor for (Ct,F). This

notation is meant to suggest cofibrant and fibrant replacement, respectively.

With this notation, the comparison map ξ : (Ct,F)→ (C,Ft) consists of natural arrows ξ f for

each f ∈M2 such that

dom f
Ct f

{{xxxxxxxx C f

##GGGGGGGG

R f
ξ f //

F f ##FFFFFFFF Q f

Ft f{{xxxxxxxx

cod f

(I.3.2)
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commutes. Because ξ is a morphism of awfs, it induces functors

ξ∗ : Ct-coalg→ C-coalg and ξ∗ : Ft-alg→ F-alg,

which provide an algebraic way to regard a trivial cofibration as cofibration and a trivial fibration

as a fibration. These maps have the following property. Given a lifting problem between a trivial

cofibration j and a trivial fibration q, there are two natural ways to solve it: regard the trivial

cofibration as a cofibration and use the awfs (C,Ft) or regard the trivial fibration as a fibration

and use the awfs (Ct,F).6 In figure (I.3.3) below, the former option solves the lifting problem

(u, v) : j⇒ q by tracing the path around the middle of the back of the cube, while the latter option

traces along the front of the cube. Naturality of ξ says that the lifts constructed by each method

are the same!

·

u

  AAAAAAAAAAAAAAAA

C j ��
·

Q(u,v)
@@@@@@

@@@@@

  BBB

Ft j ��
·
��

j ∼

��

·

}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}

u
  AAAAAAAAAAAAAAAA

Ct j
��

·

v AAAAAAAA

???

  BBB

·

Cq
��

·

q∼

����

·
|||

ξ j~~~~

>>~~~~~~

R(u,v)
AAAAAAA

  AAAAAAA

F j
��

·

Ftq
��

t

>>||||||||

·

s
>>||||||||
·

||| |||

��� ���

}}}}}}}}

}}}}}}}}

v

  AAAAAAAAAAAAAAAA ·

}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}

Ctq
��

· ·

·

ξq}}}}}}}}}

>>}}}}}

Fq
��
·

}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}

(I.3.3)

I.3.1 Comparing fibrant-cofibrant replacements

Any algebraic model structure induces a fibrant replacement monad R and a cofibrant replace-

ment comonad Q on the category M (as opposed to the arrow category M2 on which the monads

and comonads of the awfs act). The monad R arises as follows. The category M includes into

6. The map ξ assigns C-coalgebra structures to Ct-coalgebras. Similarly, ξ maps the trivial cofibrations
which are merely coalgebras for the pointed endofunctor underlying Ct to coalgebras for the pointed
endofunctor of C, which we saw in Remark I.2.11 suffices to construct lifts (I.2.10), which have the
naturality property of (I.3.3). Similar remarks apply to the fibrations.
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M2 by sending an object X to the unique arrow from X to the terminal object. This inclusion is

a section to the functor dom: M2 → M. Because the monad F is a monad over cod, it induces

a monad R = (R, η, µ) on M which we call the fibrant replacement monad. The functor R is

obtained from the previous functor R : M2 → M accompanying the functorial factorization of

(Ct,F) by precomposing R by this inclusion. We regret that our notation is somewhat ambiguous.

The domain of R should be apparent from whether an object in the image of R is the image of

an object or arrow of M. The arrows in the image of the two functors are related as follows:

R f = R( f , 1∗), where 1∗ denotes the identity at the terminal object.

Dually, we can include M into M2 by slicing under the initial object. Using this inclusion,

the comonad C induces a comonad Q = (Q, ε, δ) on M which we call the cofibrant replacement

comonad. Once again, the functor Q : M → M is obtained from the previous functor Q : M2 →

M by precomposing Q by this inclusion. Algebras for R are called algebraically fibrant objects

and coalgebras for Q are called algebraically cofibrant objects.

Another application of the natural lift illustrated in (I.3.3) is in comparing fibrant-cofibrant

replacements of an object. Let M be a category with an algebraic model structure and let X ∈M.

We can define its fibrant-cofibrant replacement to be either RQX or QRX, both of which are

weakly equivalent to X. Classically, there is no natural comparison between these choices, but in

any algebraic model structure there is a natural arrow RQX → QRX built out of the comparison

map together with the components of the awfs.

Lemma I.3.4. Let M be a category with an algebraic model structure and let R and Q be the in-

duced fibrant and cofibrant replacement on M. Then there is a canonical natural transformation

χ : RQ⇒ QR.

Proof. Classically, one obtains a map RQX → QRX by first lifting i against q and j against p,

as in the figure on the left below. Because the maps i, j, p, and q are all obtained by factoring,

they have free coalgebra or algebra structures for the awfs (Ct,F) or (C,Ft). Thus, each of these

lifting problems has a natural solution (see Remark I.2.13). After a diagram chase, we can write

the solution to the first lifting problem as QηX and the second as RεX , using the unit and counit

of the monad R and the comonad Q.
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∅{{
i
{{wwwwwww ##

##GGGGGGG

QX
��

ηQX= j ∼

��

∼

εX

## ##GGGGGGGG

QηX //_______ QRX

q=εRX∼

����

QX
��

∼ηQX= j

��

QηX // QRX

∼ q=εRX

����

X ##

∼

ηX

##GGGGGGG

RQX

$$ $$HHHHHHHH RεX
//_______ RX

pzzzzvvvvvvvv
RQX

χX

<<y
y

y
y

y
y

y
y

y

RεX
// RX

∗

The arrows QηX and RεX present a lifting problem between j and q that can be solved nat-

urally using either awfs, as depicted in figure (I.3.3). The solutions to these lifting problems

are the components of a natural transformation RQ ⇒ QR comparing the two fibrant-cofibrant

replacements. �

This natural map is particularly well-behaved; hence the following theorem.

Theorem I.3.5. The functor Q lifts to a cofibrant replacement comonad on the category R-alg

of algebraically fibrant objects. Dually, the functor R lifts to a fibrant replacement monad on

the category Q-coalg of algebraically cofibrant objects. The Eilenberg-Moore categories for this

lifted comonad and lifted monad are isomorphic and give a notion of “algebraically bifibrant

objects.”

Proof. By a well-known categorical result [PW02], it suffices to find a natural transformation

χ : RQ ⇒ QR that is a distributive law of the monad over the comonad, i.e., a lax morphisms of

monads and a colax morphism of comonads (see Section I.6.1). The natural map of Lemma I.3.4

satisfies the desired property: The defining lifting problem shows that χ is compatible with the

unit and counit for R and Q. It remains to show that χ is compatible with the multiplication, i.e.,

that

RQR
χR

""FFFFFFFF

R2Q

Rχ
<<xxxxxxxx

µQ
��3

33333 QR2

Qµ
��������

RQ
χ // QR
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commutes, and a dual condition for the comultiplication. The necessary diagram chase uses the

fact that the awfs (Ct,F) satisfies the distributive law and the fact that the comparison map ξ

induces a monad morphism. We leave the remaining details to the reader. �

Unless we are talking about fibrant or cofibrant replacement specifically, R and Q will be

functors M2 →M accompanying the functorial factorizations of an algebraic model structure.

I.3.2 The comparison map

The least familiar component of the definition of an algebraic model structure given above is the

comparison map. In figure (I.3.3), Lemma I.3.4, and Theorem I.3.5, we saw some of its useful

properties, but the question remains: in what circumstances might one expect a comparison map

to exist? We discuss several answers to this question in this section.

Remark I.3.6. Let J be the generating category for the awfs (Ct,F) and let (C,Ft) be an awfs on

the same category. A comparison map between (Ct,F) and (C,Ft) exists if and only if there is

a functor ζ : J → C-coalg over M2. This is because Garner’s small object argument produces a

canonical map γ : J→ Ct-coalg in CAT/M2 that is universal among arrows from J to categories

of coalgebras for the left half of an awfs on M, in the sense that every such morphism ζ factors

uniquely as ξ∗ ◦ γ, where ξ is a morphism of awfs. See [Gar09, §3].

As far as the author is aware, model category theorists have not written about the issue of

comparing the two wfs provided by an ordinary model structure, a fact that first came to her

attention through discussions with Martin Hyland. But the existence of such a comparison map

is more reasonable than one might expect: Peter May notes [MP11] that the universal property of

the colimits in Quillen’s small object argument gives such a natural transformation, provided we

assume that the generating trivial cofibrations J are contained in the generating cofibrations I.

In many cases, this admittedly untraditional assumption is quite reasonable: the generating

trivial cofibrations are of course cofibrations, so including them with the generators does not

change the resulting model structure. In the setting of algebraic model structures, this inclusion

takes the form of a functor J → I over M2, which induces a comparison map by the universal

property of the “free” awfs generated by J (see Section I.2.6). When such a functor exists, “the”

comparison map always refers to this one, though a priori some other might exist. In some of the
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results that follow, we require that there be a functor J→ I between the generating categories of

a cofibrantly generated algebraic model structure without feeling too badly about it.

The following remark supports our Definition I.3.1.

Remark I.3.7. Any ordinary cofibrantly generated model structure on a category that permits the

small object argument can be made into an algebraic model structure by replacing the generating

cofibrations I by I ∪ J and applying Garner’s small object argument in place of Quillen’s. The

underlying ordinary model structure of the resulting algebraic model structure is the same as

before, by which we mean that the classes C, F, and W are unchanged. Thus, the abundance

of cofibrantly generated model structures (in the ordinary sense) gives rise to an abundance of

examples of algebraic model structures, which are then of course cofibrantly generated.

While altering the generating cofibrations does not change the underlying model structure, it

does change the cofibration-trivial fibration factorization. Given that the generating cofibrations

are often more natural than the generating trivial cofibrations,7 we provide the following alterna-

tive method for obtaining a comparison map for a cofibrantly generated algebraic model structure

by altering J as opposed to I, vis-à-vis a theorem inspired by [Hir03, 11.2.9]. As will become

clear in the proof below, this method only applies in the case where the trivial cofibrations are

generated by a set, as opposed to a category.

In the following proof even though J is discrete, we regard it as a category over M2 with

an injection J
J
→ M2. With this perspective, we need a technical note. While Garner’s small

object argument works for any small category J : J→M2 above the arrow category, in practice,

the functor J is injective, and we can identify J with its image and think of it as a set of arrows

together with some coherence conditions in the form of morphisms between these arrows. As

stated, Theorem I.3.8 requires that J be injective, though one could imagine that more careful

wording would allow us to drop this assumption. We chose this simplification because we cannot

think of any applications where this restriction is prohibitive.

Theorem I.3.8. Suppose J is a set and I is a category over M2 such that the underlying wfs

(Ct,F) and (C,Ft) of the awfs (Ct,F) and (C,Ft) that they generate give a model structure on

(M,W), in the ordinary sense. Then J can be replaced by a set J′ over M2 such that

7. Indeed, in many Bousfield localizations, the generating trivial cofibrations are not known explicitly.
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(i) There is a functor J′l → Jl over M2, necessarily faithful, that is bijective on the underlying

classes of arrows. It follows that J′ and J generate the same underlying wfs.

(ii) There is a functor ζ : J′ → C-coalg over M2.

The set J′ generates an awfs (C′t ,F
′). It follows from the universal property of the functor J′ →

C′t -coalg that I and J′ generate an algebraic model structure on M2 with the same underlying

model structure (C,F,W).

Proof. Define J′
J′
→M2 to be the composite J

J
→M2 C

→M2 where C is the comonad generated

by I. For each j ∈ J, the corresponding element of J′ is its left factor C j. We claim that

J′ = {C j | j ∈ J} satisfies conditions (i) and (ii) above. For (ii), define ζ to be the map that

assigns each C j its canonical free coalgebra structure (C j, δ j).

For (i), note that for each j ∈ J the lifting problem
·

C j //

j
��

·

Ft j
��

·

s
??�

�
�

�
·

has a solution s, which gives

us a retract diagram
·

j
��

·

C j
��

·

j
��

· s
// ·

Ft j
// ·

. We use this to define a functor J′l → Jl as in the proof

of Lemma I.2.30. On objects, define

J′l 3 (g, ψ) 7→ (g, φ) ∈ Jl,

where φ( j, u, v) := ψ(C j, u, v · Ft j) · s for all lifting problems (u, v) : j ⇒ g. Because J is

discrete, the lifting function φ need not satisfy any coherence conditions. Given a morphism

(h, k) : (g, ψ)→ (g′, ψ′) in J′l, it follows that

φ′( j, h · u, k · v) = ψ′(C j, h · u, k · v · Ft j) · s

= h · ψ(C j, u, v · Ft j) · s

= h · φ( j, u, v),

which says precisely that (h, k) : (g, φ)→ (g′, φ′) is a morphism in Jl. So J′l → Jl is a functor

over M2.

It remains to show that this functor is surjective on the underlying arrows of J′l and Jl. Let

j ∈ J and (g, φ) ∈ Jl; by definition g ∈ F. By the 2-of-3 property, C j ∈ C ∩W ⊂ Ct, so C j l g.

29



As J′ is discrete, any choice of lifts against the C j can be used to define a lifting function ψ so

that (g, ψ) ∈ J′l. Of course the functor defined above need not map (g, ψ) to (g, φ) but it does

mean that g is in the image when we forget down to M2, which is all that we claimed. �

Remark I.3.9. We also have a faithful functor Jl → J′l over M2 that is bijective on the under-

lying classes of arrows; this one, however, takes a bit more effort to define. Define J′′
J′′
→ M2 to

be the composite J′
J′
→ M2 Ct

→ M2. We have a functor γ : J′′ → Ct-coalg over M2 that assigns

each arrow its free coalgebra structure. Mirroring the argument above, elements of J′ are retracts

of elements of J′′, so we have J′′l → J′l over M2. Our desired functor is the composite

Jl � F-alg
lift
−→ (Ct-coalg)l

γl

−→ J′′l −→ J′l

defined with help from the functor of I.2.25 and the isomorphism (I.2.27). Note that these functors

are not inverse equivalences.

The upshot is that we can get an algebraic model structure from an ordinary cofibrantly gen-

erated model structure without changing the generating cofibrations. This argument does not

appear to extend to non-discrete categories J because, in absence of a comparison map, the F-

algebra structures of the Ft j are chosen and not natural with respect to morphisms in J; see

Remark I.2.13. Note, the proof of Theorem I.3.8 did not require that the awfs (C,Ft) is cofi-

brantly generated, though in examples this is typically the case.

In Section I.5, we will show that the components of the comparison map in a cofibrantly gen-

erated algebraic model structure satisfying additional, relatively mild, hypotheses are themselves

C-coalgebras and hence cofibrations.

I.3.3 Algebraic model structures and adjunctions

Many cofibrantly generated model structures are produced from previously known ones by pass-

ing the generating sets across an adjunction. We repeat this trick for cofibrantly generated alge-

braic model structures, extending a well-known theorem due to Kan [Hir03, 11.3.2].

An adjunction T : M
//

⊥ K : Soo lifts to an adjunction on the arrow categories M2 and K2,

which we also denote by T a S . In particular, a small category J : J → M2 over M2 becomes a

small category T J : J→ K2 over K2. Because our notation has usually described the generating
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category as opposed to its functor to M2, we write TJ to mean the category J that maps to K2

via the functor T J.

Theorem I.3.10. Let M have an algebraic model structure, generated by I and J and with weak

equivalences WM. Let T : M
//

⊥ K : Soo be an adjunction. Suppose K permits the small object

argument and also that

(?) S maps arrows underlying the left class of the awfs cofibrantly generated by TJ into WM.

Then TJ and TI generate an algebraic model structure on K with WK = S−1(WM). Further-

more, T a S is a Quillen adjunction for the underlying ordinary model structures.

In the literature, (?) is known as the acyclicity condition because the arrows underlying the

left class of the awfs generated by TJ are the proposed acyclic (trivial) cofibrations for the model

structure on K.

Proof of Theorem I.3.10. By the small object argument, TJ and TI generate awfs (Ct,F) and

(C,Ft) with underlying wfs (Ct,F) and (C,Ft). With this notation, the condition (?) says that

S (Ct) ⊂WM.

When the comparison map of the algebraic model structure on M arises from a functor J→ I

over M2, composing with T induces a functor J → I over K2, which gives the comparison map

between the resulting awfs. In the general case, the comparison map on M specifies a functor

J → CM-coalg to the category of coalgebras for the awfs on M generated by I. In Corollary

I.6.16, a significant result whose proof is deferred to Section I.6, we will prove that there is a

functor CM-coalg → C-coalg lifting T . This gives rise to a functor J → C-coalg lifting T , or

equivalently a functor TJ → C-coalg over K2. The comparison map (Ct,F) → (C,Ft) for K is

then induced by the universal property of the functor TJ→ Ct-coalg produced by Garner’s small

object argument.

The class WK is retract closed by functoriality of S . It remains to show that Ct = C ∩WK

and Ft = F ∩WK. In fact, by [Hir03, 11.3.1] we need only verify three of the four relevant

inclusions.

The inclusion Ct ⊂ C is immediate, since the comparison map explicitly provides each trivial

cofibration with a cofibration structure; taking retract closures Ct ⊂ C. The hypothesis (?) says

that Ct ⊂WK and WK is retract closed by functoriality of S , so Ct ⊂WK. Hence, Ct ⊂ C∩WK.
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Similarly, the comparison map guarantees that Ft ⊂ F. If g ∈ Ft then it has some algebra

structure (g, φ) ∈ TIl by Lemma I.2.30. By adjunction (S g, φ]) ∈ Il, where the arrows of φ] are

the adjuncts of the corresponding arrows of φ. So S g is a trivial fibration for the model structure

on M. In particular, S g ∈WM, which says that g ∈WK. So Ft ⊂ F ∩WK.

It remains to show that F ∩ W ⊂ Ft; we will appeal to Lemma I.2.30 on two occasions.

Suppose f ∈ F ∩WK. By Lemma I.2.30, f has some algebra structure ( f , ψ) ∈ TJl and by

adjunction (S f , ψ]) ∈ Jl. As f ∈ WK, S f is a trivial fibration in the algebraic model structure

on M; by Lemma I.2.30, it follows that there is some algebra structure ζ such that (S f , ζ) ∈ Il.

By adjunction, ( f , ζ[) ∈ TIl, where ζ[ denotes the adjunct of ζ, which says that f ∈ Ft, as

desired.

The above argument showed that S preserves fibrations and trivial fibrations. Hence, T a S

is a Quillen adjunction. �

I.3.4 Algebraic Quillen adjunctions

Given the close connection between the algebraic model structures of Theorem I.3.10, it is not

surprising that quite a lot more can be said about the nature of the Quillen adjunction between

them. This leads to the notion of an algebraic Quillen adjunction, of which the adjunction of

Theorem I.3.10 will be an example. We preview the definition and corresponding theorem below,

but postpone the proofs, which are categorically intensive, to Sections I.6 and I.7. These sections

are not dependent on the intermediate material, so a categorically inclined reader may wish to

skip there directly.

Morphisms of awfs provide a means of comparing awfs on the same category, but as far as the

author is aware, there are no such comparisons for awfs on different categories in the literature.

We define three useful types of morphisms precisely in Section I.6, but here are the main ideas.

Let (C,F) and (L,R) be awfs on M and K respectively. A colax morphism of awfs (C,F) →

(L,R) is a functor T : M → K together with a specified lifting of T to a functor T̃ : C-coalg →

L-coalg satisfying one additional requirement. By a categorical result [Joh75], the lift T̃ is de-

termined by a characterizing natural transformation; together T and this natural transformation

is called a colax morphism of comonads or simply a comonad morphism. We ask that the natural

transformation characterizing T̃ also determines an extension of T to a functor T̂ : Kl(F)→ Kl(R)

between the Kleisli categories of the monads.
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The Kleisli category of a monad R is the full subcategory of R-alg on the free algebras, which

are the objects in the image of the (monadic) free-forgetful adjunction. Kl(R) is initial in the

category of adjunctions determining that monad; the Eilenberg-Moore category R-alg is terminal.

At the moment, the only justification we can give for this additional requirement, beyond the fact

that it holds in important examples, is that colax morphisms of awfs should interact with both

sides of the awfs. A more convincing justification is Lemma I.6.9.

Dually, a lax morphism of awfs (L,R) → (C,F) is a functor S : K → M together with

a specified lift S̃ : R-alg → F-alg such that the natural transformation characterizing S̃ must

determine an extension of S to a functor between the coKleisli categories of L and C. When the

functor S or T is the identity, both lax and colax morphisms of awfs are exactly morphisms of

awfs, which is another clue that these are reasonable notions.

Combining these, we arrive at the notion of adjunction of awfs, which is the most relevant to

this context. An adjunction of awfs (T, S ) : (C,F)→ (L,R) consists of an adjoint pair of functors

T : M
//

⊥ K : Soo such that T : (C,F)→ (L,R) is a colax morphism of awfs, S : (L,R)→ (C,F)

is a lax morphism of awfs, and the characterizing natural transformations for these morphisms

are related in a suitable fashion.

Adjunctions of awfs over identity adjunctions are exactly morphisms of awfs, with both char-

acterizing natural transformations equal to the natural transformation of Definition I.2.14. Note,

adjunctions of awfs can be canonically composed. We can now define algebraic Quillen adjunc-

tions.

Definition I.3.11. Let M have an algebraic model structure ξM : (Ct,F) → (C,Ft) and let K

have an algebraic model structure ξK : (Lt,R)→ (L,Rt). An adjunction T : M
//

⊥ K : Soo is an

algebraic Quillen adjunction if there exist adjunctions of awfs

(Ct,F)

(T,S )
PPPP

((PPPP

(T,S ) //

ξM
��

(Lt,R)

ξK
��

(C,Ft) (T,S )
// (L,Rt)

such that both triangles commute.

Note the left adjoint of an adjunction of awfs preserves coalgebras and hence (trivial) cofibra-

tions and dually the right adjoint preserves algebras and hence (trivial) fibrations. In particular, an
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algebraic Quillen adjunction is a Quillen adjunction, in the ordinary sense. As we shall prove in

Section I.7, the naturality condition of the definition of algebraic Quillen adjunction is equivalent

to the condition that the lifts depicted below commute.

Rt-alg S̃ t //
(ξK)∗

""FFFFF

��

Ft-alg
(ξM)∗

""EEEEE

��

Ct-coalg

��

T̃t //
(ξM)∗
%%KKKKKK

Lt-coalg

��

(ξK)∗
%%KKKKKK

R-alg

||yyyyy

S̃ // F-alg

||yyyyy
and C-coalg

yysssssss

T̃ // L-coalg

yysssssss

K2
S

//
M2 M2

T
//
K2

(I.3.12)

Similarly, the corresponding extensions to Kleisli and coKleisli categories commute.

Somewhat surprisingly due to the numerous conditions required by their components, alge-

braic Quillen adjunctions exist in familiar situations.

Theorem I.3.13. Let T : M
//

⊥ K : Soo be an adjunction. Suppose M has an algebraic model

structure, generated by I and J, with comparison map ξM. Suppose K has the algebraic model

structure, generated by TI and TJ, with canonical comparison map ξK. Then T a S is canoni-

cally an algebraic Quillen adjunction.

The proof is deferred to Section I.7.

I.4 Pointwise awfs and the projective model structure

One of the features of an awfs that is not true of an ordinary wfs or even of a functorial wfs is that

an awfs on a category M induces an awfs on the diagram category MA for any small category

A, where the factorizations are defined pointwise. The comultiplication and multiplication maps

are precisely what is needed to define natural transformations that ensure that the left and right

factors have the desired lifting properties. Furthermore, and completely unlike the non-algebraic

situation, such pointwise awfs are cofibrantly generated if the original awfs is. After proving this

result, we will give an example of a class of cofibrantly generated algebraic model structures

whose underlying ordinary model structures are not cofibrantly generated in the classical sense.

We then construct a projective algebraic model structure on MA from a cofibrantly generated

algebraic model structure on M. The awfs in the projective model structure will not be the
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pointwise awfs, though these awfs will make an appearance in the proof establishing this model

structure.

We first take a detour to describe Garner’s small object argument in more detail, as these

details will be used in the proofs in this section and the next.

I.4.1 Garner’s small object argument

Like Quillen’s, Garner’s small object argument produces a functorial factorization through a col-

imiting process that takes many steps, a key difference being that the resulting functorial factor-

ization canonically underlies an awfs. Each step gives rise to a functorial factorization in which

the left functor is a comonad. At the final step, the right functor is also a monad.

At step zero, Quillen’s small object argument forms a coproduct over all squares from the

generating cofibrations to the arrow f . In Garner’s small object argument, this coproduct is

replaced by a left Kan extension of the functor J : J → M2 along itself. Write L0 f = LanJ J( f )

for the step zero comonad, called the density comonad in the literature. When J is discrete, L0 f

is the usual coproduct. In the general case, this arrow is a quotient of the usual coproduct.

The step-one factorization of both small object arguments is obtained the same way: by

factoring the counit of the density comonad as a pushout followed by a square with an identity

arrow on top.

·

L0 f
��

//

p

·

L1 f
��

·

f
��

· // ·
R1 f

// ·

(I.4.1)

Concretely, L1 f is the pushout of L0 f along the canonical arrow from the domain of L0 f to

the domain of f . The arrow f and the arrow from the codomain of L0 f to the codomain of f

form a cone under this pushout diagram; the unique map given by the universal property is R1 f .

By the universal property of the pushout (I.4.1), specifying an (R1, ~η1)-algebra structure for f is

equivalent to specifying a lifting function φ such that ( f , φ) ∈ Jl.

The most significant difference between Garner’s and Quillen’s small object argument appears

in the inductive steps that follow. For Quillen’s small object argument the above processes are

repeated with the arrow Rα f in place of f . We take the left Kan extension (coproduct over

squares) and then pushout to obtain an arrow that is composed with the preceding left factors to

obtain Lα+1 f . The map induced by the universal property is Rα+1 f . Transfinite composition is
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used to obtain Lα and Rα for limit ordinals. We choose to halt this process at some predetermined

“sufficiently large” ordinal, yielding the final functorial factorization.

For Garner’s small object argument, this process is modified to include additional quotient-

ing. At step two and all subsequent steps, the beginning is the same. We pushout L0R1 f along

the canonical arrow to obtain L1R1 f . But then L2 f is defined to be L1 f composed with the co-

equalizer of two arrows from L1 f to L1R1 f . As in previous steps, this is a quotient of Quillen’s

definition. In the language of cell complexes, the arrow L1R1 f freely attaches new “cells” to the

“spheres” in the domain of R1 f , while L1 f includes those “cells” attached to “spheres” in the

domain of f into their image in the domain of R1 f . The coequalizer then avoids redundancy by

identifying those “cells” attached to the same “spheres” in different stages.

Unlike Quillen’s small object argument, this quotienting means that when the category M

permits the small object argument this process converges; there is no need for an artificial termi-

nation point. The resulting object through which the arrow f factors is in some sense “smaller”

than for the factorizations produced by Quillen’s small object argument because cells are at-

tached only once, not repeatedly. The monad R is algebraically-free on the pointed endofunctor

R1, which says that R-alg � (R1, ~η1)-alg � Jl.

I.4.2 Pointwise algebraic weak factorization systems

We now turn our attention to pointwise awfs. Because CAT is cartesian closed, we have isomor-

phisms (MA)2 � MA×2 � (M2)A, which we use to regard a natural transformation α as a functor

α : A → M2. On objects, this functor picks out the constituent morphisms of α; the image of a

morphism in A is the corresponding naturality square. Morphisms (φ, ψ) : α⇒ β in the category

of functors A→M2 consist of a pair of morphisms φ, ψ in MA such that the vertical composites

βφ and ψα are equal.

Given an awfs (L,R) on M, we use these isomorphisms to define LA to be the functor

(MA)2 � (M2)A
(L)∗
−→ (M2)A � (MA)2

induced by post-composition by L; similarly for RA. We define the natural transformations

~εA, ~δA, ~ηA, ~µA that make LA and RA into a comonad and monad as follows. Given an object

α of (MA)2 regarded as a functor A → M2, the arrow ~εAα is obtained by “whiskering” ~ε with α,
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as depicted below.

A M2 M2α //

L
��

~ε
��

All of the other natural transformations are defined similarly. It is easy to see that LA =

(LA, ~εA, ~δA) and RA = (RA, ~ηA, ~µA) define an awfs because all the definitions are given by

simply post-composing a natural transformation with the old comonad and monad.

Remark I.4.2. Note however that the underlying wfs of the pointwise awfs (LA,RA) is not itself

given pointwise by the underlying wfs of (L,R). This is because, unlike the case for the left and

right factors, generic pointwise maps will not have natural lifts. This is one area where awfs

behave better than ordinary wfs.

I.4.3 Cofibrantly generated case

Given a cofibrantly generated awfs (L,R) on M, is the resulting pointwise awfs (LA,RA) on MA

cofibrantly generated? There are many reasons to suspect that this is not the case. For example,

there is an awfs on Set generated by J = {∅ → 1} for which the right class is the epimorphisms.

The right class of the pointwise awfs on SetA consists of epis with a natural section. If this awfs

is cofibrantly generated, it means that this class can be characterized by a lifting property. While

right lifting properties can be used to specify additional structure on a class of maps, they are not

typically known to impose coherence conditions.

Despite this worry, the answer is yes, the pointwise awfs is always cofibrantly generated when

the original one is. In retrospect, the solution to the above concern is obvious: the generating

category JA for the pointwise awfs will not be discrete (unless A is)! This is the first example

known to the author where the extra generality allowed in Garner’s small object argument is

useful.

Theorem I.4.3. Let J : J→M2 be a small category over M2, where M permits the small object

argument, and let (L,R) be the awfs generated by J. Let JA be the category Aop × J equipped

with the functor

Aop × J
y×J
−→ SetA ×M2 −·−−→ (MA)2,
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where y denotes the Yoneda embedding and − · − denotes the copower8 (tensor) of an arrow in

M by a Set-valued functor from A. Then the pointwise awfs (LA,RA) is generated by JA.

In keeping with the previous notational conventions, we regard JA as the category with ob-

jects A(a,−) · j for a ∈ A and j ∈ J. Morphisms are generated by maps A(a,−) · j⇒ A(a,−) · j′

for every j ⇒ j′ in J and by maps f ∗ : A(b,−) · j ⇒ A(a,−) · j for every f : a → b in A. We

prefer to write JA : JA → (MA)2 for the composite functor defined above.

Proof of Theorem I.4.3. We don’t know a priori whether MA permits the small object argument,

but we can begin to apply that construction to the category JA over (MA)2 nonetheless. We will

show that the functors (LA)0, (LA)1, (RA)1, (LA)2, (RA)2, etc that arise at each step agree with

the functors L0, L1, R1, etc pointwise. It will follow that our construction on (MA)2 converges

to the awfs (LA,RA), which is therefore generated by JA.

The beginning stage of the small object argument computes the step-zero comonad (LA)0 as

the left Kan extension of JA : JA → (MA)2 along itself. Note that (MA)2 is cocomplete, since

M is. The familiar formula for Kan extensions gives

(LA)0α =

∫ (a, j)∈JA�Aop×J
Hom(MA)2(A(a,−) · j, α) · (A(a,−) · j).

The natural transformation A(a,−) · j is the image of j under a functor M2 → (MA)2 that is left

adjoint to evaluation at a. By this adjunction, the above coend equals

=

∫ JA�Aop×J
Hom

M2( j, αa) · (A(a,−) · j)

=

∫ JA�Aop×J
Sq( j, αa) · (A(a,−) · j)

8. The copower S · j of a set S with an object j of M2 is the coproduct of copies of j indexed by the
set S . When S is instead a set-valued functor, the copower S · j is a natural transformation with each
constituent arrow having the description just given.
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where we’ve written “Sq” to indicate that morphisms from j to αa in M2 are commutative

squares. By Fubini’s theorem and cocontinuity of the copower, we can use the isomorphism

JA � Aop × J to compute the coend over J first, yielding

=

∫ Aop

A(a,−) ·
∫ J

Sq( j, αa) · j


=

∫ Aop

A(a,−) · L0αa

where L0 is the step-zero comonad for J. We now express this coend as a coequalizer

= coeq

 ∐
f : a→b

A(b,−) · L0αa ⇒
∐

a
A(a,−) · L0αa


where the top arrow is induced by f ∗ : A(b,−)→ A(a,−) and the bottom arrow is induced by L0

applied to the naturality square for f , which is a morphism from αa to αb in M2. We compute

this coequalizer pointwise; by inspection at an object c ∈ A, the coequalizer in M2 is L0αc

with A(a, c) · L0αa ⇒ L0αc given by the evaluation map. This object and morphism satisfy

the required universal property: the map out of L0αc can be found by restricting to the identity

component of the copower A(c,−) · L0αc.

The remaining steps in the small object argument are constructed from previous ones by ap-

plying the comonad (LA)0 and taking pushouts, coequalizers, and transfinite composites, which

are all computed pointwise. As we’ve shown that (LA)0 is also computed pointwise, we are done.

Because M permits the small object argument, this process will converge for each arrow αa at

some time (ordinal) β, which means that the naturally constructed arrows from step β to step β+1

are isomorphisms. It follows that there is a natural isomorphism from step β on (MA)2 to step

β+1, which tells us that the construction converges. This completes the proof that Garner’s small

object argument applied to JA will give the pointwise monad and comonad of (LA,RA). Hence,

(LA,RA) is the awfs generated by JA. �

Example I.4.4. When A is a small category, the awfs of Lack’s trivial model structure on the 2-

category CatA are pointwise awfs. In the case A = 2, Lack proves [Lac07, Proposition 3.19] that

his trivial model structure is not cofibrantly generated in Quillen’s sense. By contrast, Theorem
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I.4.3 can be used to show that this is an algebraic model structure, which is cofibrantly generated

in Garner’s sense.

I.4.4 Algebraic projective model structures

Using Theorem I.3.10 and the pointwise algebraic weak factorization system described above,

we can prove that any cofibrantly generated algebraic model structure on a category M induces

a cofibrantly generated projective algebraic model structure on the diagram category MA. The

awfs of this model structure are not the pointwise awfs on MA; instead, the generating categories

are discrete, at least when the original generators I and J are. The underlying model structure

agrees with the usual projective model structure on a diagram category: weak equivalences are

pointwise weak equivalences and fibrations are pointwise fibrations.

The generating categories Iproj and Jproj for the projective model structure look familiar; in

the case where I and J are discrete these are the usual generating sets in the classical theory.

Objects of Iproj are functors A(a,−) · i, for all a ∈ A and i ∈ I. Each morphism i ⇒ i′ in I gives

rise to a morphism A(a,−) · i ⇒ A(a,−) · i′ in Iproj; there are no others. The category Jproj is

defined similarly.

Theorem I.4.5. Let M have an algebraic model structure, generated by I and J, with weak equiv-

alences WM. Then the categories Iproj and Jproj give rise to a cofibrantly generated algebraic

model structure on MA, which we will call the projective algebraic model structure.

Proof. Write A0 for the discrete subcategory of objects of A. We first show that the algebraic

model structure on M induces a model structure on the diagram category MA0 . We then use an

adjunction to pass this across to the projective model structure on MA.

Arrows of MA0 are natural transformations with no naturality conditions, i.e., collections α

of morphisms αa in M for each a ∈ A0. The categories I and J induce a pair of pointwise awfs

on MA0 . By Theorem I.4.3, these awfs are generated by IA0 and JA0 .9 The comparison map of

the algebraic model structure on M gives the elements of J coalgebra structures for the comonad

generated by I that are natural with respect to morphisms in J. Pointwise, this functor can be

used to define a functor from JA0 to the category of coalgebras for the comonad induced by IA0 .

By Remark I.3.6, this induces a comparison map between the awfs generated by JA0 and IA0 .

9. Of course, it is also possible to prove this directly as an easier special case of that theorem.
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We quickly prove that this gives an algebraic model structure. As in the proof of Theorem

I.3.10, the existence of this comparison map implies that trivial cofibrations are cofibrations and

trivial fibrations are fibrations. Let W0 be the class of morphisms of MA0 that are pointwise

weak equivalences. With this definition it is clear that trivial cofibrations and trivial fibrations

are weak equivalences. So to show that IA0 and JA0 give rise to an algebraic model structure, it

remains only to show that fibrations that are weak equivalences are trivial fibrations.

More precisely, we need to show is that algebras for the monad induced by JA0 that are

pointwise weak equivalences have an algebra structure for the monad induced by IA0 . Since the

category A0 is discrete, a collection α of morphisms αa has an algebra structure for the monad

induced by JA0 just when each αa is an algebra for the monad induced by J. Here, each αa is a

trivial fibration for the algebraic model structure on M; by Lemma I.2.30 this means that it has

an algebra structure for the monad induced by I. Again because A0 is discrete, this means that

the collection α has an algebra structure for the monad induced by IA0 , which is what we wanted

to show. So the categories IA0 and JA0 generate an algebraic model structure on MA0 .

Let i : A0 ↪→ A be the canonical inclusion. Then left Kan extension along i gives rise to an

adjunction

Lani : MA0
//

⊥ MA : i∗oo

Here i∗ might be thought of as an “evaluation” map; it takes a functor G : A→M to the collection

of objects in its image and a natural transformation α to its collection of constituent arrows. Using

the usual formula for left Kan extensions, the left adjoint takes an arrow α ∈MA0 to the disjoint

union tc∈A0A(c,−) · αc. Objects in IA0 are natural transformations A0(a,−) · i for some a ∈ A

and i ∈ I. As A0 is discrete, this natural transformation consists of the arrow i at the component

for a and the identity arrow at the initial object of M at all other objects of A. The image of this

object under Lani is A(a,−) · i, by the above formula. It follows that

Lani IA0 = Iproj and Lani JA0 = Jproj.

In order to apply Theorem I.3.10 and conclude that MA has an algebraic model structure

generated by Iproj and Jproj, we must show that the right adjoint i∗ takes the underlying maps

of the coalgebras for the comonad generated by Jproj to weak equivalences in MA0 . In other

words, we must show that the coalgebras for the comonad generated by Jproj are pointwise weak

equivalences.
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Coalgebras for the comonad generated by Jproj are in the left class of the underlying wfs that

this category generates, that is, they are arrows satisfying the LLP with respect to the underlying

class of Jlproj. From the adjunction, we know that the underlying class of Jlproj = (Lani JA0)l =

(i∗)−1(Jl
A0

) is the class of pointwise algebras for the original monad generated by J on M2.

Let α be an element of the left class generated by Jproj and factor α using the pointwise

awfs (CA
t ,F

A) on MA, not the awfs generated by Jproj. The components of the right factor

FAα are algebras for the monad F generated by J because FAα is an algebra for the monad FA.

So FAα ∈ Jlproj and hence α lifts against FAα, which means that α is a retract of CA
t α. The

constituent maps (CA
t α)a = Ct(αa) are coalgebras for the comonad on M2 generated by J; in

particular they are weak equivalences, since J is the generating category of trivial cofibrations.

So pointwise the arrows of α are retracts of weak equivalences; hence α consists of pointwise

weak equivalences. Theorem I.3.10 may now be used to establish the projective algebraic model

structure. �

I.5 Recognizing cofibrations

In previous sections, we have seen that cofibrantly generated model structures can be “algebrai-

cized,” so that the constituent wfs are in fact awfs. This gives all fibrations the structure of

algebras for a monad and some cofibrations the structure of coalgebras for a comonad. This extra

algebraic structure is unobtrusive, in the sense that it can be forgotten at any point to yield an

ordinary notion of a model structure, with the added benefit that the factorizations constructed by

Garner’s small object argument are somehow “smaller.”

However, we have not yet given a convincing argument that this extra algebra structure is

useful, allowing us to prove theorems that were intractable otherwise. In this section, we will

provide the first such examples, illustrating the following point: one pleasant feature of this

algebraic data is it gives a technique for proving that certain maps are cofibrations.

I.5.1 Coalgebra structures for the comparison map

One such example is the following theorem, which is joint work with Richard Garner and Mike

Shulman. In this theorem, we will require that the comparison map arise from a functor τ : J→ I

over M2 of a particularly nice form. Firstly, we require that it be a full inclusion (full, faithful,
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and injective on objects). Secondly, we require that I decompose as a coproduct τ(J) t I′, i.e.,

that there are no morphisms from objects in the image of τ to objects not in the image.10 Note

that when J and I are sets, these requirements simply mean that the generating trivial cofibrations

J are a subset of the generating cofibrations I.

Theorem I.5.1. Let J and I be categories that generate an algebraic model structure on M

and such that we have an inclusion τ : J → I over M2 of the form described above. Suppose

also that the cofibrations are monomorphisms in M. Then the components of the comparison

map ξ : (Ct,F) → (C,Ft) produced by Garner’s small object argument are cofibrations and,

furthermore, coalgebras for the comonad C.

Let us provide some intuition for this result. Given an arrow f , we construct Q f from R f

by attaching more “cells.” Because the cofibrations are monomorphisms, the “cells” we had

attached previously to form R f are not killed by the quotienting involved in the construction

of Q f . Hence the arrow ξ f : R f → Q f is itself a cofibration, and furthermore, because it was

constructed cellularly, ξ f is a C-coalgebra.

It takes some effort to describe the comparison map explicitly and accordingly it will take

some work to translate the above intuition into a rigorous argument. When the awfs are cofi-

brantly generated, the comparison map ξ : (Ct,F) → (C,Ft) is induced by the cone produced

by the right-hand factorization over the colimits of the left-hand factorization. These are each

constructed by various colimiting processes at a number of stages, and the proof will accordingly

involve a transfinite induction corresponding to each stage.

Specifically, for each ordinal α, the small object argument produces functorial factorizations

(Cαt , F
α) and (Cα, Fαt ). Let Qα,Rα : M2 →M denote the functors accompanying each functorial

factorization, i.e., so that f : X → Z factors as

X
Cαt f

}}|||||||| Cα f

!!CCCCCCCC

Rα f
ξαf //

Fα f !!CCCCCCCC
Qα f

Fαt f}}{{{{{{{{

Z

10. We suspect that this second condition is unnecessary but include it to simplify the arguments given
below.
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with ξα, the component at f of the step-α comparison map, as depicted.

Recall, the step-one factorization (C1
t , F

1) is constructed by factoring the counit of the density

comonad of J : J → M2 as a pushout followed by a square with domain equal to the identity, as

indicated below.

· //

C0
t f
�� p

X

C1
t f
��

X

f
��

· // R1 f
F1 f

// Z

(I.5.2)

In the familiar case when J is discrete, C0
t f =LanJ J( f ) is the coproduct of elements j ∈ J over

commutative squares from j to f , and the top and bottom horizontal composites are the canonical

arrows induced from these coproducts.

A key step in the proof of Theorem I.5.1 is the following lemma, which will imply that the

step-one comparison map ξ1
f : R1 f → Q1 f is a C-coalgebra. The general form of this lemma

will enable multiple applications.

Lemma I.5.3. Let J and I be small categories with an inclusion J → I over M2 as described

above and let (C1
t , F

1) and (C1, F1
t ) be the step-one factorizations they produce. Given any com-

mutative triangle
X // h //

f ��??????? Y

g���������

Z

such that h is a cofibration and a monomorphism, then the

map ξ1 : R1 f → Q1g induced by the colimit is a cofibration. If furthermore h is a C-coalgebra,

then so is ξ.

Remark I.5.4. The proof of Lemma I.5.3 will require some basic facts about coalgebras for a

comonad. We say a morphism (u, v) : f ⇒ g in M2 is a map of C-coalgebras if it lifts to the

category C-coalg (where we usually have particular coalgebra structures for f and g in mind). In

particular, if f has a coalgebra structure and g is a pushout of f , the pushout square is a map of

coalgebras, when g is given the canonical coalgebra structure of the pushout. (See the example in

Footnote 5.) Similarly, if g is a colimit of any diagram in M2 whose objects are coalgebras and

whose arrows are maps of coalgebras, then g inherits a canonical coalgebra structure such that

the legs of the colimit cone are maps of coalgebras. (This is a consequence of Theorem I.2.16.)

Finally, when C is the comonad of an awfs, C-coalgebras are closed under composition, as we
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saw in Lemma I.2.22, in such a way that (1, g) : f ⇒ g f is a map of coalgebras if f and g are

coalgebras.

We will use all of these facts in the proofs that follow.

Proof of Lemma I.5.3. The defining pushouts for the arrows C1
t f and C1g are the top and bottom

faces of the cube below.

·

iS
��

e //
��C0

t f

����������

p

X
~~C1

t f

~~||||||| ��

h

��

·
p //

iD

��

R1 f

ξ1

���
�
�
�
�
�
�

·
��C0g

��������� e′
//

p

Y
~~

C1g~~|||||||

W
p′

// Q1g

(I.5.5)

The notation (iS , iD) is meant to evoke the inclusions of the indexing sets for the coproducts of

spheres and disks, with the familiar generating set of cofibrations {S n−1 → Dn} in mind. The

map ξ1 is induced by the universal property of the top pushout.

We begin by defining the pushout in the right face of the cube (I.5.5).

R1 f

ξ1

��

��
l

��777777777
X

C1
t f

oo
��

h

��

qP1g

w}}z z
z

Q1g Y

k
eeKKKKKKKKK

C1g
oo

Because h is a cofibration, l is as well. If h is a coalgebra, then l inherits a canonical coalgebra

structure as a pushout of h. Because cofibrations and coalgebras for the comonad of an awfs are

closed under composition, it suffices to show that w is a cofibration, and a coalgebra whenever h

is a coalgebra. Actually w is always a coalgebra. We will use:
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Lemma I.5.6. Given a commutative cube in which the top and bottom faces are pushouts, form

the pushouts in the left and right faces, as in the diagram below.

· //

~~~~~~~~~~~~~~

��

q

p

·

~~~~~~~~~~~~~~

��

q

·

��

//

��.
...... ·

��

��.
......

·

xxqqqqqq //

���

��~~~~~~~~

p

·

xxqqqqqq

���������������
·

���
�

�
_____ //__ ·

���
�

�

· // ·

Then the square created by these pushouts (with three edges dotted in the diagram) is itself a

pushout square.

Proof. Easy diagram chase. �

By Lemma I.5.6, w is a pushout of the map c in the diagram below,

·

iD

��

��

��1
1111111

·
C0

t f
oo

iS

��

qP
c��� �

�

· ·
ff

ffMMMMMMMM
oo

C0g
oo

so it remains to show that this is a cofibration and coalgebra.

In the case where J and I are discrete, C0
t f is the disjoint union of arrows j of J over com-

mutative squares from j to f , and C0g is the disjoint union of arrows i of I over squares from i to

g. The square (iS , iD) maps the first coproduct into the second, sending j to its image under the

functor τ : J→ I and a square from j to f to the composite of this square with (h, 1) : f ⇒ g. As

h is monic, (iS , iD) is an inclusion, so we can separate the coproduct C0g into the image of this

inclusion and the rest. If we write h∗ : Sq(J, f )→ Sq(I, g) for the (injective) function that takes a
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square from j to f for some j ∈ J and composes with (h, 1) to get a square from τ j to g, then

C0g =

 ⊔
Sq(J, f )

τ j

 t
 ⊔
Sq(I,g)\im h∗

i


With this notation, C0g factors through P as the composite of first the arrow ⊔

Sq(J, f )
τ j

 t
 ⊔
Sq(I,g)\im h∗

1domi

 then

 ⊔
Sq(J, f )

1codτ j

 t
 ⊔
Sq(I,g)\im h∗

i

 .
This second arrow is c, which gets a canonical C-coalgebra structure as a coproduct of arrows in

I with identities, which are always coalgebras.

The proof of the general case where J and I are not discrete is similar. In this case, C0
t f

is a quotient of the disjoint union described above, and similarly for C0g. But C0g can still be

separated into the disjoint union of the image of (iS , iD) and its complement by the hypotheses

we made on the inclusion J → I. So c has essentially the same description as above, except

it is a quotient of a coproduct. This time, c is a colimit of a diagram whose objects are either

identities or generating cofibrations, so to prove c is a coalgebra we must check that the maps

of the diagram are maps of coalgebras. This is true because the morphisms in the formula for

a coend are either arrows of I, which are canonically coalgebra maps, or they are coproduct

inclusions, which are always coalgebra maps. In any case, the above conclusion still stands: c

is canonically a coalgebra, so w is as well. Hence ξ1 is a cofibration, and a C-coalgebra when h

is. �

Remark I.5.7. It is possible to prove directly that ξ1 is a cofibration by showing that it lifts against

all trivial fibrations. But this proof can only show ξ1 is a cofibration, not that it has a C-coalgebra

structure when h does, and it is this stronger fact that we will need in the proof of Theorem I.5.1.

Remark I.5.8. The argument of Lemma I.5.3 holds more generally than stated. In particular, it

is not necessary that the arrows in the positions of C0
t f and C0g be coends over all possible

squares. As long as these arrows are constructed as coends over some squares such that (iS , iD)

is an inclusion, the conclusion follows. In applications, we will often require this slightly more

general result, for reasons that will become clear in a moment.
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We will now use Lemma I.5.3 to prove Theorem I.5.1. Our proof used a modified version of

the small object argument, suggested by Richard Garner in private communication, that can be

used whenever the elements of the left class of the underlying wfs are monomorphisms. Steps

zero and one, as depicted in (I.5.2) are the same as before. At this point, Quillen’s small object

argument has us freely attach “cells” to fill “spheres” in the object R1 f by repeating steps zero

and one for the map F1 f . Garner’s small object argument does the same thing, but then takes

a coequalizer to identify the “cells” in the “spheres” that were filled twice, once in step one and

once in step two. In the modified version, we never attach these extraneous “cells” at all; instead,

we only attach “cells” to fill “spheres” in R1 f that weren’t filled already in step one. For this

modification to work, it is essential that the cofibrations are monomorphisms; otherwise, “cells”

that are needed to fill “spheres” at some intermediate stage may become redundant later. With

this modification, solutions to lifting problems J l F f factor uniquely through a minimal stage;

colloquially every “sphere” that is filled in the object R f is filled at some minimal step and is

filled uniquely at this step. This gives a new form of the small object argument that produces the

same factorizations as in Garner’s version but with no need for taking coequalizers, which are the

most difficult to manipulate. This modification of the small object argument was independently

suggested by [RB99] in the special case of fibrant replacement.

Proof of Theorem I.5.1. We use the preceding lemma and transfinite induction. Applying Lemma

I.5.3 in the case h = 1X and f = g shows that ξ1
f : R1 f → Q1 f is a cofibration and a C-coalgebra.

Because the cofibrations are assumed to be monomorphisms, we may use the modified version

of Garner’s small object argument described above. In the modified version, step two applies

factorizations that are similar to the step one factorizations to each of the vertical morphisms in

the triangle

Rβ f //
ξ
β
f //

Fβ f   AAAAAAAA
Qβ f

Fβt f~~||||||||

Y

(I.5.9)

with ordinal β = 1 in this case. The difference between these factorizations and the step one

factorizations is that some squares are left out of the step zero coproducts. By Remark I.5.8,

we nonetheless deduce that ξ2
f is a C-coalgebra. Likewise, applying Lemma I.5.3 to the trian-

gles (I.5.9) produced at each stage, we conclude that each map ξ
β+1
f : Rβ+1 f → Qβ+1 f is a
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C-coalgebra, assuming ξβf is.

For limit ordinals α, the maps Rα f → Qα f are created as colimits of the diagrams of the

ξ
β
f : Rβ f → Qβ f for ordinals β < α, which by the inductive hypothesis are cofibrations and C-

coalgebras. As usual, we must check that the morphisms ξβf ⇒ ξ
β+1
f in this diagram are maps of

coalgebras. When we apply Lemma I.5.3 to (I.5.9), the square ξβf ⇒ ξ
β+1
f is the right face of the

cube (I.5.5), reproduced below

·

ξβ+1

��

��

l

��0
0000000

·coo
��

ξβ

��

q·

w��� �
�

· ·

k
ffMMMMMMMMM

d
oo

The arrow l inherits its coalgebra structure as a pushout of ξβ, and this construction makes

(c, k) a map of coalgebras. Similarly, ξβ+1 inherits its coalgebra structure as a composite of

the coalgebras l and w, and this construction makes (1,w) a map of coalgebras. The morphism

(c, d) : ξβf ⇒ ξ
β+1
f is a composite of maps of coalgebras, and hence a map of coalgebras. Hence

the colimit ξαf has a canonical coalgebra structure created by this diagram. By transfinite induc-

tion, the comparison map ξ is a pointwise cofibration with each component a C-coalgebra. �

I.5.2 Algebraically fibrant objects revisited

One consequence of Lemma I.5.3 and the proof of Theorem I.5.1 is the following corollary,

which says that fibrant replacement monads that are constructed algebraically preserve certain

trivial cofibrations, assuming the trivial cofibrations are monomorphisms.

Corollary I.5.10. Let M be a category that permits the small object argument equipped with

a model structure such that the trivial cofibrations are monomorphisms. Suppose there exists a

category J of trivial cofibrations that detects algebraically fibrant objects, in the sense that an

object X is fibrant if and only if X → ∗ underlies some object of Jl, and let R be the fibrant

replacement monad on M induced from the awfs (Ct,F) generated by J. Then if f : X → Z is a

Ct-coalgebra, R f : RX → RZ is a Ct-coalgebra.
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Proof. The arrow R f is constructed by an inductive process, analogous to the construction of the

comparison map, that begins by applying Lemma I.5.3 to the triangle

X // f //

��??????? Z

���������

∗

with both awfs taken to be (Ct,F). Hence this result. �

The algebras for the monad R are precisely the “algebraically fibrant objects” of M, i.e.,

objects with chosen lifts against the generators, subject to any coherence conditions imposed by

morphisms in the category J. By Lemma I.2.30 every fibrant object has some algebra structure

making it an algebraically fibrant object. It always suffices to take J to be the generating trivial

cofibrations, assuming they exist, but in some examples it is preferable to use a smaller generating

category.

As for any category of algebras for a monad, we have an adjunction

M
T //
⊥ R-alg
U
oo

where T takes an object X ∈ M to the free R-algebra (RX, µX). In practice, the category R-alg

may fail to be cocomplete, in which case it is not a suitable category for a model structure.

But when R-alg is cocomplete, as is the case when M is locally presentable and R arises from a

cofibrantly generated awfs for example, Corollary I.5.10 provides some hope that one could build

a model structure on R-alg such that T a U is a Quillen adjunction. One feature of such a model

structure is that its objects would all be fibrant. In fact, it follows easily that any such Quillen

adjunction is in fact a Quillen equivalence.

One such example is the Quillen model structure on ChA, the category of chain complexes

of A-modules for some commutative ring A, though this example is rather unsatisfactory because

the objects of ChA are already fibrant. More interestingly, Thomas Nikolaus has proven that

the categories of algebraic Kan complexes and algebraic quasi-categories can be given a model

structure, lifted in the first case from Quillen’s and the second from Joyal’s model structure on

simplicial sets [Nik10]. For the latter case, we prefer to let the set J in Corollary I.5.10 be the

inner horn inclusions, rather than the generating trivial cofibrations. For all of these examples,
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Theorems I.3.10 and I.3.13 imply that the resulting model structures are algebraic and the Quillen

equivalences are algebraic Quillen adjunctions.

I.6 Adjunctions of awfs

We now return to the material previewed in Section I.3.4. In this section, we study adjunctions

of awfs, which we define precisely below. To motivate this definition, we consider an important

class of examples: suppose J generates an awfs (C,F) on M and TJ generates an awfs (L,R) on

K, where T : M → K is the left adjoint of a specified adjunction. A main task of this section is

to prove Theorem I.6.15, which says that there is a canonical adjunction of awfs in this situation.

A direct proof is possible but technically difficult. Instead, we present a more conceptual,

though somewhat circuitous argument, that is nonetheless shorter. After preliminary explorations,

we reintroduce the three notions of morphisms between awfs on different categories, each extend-

ing Definition I.2.14. In order to prove Theorem I.6.15, we use Theorem I.2.24, which says that

an awfs (L,R) is equivalently characterized by a natural composition law on the category of alge-

bras for a monad over cod. We prove a lemma that allows us to use this recognition principle to

easily identify lax morphisms of awfs, which for categorical reasons, suffices to prove Theorem

I.6.15.

However, Theorem I.6.15 is not quite strong enough to prove Theorem I.3.13, establishing

the existence of an important class of algebraic Quillen adjunctions. In order to prove the nat-

urality component of this result, we must show that the “unit” functors (I.2.26) constructed in

Garner’s small object argument satisfy a stronger universal property than was previously known.

In [Gar09], Garner shows that these functors are universal among morphisms of awfs. In Section

I.6.4, we show that they are universal among all adjunctions of awfs, a result that should be of

independent categorical interest. In particular, it follows that two canonical methods of assigning

coalgebra structures to generating cofibrations in the image of a left adjoint are the same.

I.6.1 Algebras and adjunctions

Consider an adjunction T : M
//

⊥ K : Soo where J generates an awfs (C,F) on M and TJ gen-

erates an awfs (L,R) on K. If (C,F) is the wfs underlying (C,F) and (L,R) is the wfs underlying
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(L,R), then

T (C) ⊂ L and S (R) ⊂ F

because the defining lifting properties are adjunct.

The next few sections work towards an algebraization of this result. Because the awfs are

cofibrantly generated, it will be considerably easier to prove statements involving the categories

of algebras.

Theorem I.6.1. For any adjunction T : M
//

⊥ K : Soo where a small category J generates an

awfs (C,F) on M and TJ generates an awfs (L,R) on K, the right adjoint S lifts to a functor

R-alg S̃ //___

U
��

F-alg

U
��

K2 S //
M2

Proof. Because the awfs are cofibrantly generated, we have isomorphisms R-alg � TJl and

F-alg � Jl that commute with the forgetful functors to the underlying arrow categories. Using

the notation of the proof of Theorem I.3.10, let ( f , ψ) ∈ TJl and define S̃ ( f , ψ) := (S f , ψ]) ∈ Jl.

Given (u, v) : ( f , ψ)→ (g, φ) ∈ TJl,

S̃ (u, v) := (S u, S v) : (S f , ψ])→ (S g, φ])

is a morphism in Jl by naturality of the adjunction. This defines the desired lift. �

There is a well-known categorical result [Joh75, Lemma 1], which says that lifts of S to func-

tors S̃ : R-alg→ F-alg are in bijective correspondence with natural transformations ~ρ : FS ⇒ S R

satisfying

S
~ηS

}}|||||||| S~η

  BBBBBBBB

FS
~ρ // S R

and

FS R
~ρR

$$IIIIIIIII

FFS

F~ρ
::uuuuuuuuu

~µS ��7777777 S RR

S~µ��������

FS
~ρ // S R

(I.6.2)

A pair (S , ~ρ) satisfying these conditions is called a lax morphism of monads.

Let Q : M2 →M and E : K2 → K be the functors accompanying the functorial factorizations

of (C,F) and (L,R), respectively. Because F and R are monads over cod, ~ρ = (ρ, 1) where
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ρ : QS ⇒ S E is a natural transformation satisfying

domS

CS
��

S L // S E

S R
��

QS
ρ

::uuuuuuuuu

FS
// codS

and

QS R
ρR

$$HHHHHHHHH

QFS

Q(ρ,1)
::uuuuuuuuu

µS ��666666 S ER

Sµ
��							

QS
ρ // S E

(I.6.3)

The functor S̃ is defined by mapping the R-algebra (g, t : Eg→ dom g) to the F-algebra (S g, S t ·

ρg : QS g→ dom, S g).

If the direction of ρ is reversed, a pair (S , (ρ, 1)) satisfying diagrams analogous to (I.6.2) is

called a colax morphism of monads. If the monads are replaced by their corresponding comonads

and the direction of ρ is unchanged, a pair (S , (1, ρ)) satisfying diagrams analogous to (I.6.2) is

called a lax morphism of comonads. If the direction of ρ is reversed as well, the pair (S , (1, ρ)) is

called a colax morphism of comonads. This last type of morphism is in bijective correspondence

with lifts of S to a functor between the categories of coalgebras for the comonads by the dual of

the lemma mentioned above.

For the lift S̃ of Theorem I.6.1, it is not easy to describe ρ explicitly because we cannot easily

write down the inverse to the isomorphism (I.2.27). Surprisingly, in light of the definitions of the

next sections, this will be no great obstacle.

I.6.2 Lax morphisms and colax morphisms of awfs

The statement analogous to Theorem I.6.1 for the left adjoint and categories of coalgebras is

considerably harder to prove. In fact, we will prove a stronger result and deduce this as a corol-

lary. First, we establish the relevant terminology, which extends the lax and colax morphisms of

monads and comonads, introduced in the last section.

For the following definitions let (C,F) be an awfs on a category M with Q : M2 → M the

functor accompanying its functorial factorization, and let (L,R) be an awfs on K with E : K2 →

K accompanying its functorial factorization.

Definition I.6.4. A lax morphism of awfs (S , ρ) : (L,R)→ (C,F) consists of a functor S : K→M

and a natural transformation ρ : QS ⇒ S E such that (1, ρ) : CS ⇒ S L is a lax morphism of
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comonads and (ρ, 1) : FS ⇒ S R is a lax morphism of monads, i.e., such that the following

commute:

domS

CS
��

S L // S E

S R
��

QS
ρ

::uuuuuuuuu

FS
// codS

QS
ρ //

δS
��						

S E
S δ
��4444444

QCS
Q(1,ρ)

##HHHHHHHHH S EL

QS L

ρL
;;wwwwwwwww

QS R
ρR

##GGGGGGGGG

QFS

Q(ρ,1)
;;vvvvvvvvv

µS ��555555 S ER

Sµ
��








QS
ρ // S E

(I.6.5)

Lax morphisms of monads (ρ, 1) are in bijection with lifts of S to functors S̃ : R-alg →

F-alg. Lax morphisms of comonads (1, ρ) are in bijection with extensions of S to functors

Ŝ : coKl(L)→ coKl(C).

Definition I.6.6. A colax morphism of awfs (T, λ) : (C,F)→ (L,R) consists of a functor T : M→

K and a natural transformation λ : T Q ⇒ ET such that (1, λ) : TC ⇒ LT is a colax morphism

of comonads and (λ, 1) : T F ⇒ RT is a colax morphism of monads, i.e., such that the following

commute:

domT

TC
��

LT // ET

RT
��

T Q
λ

::uuuuuuuuu

T F
// codT

T Q λ //

Tδ
��������

ET
δT

��4444444

T QC
λC

$$IIIIIIIII ELT

ETC

E(1,λ)
;;vvvvvvvvv

ET F
E(λ,1)

$$HHHHHHHHH

T QF

λF
::uuuuuuuuu

Tµ ��666666 ERT

µT��							

T Q λ // ET

(I.6.7)

Colax morphisms of comonads (1, λ) are in bijection with lifts of T to functors T̃ : C-coalg→

L-coalg. Colax morphisms of monads (λ, 1) are in bijection with extensions of T to functors

T̂ : Kl(F)→ Kl(R).

Example I.6.8. A morphism of awfs ρ : (C,F)→ (L,R), defined in I.2.14, is simultaneously a lax

morphism of awfs (1, ρ) : (L,R) → (C,F) and a colax morphism of awfs (1, ρ) : (C,F) → (L,R).

Conversely, every lax or colax morphism of awfs over an identity functor is a morphism of awfs.

Lax and colax morphisms of awfs can be identified by the following recognition principle,

which extends the material of Section I.2.5.
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Lemma I.6.9. Suppose (L,R) and (C,F) are awfs and (S , ~ρ) : R → F is a lax morphism of

monads corresponding to a lift S̃ : R-alg → F-alg of S . Then (S , ρ) : (L,R) → (C,F) is a lax

morphism of awfs if and only if S̃ preserves the canonical composition of algebras. Dually, a

colax morphism between the comonads of awfs is a colax morphism of awfs if and only if the

lifted functor preserves the canonical composition of coalgebras.

Proof. Suppose (S , ρ) is a lax morphism of awfs and let ( f , s) and (g, t) be composable R-

algebras. By definition

S̃ (g, t) • S̃ ( f , s) = (S g · S f , (S t · ρg) • (S s · ρ f ))

= (S (g f ), S s · ρ f · Q(1, S t · ρg · Q(S f , 1)) · δS (g f )),

while

S̃ ((g, t) • ( f , s)) = S̃ (g f , s · E(1, t · E( f , 1)) · δg f )

= (S (g f ), S s · S E(1, t · E( f , 1)) · S δg f · ρg f ).

The diagram

S Eg f
S δg f // S ELg f

S E(1,t·E( f ,1))

$$IIIIIIIII

QS g f

ρg f
99sssssssss

δS (g f ) %%KKKKKKKKK
QS Lg f

ρLg f

99ssssssssss

Q(1,S t·S E( f ,1))

%%KKKKKKKKKK
S E f

QCS g f
Q(1,S t·S E( f ,1)·ρg f )

//

Q(1,ρg f ) 99rrrrrrrrrr
QS f

ρ f

::uuuuuuuuu

which commutes by (I.6.5) and naturality of ρ shows that both algebra structures are the same.

Conversely, we must show that the center diagram of (I.6.5) commutes if the functor S̃ defined
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via ρ preserves composition of algebras. The proof requires a straightforward diagram chase:

S δ · ρ = S (µ • µL) · S E(L2, 1) · ρ definition of δ

= S (µ • µL) · ρR·RL · Q(S L2, 1) naturality of ρ

= ((Sµ · ρR) • (SµL · ρRL)) · Q(S L2, 1) S̃ preserves composition

= SµL · ρRL · Q(1, Sµ) · Q(1, ρR)

· Q(1,Q(S RL, 1)) · δS R·S RL · Q(S L2, 1) defn. of comp. in F-alg

= SµL · ρRL · Q(1, Sµ) · Q(1, ρR)

· Q(1,Q(S L, 1)) · Q(S L2, 1) · δS nat. of δ; functoriality of Q

= SµL · ρRL · Q(1, Sµ) · Q(1, S E(L, 1))

· Q(S L2, 1) · Q(1, ρ) · δS nat. of ρ; functoriality of Q

= SµL · ρRL · Q(S L2, 1) · Q(1, ρ) · δS monad triangle identity

= SµL · S E(L2, 1) · ρL · Q(1, ρ) · δS naturality of ρ

= ρL · Q(1, ρ) · δS monad triangle identity

�

I.6.3 Adjunctions of awfs

The notions of lax and colax morphisms of awfs are closely related. In fact, given a lax morphism

of awfs (S , ρ) : (L,R)→ (C,F) and an adjunction (T, S , ι, ν) where T a S and ι and ν are the unit

and counit, there is a canonical natural transformation λ : T Q ⇒ ET such that (T, λ) : (C,F) →

(L,R) is a colax morphism of awfs. The dual result holds as well. Combining the data of the

corresponding lax and colax morphisms of awfs we obtain the concept of an adjunction of awfs,

defined below. But first, we need the following categorical concept to explain the relationship

between ρ and λ.

Given functors as in the diagram

A

F
��
a

I // C

H
��
a

B

G
OO

J
// D

K
OO
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with η and ε the unit and counit for F a G and ι and ν the unit and counit for H a K, there is a

bijection between natural transformations

A

F
��

I // C
α

{� ~~~~~~~

~~~~~~~

H
��

B J
// D

and
A

I //

β

�#
@@@@@@@

@@@@@@@ C

B J
//

G
OO

D

K
OO

given by the formulae

β = KJε · KαG · ιIG and α = νJF · HβF · HIη.

The corresponding natural transformations α and β are called mates [KS74].

Definition I.6.10. An adjunction of awfs (T, S , λ, ρ) : (C,F) → (L,R) consists of an adjoint pair

of functors T a S together with mates λ and ρ such that (T, λ) : (C,F) → (L,R) is a colax

morphism of awfs and (S , ρ) : (L,R)→ (C,F) is a lax morphism of awfs.

The natural transformations λ and ρ should be mates with respect to the functors

M2

T
��
a

Q //M

T
��
a

K2

S
OO

E
// K

S

OO (I.6.11)

As alluded to above, the criteria on λ and ρ in Definition I.6.10 are overdetermined:

Lemma I.6.12. Suppose we have an adjunction (T, S , ι, ν) : M
//
Koo where M has an awfs

(C,F) and K has an awfs (L,R). Let λ and ρ be mates with respect to the functors of (I.6.11).

Then (S , ρ) : (L,R) → (C,F) is a lax morphism of awfs if and only if (T, λ) : (C,F) → (L,R) is a

colax morphism of awfs, in which case (T, S , λ, ρ) is an adjunction of awfs.

Proof. Each diagram of Definition I.6.4 is satisfied by ρ if and only if its mate λ satisfies the

corresponding diagram of Definition I.6.6, as can be verified by a diagram chase. Or see [Kel74].

�

Remark I.6.13. The proof of Lemma I.6.12 implies a conclusion slightly stronger than the state-

ment. Given mates ρ and λ as above with respect to T a S , to show that (T, S , λ, ρ) is an
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adjunction of awfs, it suffices to show that either ρ is a lax or λ is a colax morphism of monads

and that either ρ is a lax or λ is a colax morphism of comonads.

Example I.6.14. The comparison map ξ : (Ct,F)→ (C,Ft) in an algebraic model structure speci-

fies an adjunction of awfs, where the adjunction is the trivial one with functors, unit, and counit

all identities. In this case, ξ is its own mate and the requirements that (1, ξ) : (Ct,F) → (C,Ft)

is a colax morphism of awfs and that (1, ξ) : (C,Ft) → (Ct,F) is a lax morphism of awfs are

equivalent.

Less trivially, there exists a canonical adjunction of awfs (C,F) → (L,R) whenever (C,F) is

generated by J and (L,R) is generated by TJ for some adjunction T a S . By Theorem I.6.1, there

exists a natural transformation ρ : QS ⇒ S E such that (ρ, 1) is a lax morphism of monads. We

will show that (S , ρ) : (L,R) → (C,F) is a lax morphism of awfs. It follows from Lemma I.6.12

that this situation gives rise to an adjunction of awfs (T, S , λ, ρ), where λ is the mate of ρ, proving

the following theorem.

Theorem I.6.15. Consider an adjunction T : M
//

⊥ K : Soo where J generates an awfs (C,F)

on M and TJ generates an awfs (L,R) on K. Let ρ be the natural transformation determined by

Theorem I.6.1 and let λ be its mate. Then (T, S , λ, ρ) : (C,F)→ (L,R) is an adjunction of awfs.

First, we must show that (S , ρ) is a lax morphism of awfs. Doing so directly is possible but

quite hard, because a concrete understanding of ρ is only obtained by laboriously computing λ,

vis-à-vis running through the details of the small object argument. We use Lemma I.6.9 instead.

Proof of Theorem I.6.15. By Lemma I.6.9, it suffices to show that the functor S̃ defined in the

proof of Theorem I.6.1 preserves the canonical composition of algebras. Then Lemma I.6.12

implies that (T, S , λ, ρ) is an adjunction of awfs, where λ is the mate of ρ.

Suppose ( f , φ) and (g, ψ) are composable objects of TJl. By definition, the functor S̃ takes

the composite, described in Example I.2.32, to the morphism S (g f ) with the lifting function:

(ψ • φ)]( j, a, b) = Sφ(T j, ν · Ta, ψ(T j, f · ν · Ta, ν · Tb)) · ι
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where ι and ν are the unit and counit of T a S . By contrast

ψ] • φ]( j, a, b) = φ]( j, a, ψ]( j, S f · a, b))

= Sφ(T j, ν · Ta, ν · TSψ(T j, ν · TS f · Ta, ν · Tb) · T ι) · ι

= Sφ(T j, ν · Ta, ψ(T j, f · ν · Ta, ν · Tb) · νT · T ι) · ι,

which is the same as above, after application of a triangle identity for the adjunction T a S . �

Theorem I.6.15 extends Theorem I.6.1 and the corresponding result for coalgebras, which we

note, for completeness sake, as an immediate corollary.

Corollary I.6.16. For any adjunction T : M
//

⊥ K : Soo where a small category J generates an

awfs (C,F) on M and TJ generates an awfs (L,R) on K, the left adjoint T lifts to a functor

C-coalg T̃ //___

U
��

L-coalg

U
��

M2 T //
K2

It is an easy exercise to check that adjunctions of awfs are composable, i.e., given adjunctions

of awfs (C,F) → (L′,R′) and (L′,R′) → (L,R), the composite adjoint pair of functors and

pasted natural transformations form an adjunction of awfs (C,F)→ (L,R). Hence, the following

corollary combines Example I.6.14 and Theorem I.6.15 to find adjunctions of awfs in a weaker

situation, opening up an array of potential examples.

Corollary I.6.17. Suppose we have an adjunction T : M
//

⊥ K : Soo where J generates an awfs

(C,F) on M and K has an awfs (L,R), not necessarily cofibrantly generated. Suppose also that

K permits the small object argument and that we have a functor J → L-coalg lifting T . Then T

and S give rise to an adjunction of awfs (C,F)→ (L,R).

Proof. By Theorem I.2.28, there exists an awfs (L′,R′) on K that is cofibrantly generated by TJ.

By Theorem I.6.15, T and S give rise to an adjunction of awfs (C,F) → (L′,R′). The functor

J → L-coalg lifting T is equivalently described as a functor TJ → L-coalg over K2. By the

universal property of TJ → L′-coalg, there exists a morphism of awfs (L′,R′) → (L,R), which

is equivalently an adjunction of awfs (L′,R′) → (L,R) over the identity functors on K2. We

obtain the desired adjunction of awfs (C,F)→ (L,R) by composing the above two. �
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I.6.4 Change of base in Garner’s small object argument

In the situation of Theorem I.6.15, there are two canonical methods for assigning L-coalgebra

structures to the objects T j of the generating category TJ. One method applies the functor T

to the canonical C-coalgebra structure for j and then composes with the natural transformation

λ accompanying the lift T̃ : C-coalg → L-coalg. The other simply assigns T j the canonical

coalgebra structure given by Garner’s small object argument via the functor (I.2.26). We might

hope that the two results are the same. This is the content of an immediate corollary to the main

theorem of this section.

Corollary I.6.18. Given an adjunction T a S between categories M and K, consider a category

J which generates an awfs (C,F) on M and such that TJ generates an awfs (L,R) on K. Then

the functor T̃ arising from the canonical adjunction of awfs (C,F) → (L,R) commutes with the

units exhibiting the “freeness” of cofibrantly generated awfs, i.e., the diagram

J

��

γM

$$HHHHHHH γK

))
C-coalg T̃ //

{{vvvvvv
L-coalg

{{wwwwww

M2
T

//
K2

(I.6.19)

commutes.

Given a category M that permits the small object argument, Garner’s construction produces a

reflection of any small category J over M2 along the so-called “semantics” functor

G = AWFS(M)
G1 // LAWFS(M)

G2 // Cmd(M2)
G3 // CAT/M2

(C,F) � // (C,Q) � // C
� // C-coalg

(I.6.20)

from the category of awfs on M and morphisms of awfs to the slice category over M2 [Gar09, §4].

Here, Cmd(M2) is the category of comonads on M2 and comonad morphisms and LAWFS(M)

is the full subcategory of comonads over dom, or equivalently the category of functorial factor-

izations, whose left functor is a comonad.

The component of the unit of this reflection at a small category J generating an awfs (C,F)

is the functor J → C-coalg over M2 of (I.2.26), which is universal with respect to morphisms
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of awfs. We prove that these maps are universal with respect to all adjunctions of awfs. To find

an appropriate categorical context for the statement and proof of this result, we must enlarge the

categories of (I.6.20). The new domain is the category AWFSladj, whose objects are awfs and

whose morphisms are adjunctions of awfs. In analogy with (I.6.20), there is a forgetful functor

to CAT/(−)2ladj, whose objects are categories sliced over arrow categories, whose morphisms are

adjunctions between the base categories (before applying (−)2) together with a chosen lift of the

left adjoint to the fibers. This “semantics” functor factors as:

Gladj = AWFSladj
G

ladj
1 // LAWFSladj

G
ladj
2 // Cmd(−)2ladj

G
ladj
3 // CAT/(−)2ladj (I.6.21)

Here, Cmd(−)2ladj is the category of comonads on arrow categories and colax morphisms of

comonads whose functor is the left adjoint of a specified adjunction, and LAWFSladj is the full

subcategory of comonads over dom.

When restricted to objects whose base categories are cocomplete, each category in (I.6.21)

is cofibered over CAT2
ladj, the category of arrow categories and adjunctions of underlying cat-

egories, regarded as morphisms in the direction of the left adjoint. The fibers over the identity

arrows are exactly the categories of (I.6.20). For AWFSladj, we perhaps need to insist that the

categories be locally finitely presentable, in which case this statement says that any awfs can be

lifted along an adjunction, even if it is not cofibrantly generated. This decidedly non-trivial result

is due to Richard Garner.

In [Gar09], Garner shows that when M permits the small object argument, any small category

can be reflected along (I.6.20). We show that this construction gives a reflection of these objects

along (I.6.21), which is precisely what is needed for the desired corollary.

Theorem I.6.22. For any small category J over the arrow category of a category M that permits

the small object argument, the unit functor constructed by Garner’s small object argument is

universal among adjunctions of awfs.

Proof. It suffices to show that such J can be reflected along each of the G
ladj
i , i.e., the unit functor

constructed at each step in [Gar09, §4] satisfies the appropriate universal property.

The reflection of J along G
ladj
3 is its density comonadC0, i.e., the left Kan extension of J : J→

M2 along itself. If T : M→ K is a left adjoint and L is an arbitrary comonad on K2, functors J→

L-coalg lifting T are in bijection with natural transformations T J ⇒ LT J, which are in bijection
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with natural transformations TC0 ⇒ LT because left adjoints preserve left Kan extensions. By

the universal property of the density comonad, or alternatively, by a straightforward diagram

chase, such natural transformations are always comonad morphisms [Dub70, Chapter II]. This

shows that the unit J → C0-coalg is universal with respect to comonad morphisms lifting left

adjoints and hence gives a reflection of J along G
ladj
3 .

The refection of C0 along G
ladj
2 is given by an ofs (see Example I.2.12) on arrow categories,

which factors a given morphism (a square in the underlying category) as a pushout square fol-

lowed by a square whose domain component is an identity. Explicitly, the reflection C1 is ob-

tained by factoring the counit of C0 as depicted below:

·

C0 f
��

//

p

·

C1 f
��

·

f
��

· // · // ·

Let ψ : C0 ⇒ C1 be the natural transformation whose component at f is the left-hand square

depicted above. Given a colax morphism of comonads (T : M → K, λ : TC0 ⇒ LT ) where T is

a left adjoint and L is a comonad on K2 over dom: K2 → K, we have a commutative square

TC0 λ //

Tψ
��

LT

εT
��

TC1
T ε

// T

because λ is a comonad morphism and the lower left composite is T applied to the counit of C0.

The left arrow Tψ is in the left class of the ofs described above because T , as a left adjoint between

the underlying categories, preserves pushouts, and so the components of Tψ are pushout squares.

The right arrow is in the right class because L was assumed to be a comonad over dom. The ofs

described above, this time on K, solves the lifting problem to obtain the components of a unique

natural transformation λ′ : TC1 ⇒ LT . By setting up appropriate lifting problems and using

the fact that any solutions that exist must be unique, we can easily check that λ′ is a comonad

morphism, as desired. This shows that the unit functor C0-coalg→ C1-coalg is universal with

respect to colax morphisms of comonads over dom that lift a left adjoint; hence, it exhibits C1 as

the reflection of C0 along G
ladj
2 .

It remains only to consider the reflection of C1 along G
ladj
1 . For each category M, there is a
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strict two-fold monoidal category FF(M) of functorial factorizations of M (see [Gar07, Gar09]

and [BFSV03]), for which LAWFS(M) is the category of �-comonoids and AWFS(M) is the

category of ⊗,�-bialgebras. The product ⊗ (resp. �) uses the second awfs to re-factor the right

(resp. left) half of the factorization produced by the first awfs. To reflect from �-comonoids

into bialgebras, Garner uses Max Kelly’s construction of the free ⊗-monoid on a pointed object

[Kel80], in this case the unique arrow I → ~Q1 from the unit for ⊗, which is initial in FF(M), to

the functorial factorization of C1.

Let FFladj be the category of functorial factorizations over an arbitrary base whose mor-

phisms are colax morphisms of functorial factorizations lifting left adjoints. If ~X is a functorial

factorization on M and ~Y is a functorial factorization on K, then a morphism φ : ~X → ~Y lifting

a left adjoint T : M → K is a natural transformation φ : T X ⇒ YT such that the two triangles

analogous to the left-hand diagram of (I.6.7) commute. This category is not two-fold monoidal,

as we have no way to combine objects in different fibers. However, given objects ~X and ~Z in

the fiber over M and ~Y and ~W in the fiber over K together with morphisms φ : ~X → ~Y and

ψ : ~Z → ~W lifting the same left adjoint T : M → K, we do obtain lifts φ ⊗ ψ : ~X ⊗ ~Z → ~Y ⊗ ~W

and φ � ψ : ~X � ~Z → ~Y � ~W of T .

Furthermore, if φ and ψ are �-comonoid morphisms, then so is φ⊗ψ. The proof uses the fact

that � distributes over ⊗ in each fiber [Gar07, §3.2], and the canonical arrows α exhibiting this

distributivity are natural with respect to colax morphisms of functorial factorizations:

(~X � ~X′) ⊗ (~Z � ~Z′)
α //

(φ�φ′)⊗(ψ�ψ′)
��

(~X ⊗ ~Z) � ( ~X′ ⊗ ~Z′)

(φ⊗ψ)�(φ′⊗ψ′)
��

(~Y � ~Y′) ⊗ ( ~W � ~W′) α
// (~Y ⊗ ~W) � ( ~Y′ ⊗ ~W′)

In other words, if φ and ψ are morphisms in LAWFSladj, so is φ ⊗ ψ. This is all the structure

we need to prove the unit satisfies the desired universal property; we need not consider the inner

workings of the category LAWFSladj any further.

Given a morphism from a pointed object I → ~X in the fiber over M to a ⊗-monoid ~Y in the

fiber over K, we inductively obtain morphisms from the colimits involved in Kelly’s transfinite

construction to ~Y⊗~Y and thus to ~Y by applying the multiplication µ : ~Y⊗~Y → ~Y . By the universal

property, the resulting morphism from the free ⊗-monoid on I → ~X to ~Y is a ⊗-monoid morphism

in the category of �-comonoids and �-comonoid morphisms, and is unique. Applying this to the
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situation at hand, a colax morphism of comonads (C1,Q1) → (L, E) lifting the left adjoint of

a specified adjunction and whose target underlies an awfs (L,R) factors through a unique colax

morphism of awfs (C,F) → (L,R). By Lemma I.6.12, this determines a unique adjunction of

awfs. Hence, the unit of this reflection satisfies the desired universal property, completing the

proof. �

The desired corollary now follows immediately from the universal property of γM. We will

need this result in the next section.

I.7 Algebraic Quillen adjunctions

We can now prove that the adjunction between the algebraic model structures of Theorem I.3.10

is canonically an algebraic Quillen adjunction.

Recall the following definition.

Definition I.3.11. Let M have an algebraic model structure ξM : (Ct,F) → (C,Ft) and let K

have an algebraic model structure ξK : (Lt,R)→ (L,Rt). An adjunction T : M
//

⊥ K : Soo is an

algebraic Quillen adjunction if there exist natural transformations λt, λ, ρt, and ρ determining

five adjunctions of awfs

(Ct,F)

(T,S ,λ·TξM,S ξK·ρ)
RRRRRR

))RRRRRR

(T,S ,λt,ρ) //

(1,1,ξM,ξM)
��

(Lt,R)

(1,1,ξK,ξK)
��

(C,Ft) (T,S ,λ,ρt)
// (L,Rt)

(I.7.1)

such that both triangles commute.

Theorem I.3.13. Let T : M
//

⊥ K : Soo be an adjunction. Suppose M has an algebraic model

structure, generated by I and J, with comparison map ξM. Suppose K has the algebraic model

structure, generated by TI and TJ, with canonical comparison map ξK. Then T a S is canoni-

cally an algebraic Quillen adjunction.

Proof. Write Qt, Q, Et, and E for the functors accompanying the functorial factorizations of

the awfs (Ct,F), (C,Ft), (Lt,R), and (L,Rt), respectively. Then by Theorem I.6.15 the natural
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transformations

λt : T Qt ⇒ EtT, λ : T Q⇒ ET, ρ : QtS ⇒ S Et, and ρt : QS ⇒ S E

arising from the canonical lifts of S give rise to adjunctions of awfs

(T, S , λt, ρ) : (Ct,F)→ (Lt,R) and (T, S , λ, ρt) : (C,Ft)→ (L,Rt).

Composing the left-hand adjunction with ξK and the right-hand adjunction with ξM, which we

saw in Example I.6.14 are themselves adjunctions of awfs, we obtain two canonical adjunctions

of awfs

(Ct,F)
(T,S ,ξKT ·λt,S ξK·ρ)//

(T,S ,λ·TξM,ρt·ξMS )
// (L,Rt). (I.7.2)

We’ll show that the corresponding natural transformations are the same.

By the correspondence between colax morphisms of comonads and natural transformations

[Joh75], to show that

T Qt
λt //

TξM
��

EtT

ξKT
��

T Q
λ
// ET

(I.7.3)

commutes, it suffices to show that both composites correspond to the same lift of T to a functor

Ct-coalg→ L-coalg.

Let T̃t : Ct-coalg→ Lt-coalg and T̃ : C-coalg→ L-coalg denote the lifts of T corresponding

to λt and λ, respectively. We must show the the right-hand diagram of (I.3.12) commutes. By the

definition of ξK in the proof of Theorem I.3.10, the outer rectangle of

J

��

γM
// Ct-coalg

(ξM)∗ //

T̃t
��

C-coalg

T̃
��

TJ
γK
// Lt-coalg

(ξK)∗
// L-coalg

commutes. By Corollary I.6.18, the left-hand square commutes. By Theorem I.6.22, the unit γM

is universal among adjunctions of awfs, which implies that the right-hand square commutes.
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The other half of the proof now follows formally, using the fact that the natural transforma-

tions ρ and ρt defining the lifts S̃ and S̃ t of (I.3.12) are mates of the natural transformations λt

and λ defining the lifts T̃t and T̃ . If ι and ν are the unit and counit of T a S , the commutative

diagram

QtS

ξMS
��

ιQtS // S T QtS

S TξMS
��

SλtS // S EtTS

S ξKTS
��

S Et(ν,ν) // S Et

S ξK
��

QS
ιQS

// S T QS
SλS

// S ETS S E(ν,ν)
// S E

(I.7.4)

says that S ξK · ρ = ρt · ξMS . This tells us that the diagram of functors on the left-hand side of

(I.3.12) commutes, which proves that the two adjunctions (I.7.2) are the same and that T a S is

an algebraic Quillen adjunction. �

Note that a diagram like (I.7.4), which shows that the natural transformations λ·TξM : T Qt ⇒

ET and S ξK · ρ : QtS ⇒ S E are mates, appears in the proof that adjunctions of awfs can be

composed. In light of Corollary I.6.17, we expect that many other naturally occurring examples

of Quillen adjunctions can be algebraicized to give algebraic Quillen adjunctions.
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Part II

Monoidal algebraic model structures



II.1 Introduction

Algebraic model structures, introduced in [Rie11], Part I of this thesis, are a structural extension

of Quillen’s model categories [Qui67] in which cofibrations and fibrations are “algebraic,” i.e.,

equipped with specified retractions to their left or right factors which can be used to solve all

lifting problems. The factorizations themselves are much more than functorial: the map from

an arrow to its right factor is a monad and the map to its left factor is a comonad on the arrow

category. In particular, the data of an algebraic model category determines a fibrant replacement

monad and a cofibrant replacement comonad.

Despite the stringent structural requirements of this definition, algebraic model structures are

quite abundant. A modified small object argument, due to Richard Garner, which can be run

in many categories, produces an algebraic model structure in place of an ordinary cofibrantly

generated one [Gar09]. The difference is that the components of a model structure—the weak

factorization systems (C∩W,F) and (C,F∩W)—are replaced with algebraic weak factorization

systems (Ct,F) and (C,Ft), which are categorically better behaved.

We find the weak factorization system perspective on model categories clarifying. The overde-

termination of the model category axioms and the closure properties of the classes of cofibrations

and fibrations are all more evident on the weak factorization system level. Quillen’s small object

argument is really a construction of functorial factorizations for a cofibrantly generated weak

factorization system; the model structure context is beside the point. Also, the equivalence of

various definitions of Quillen adjunction has to do with the interaction between the adjunction

and each weak factorization system independently. See §II.3.1 for more details.

More precisely, an algebraic model structure on a category M with weak equivalences W

consists of two algebraic weak factorization systems (henceforth, awfs for both the singular and

the plural) together with a morphism ξ : (Ct,F)→ (C,Ft) between them such that the underlying

weak factorization systems form a model structure in the usual sense. Here Ct and C are comon-

ads and Ft and F are monads on the arrow category M2 that send an arrow to its appropriate factor

with respect to the functorial factorizations of the model structure. We write R,Q : M2 ⇒M for

the functors that assign to an arrow the object through which it factors. The notation is meant

to evoke fibrant/cofibrant replacement: slicing over the terminal object or under the initial object

gives the fibrant replacement monad and cofibrant replacement comonad, also denoted R and Q.
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The natural transformation ξ, which we call the comparison map, plays a number of roles. Its

components

dom f
Ct f

||xxxxxxxx C f

##FFFFFFFF

R f
ξ f //

F f ""FFFFFFFF Q f

Ft f{{xxxxxxxx

cod f

(II.1.1)

are natural solutions to the lifting problem (II.1.1) that compares the two functorial factorizations

of f ∈ M2. Additionally, ξ must satisfy two pentagons: one involving the comultiplications of

the comonads and one involving the multiplications of the monads. Under these hypothesis, ξ

determines functors over M2

ξ∗ : Ct-coalg→ C-coalg ξ∗ : Ft-alg→ F-alg (II.1.2)

between the categories of coalgebras for the comonads and algebras for the monads.

Elements of, e.g., the category F-alg are called algebraic fibrations; their images under the

forgetful functor to M2 are in particular fibrations in the model structure. The algebra structure

associated to an algebraic fibration determines a canonical solution to any lifting problem of that

arrow against an algebraic trivial cofibration. The functors (II.1.2) together with naturality of ξ

imply that there is also a single canonical solution to any lifting problem of an algebraic trivial

cofibration against an algebraic trivial fibration: the solution constructed using ξ∗ and the awfs

(C,Ft) and the solution constructed using ξ∗ and the awfs (Ct,F) agree.

For certain lifting problems, these canonical solutions themselves assemble into a natural

transformation. For instance, the natural solution to the usual lifting problem that compares the

two bifibrant replacements of an object defines a natural transformation RQ⇒ QR that turns out

to be a distributive law of the fibrant replacement monad over the cofibrant replacement comonad.

It follows that Q lifts to a comonad on the category R-alg of algebraic fibrant objects, and dually

R lifts to a monad on Q-coalg. The coalgebras for the former and algebras for the later coincide,

defining a category of algebraic bifibrant objects.

Any ordinary cofibrantly generated model structure gives rise to an algebraic model structure

thanks to a modified form of Quillen’s small object argument due to Richard Garner. As a result,

this algebraic structure is much more common that might be supposed. Whenever the category
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permits the small object argument, he constructs an algebraic weak factorization system from any

small category of generating cofibrations that satisfies two universal properties, both of which we

frequently exploit [Gar07, Gar09].

Awfs were introduced to improve the categorical properties of ordinary weak factorization

systems [GT06]. One feature of awfs is that the left and right classes are closed under colimits and

limits, respectively, in the following precise sense. By standard monadicity results, the forgetful

functors C-coalg → M2, F-alg → M2 create all colimits and limits, respectively, existing in

M2. In the context of algebraic model structures, this gives a new recognition principle for

cofibrations constructed as colimits and fibrations constructed as limits. Familiarly, a colimit (in

the arrow category) of cofibrations is not necessarily a cofibration. But if the cofibrations admit

coalgebra structures that are preserved by the maps in the diagram, then the colimit is canonically

a coalgebra and hence a cofibration.

When the model structure is cofibrantly generated, all fibrations and all trivial fibrations are

algebraic, i.e., admit algebra structures; interestingly the dual statements do not hold. Transfi-

nite composites of pushouts of coproducts of generating cofibrations i ∈ I—the class of maps

denoted I-cell in the classical literature [Hov99, Hir03]—are necessarily algebraic cofibrations.

Accordingly, we call the class of cofibrations that admit a C-coalgebra structure the cellular cofi-

brations; a cofibration is cellular if and only if it can be made algebraic. In certain examples, the

cellular cofibrations are precisely the class I-cell. In all examples, the class of all cofibrations is

the retract closure of the class of cellular ones. Cellularity will play an interesting and important

role in the new results that follow.

The basic theory of algebraic model structures is developed in Part I. In particular, we de-

fine an algebraic Quillen adjunction, which is an ordinary Quillen adjunction such that the right

adjoint lifts to commuting functors between the algebraic (trivial) fibrations and the left adjoint

lifts to commuting functors between the categories of algebraic (trivial) cofibrations. This should

be thought of an algebraization of the usual condition that the right adjoint preserves fibrations

and trivial fibrations and left adjoint preserves cofibrations and trivial cofibrations. We also ask

that the lifts of one adjoint determine the lifts of the other in a sense made precise below, a con-

dition that mirrors the classical fact that a Quillen adjunction can be detected by examining the

left or right adjoint alone. Algebraic Quillen adjunctions exist in an important class of examples:

when a cofibrantly generated algebraic model structure is lifted along an adjunction, the result-
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ing Quillen adjunction is canonically algebraic. For instance, this situation describes the usual

adjunction between spaces and simplicial sets.

A classical categorical results characterizes lifted functors of algebraic fibrations, i.e., func-

tors between the categories of algebras for the monads, as certain natural transformations some-

times called lax monad morphisms, but this condition alone fails to capture the symmetry of the

classical situation where a right adjoint preserves fibrations if and only if its left adjoint preserves

trivial cofibrations. There are two ways to describe the desired additional hypothesis. One, the

approach emphasized in Part I, is to ask that the mate of the natural transformation characterizing

the lifted functor of algebraic fibrations defines the lifted functor of algebraic trivial cofibrations.

An equivalent condition is to ask that the lifted functor of algebraic fibrations is in fact a lifted

double functor between double categories of algebraic fibrations, suitably defined. Both ap-

proaches are described in §II.3 below, which reviews the development of the theory of algebraic

Quillen adjunctions.

In this paper, we extend these results in order to define monoidal algebraic model structures.

Much of the structure of a closed monoidal category or a tensored and cotensored enriched cate-

gory is encoded in a two-variable adjunction. For enriched categories, the constituent bifunctors

are commonly denoted

V ×M
−�− //M Vop ×M

{−,−} //M Mop ×M
hom(−,−)// V

and come equipped with hom-set isomorphisms

M(V � M,N) � M(M, {V,N}) � V(V, hom(M,N)) (II.1.3)

natural in all three variables. Fixing any one variable, two-variable adjunctions give rise to ordi-

nary adjunctions, e.g., − � M a hom(M,−).

The monoidal case necessarily precedes the enriched one but also inherits nearly all of its

complexity. A closed monoidal category with an algebraic model structure is a monoidal alge-

braic model category if tensoring with the cofibrant replacement of the monoidal unit sends cofi-

brant objects to weak equivalences and if the closed monoidal structure is an algebraic Quillen

two-variable adjunction. Such an adjunction consists of three lifts of the so-called “pushout-
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product”

Ct-coalg × C-coalg // Ct-coalg
C-coalg × Ct-coalg // Ct-coalg
C-coalg × C-coalg // C-coalg

such that the mates of the characterizing natural transformations determine similar lifts of the left

and right closures. In the best cases, these functors satisfy three evident coherence conditions

which say that various canonical coalgebra structures agree, but we shall see that such coherence

is too much to ask for in general. One could also give weaker definitions of an algebraic Quillen

bifunctor applying to monoidal and enriched model categories in which some of the adjoint bi-

functors don’t exist. This is much less categorically challenging than the theory presented here,

so the details may be safely left to the reader.

There are three main technical theorems that allow us to identify algebraic Quillen two-

variable adjunctions in practice. The first describes a composition criterion that identifies when a

lifted bifunctor is part of a two-variable adjunction of awfs, the version of algebraic Quillen two-

variable adjunctions for categories equipped with a single awfs in place of a full algebraic model

structure. The other two results, which we call the cellularity and uniqueness theorems, com-

bine to characterize two-variable adjunctions of awfs in the case when the awfs are cofibrantly

generated. The cellularity theorem says that a two-variable adjunction of awfs arises from any as-

signment of coalgebra structures to the pushout-product of the generators; hence, such structures

exist if and only if the pushout-product of the generators is cellular. The uniqueness theorem says

that such an assignment completely determines the lifted functors, so at most one two-variable

adjunction of awfs can be obtained in this way.

Several new categorical results were necessary to make all of this precise. Of most general

categorical interest is the theory of parameterized mates, introduced in §II.2 below. This theory

describes the relationship between the natural transformations characterizing the lifts of the three

functors constituting a two-variable adjunction and their interactions with ordinary adjunctions

of awfs.

Other results appearing below are designed to deal with complications arising in the proofs of

the cellularity and uniqueness theorems. The main technical difficulty is quite simply accounted

for: the only adjunctions considered in Part I between arrow categories were those, now denoted

T 2 a S 2 : M2 � K2, defined pointwise by an ordinary adjunction T a S : M � K between

the base categories. However, the adjunctions on arrow categories arising from two-variable
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adjunctions on the bases no longer have this form and in particular don’t preserve composability

of arrows. Thus, double categorical composition criterion we use to great effect in the previous

paper to characterize lifted left adjoints that determine lifts of right adjoints must take on a new

form.

In §II.2, we introduce double categories, mates, and parameterized mates and prove some

elementary lemmas which will be used frequently in what follows. In §II.3, we give a streamlined

review of the theory of algebraic Quillen adjunctions. The same general ideas will be used to

prove analogous theorems for the two-variable case, though the categorical structures that appear

are somewhat more complicated. In §II.4, we define algebraic Quillen two-variable adjunctions

and state the cellularity and uniqueness theorems. In §II.5 and §II.6, the most technical sections,

we describe the new composition criterion, which together with an extension of the universal

property of Garner’s small object argument allows us to prove these theorems. In §II.5, we

consider first the adjunctions of a single variable arising from two-variable adjunctions and then

in §II.6 consider the full bifunctors. A reader who is willing to take these facts on faith could skip

these sections and jump straight to §II.7, where we define monoidal algebraic model structures

and give examples.

II.2 Double categories, mates, parameterized mates

The calculus of mates will play an important conceptual and calculational role in what follows. To

streamline later proofs, we take a few moments in §II.2.1 to outline the important features without

getting mired in technical details. The canonical reference is [KS74]; we also like [Shu11].

Bifunctors, meaning functors whose domain is the product of two categories, are determined

by the collection of ordinary functors obtained when one of the variables is fixed together with

the natural transformations between such functors arising from morphisms in that category. This

fact is often expressed by saying that category CAT of categories is cartesian closed. For this

simple reason, the classical theory of mates extends to a new theory of parameterized mates,

outlined in §II.2.2 below.
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II.2.1 Double categories and mates

A double category D is a category internal to CAT:

D1 ×
D0
D1 ◦ // D1

dom //

cod
// D0idoo

The objects and arrows of D0 are called objects and horizontal arrows of D while the objects and

arrows of D1 are called vertical arrows and squares. Via the functors dom, cod: D1 ⇒ D0, the

sources and targets of vertical arrows are objects ofD, and likewise the squares can be depicted in

the way their name suggests. Squares can be composed horizontally using composition inD1 and

vertically using the functor ◦. In this paper, both horizontal and vertical composition of squares

is strict and is preserved strictly. We refer to D1 as the category of vertical arrows; this category

forgets the composition of vertical arrows and remembers only the horizontal composition of

squares.

Example II.2.1. A category M gives rise to a double category Sq(M)

M3 � M2 ×
M

M2 ◦ //
M2

dom //

cod
//Midoo

whose objects are objects of M, horizontal and vertical arrows are morphisms of M, and squares

are commutative squares. The category of vertical arrows is usually called the arrow category—

the notation will be explained in §II.3—and plays an essential role in what follows.

Given categories, functors, and adjunctions, as displayed below, there is a bijection between

natural transformations in the square involving the left adjoints and natural transformations in the

square involving the right adjoints

·

T
��
a

H // ·

T ′
��
a

·

T
��

H //

λw

·

T ′
��

!

· H //

uρ

·

·

S
OO

K
// ·

S ′
OO

·
K
// · ·

S
OO

K
// ·

S ′
OO (II.2.2)

given by the formulas

ρ = S ′Kε · S ′λS · ιHS and λ = νKT · T
′ρT · T

′Hη, (II.2.3)
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where η and ε are the unit and counit for T a S and ι and ν are the unit and counit for T ′ a S ′.

Corresponding λ and ρ are called mates.

Significant examples abound in this paper, but we also will make use of trivial ones.

Example II.2.4. A natural transformation H ⇒ K is its own mate with respect to the identity

adjunctions.

Example II.2.5. Adjunct arrows f ] : Tm → k ∈ K, f : m → S k ∈ M corresponding under the

adjunction T a S : M� K are mates in the following squares

1
1
��

m //

f ]w

M

T
��

1 k
// K

1 m //

u f

M

1 k
//

1
OO

K

S
OO

where 1 denotes the terminal category.

Example II.2.6. If M has a left-closed monoidal structure and f : m′ → m ∈M, then the induced

natural transformations

M
1 //

m⊗−
��

f⊗−w

M

m′⊗−
��

M 1
//M

M
1 //

uhom`( f ,−)

M

M 1
//

hom`(m,−)
OO

M

hom`(m′,−)
OO

are mates. Analogous correspondences hold for any parameterized adjunction [ML98, IV.7.3].

There are double categories Ladj and Radj whose objects are categories, horizontal arrows

are functors, vertical arrows are adjunctions in the direction of the left adjoint, and whose squares

are natural transformations as displayed in the middle and right-hand squares of (II.2.2), respec-

tively. The mates correspondence is natural, or, more accurately, functorial, in the following

precise sense.

Theorem II.2.7 (Kelly-Street [KS74, §2]). The mates correspondence gives an isomorphism of

double categories Ladj� Radj.

This says that a natural transformation obtained by pasting squares in Ladj either vertically

or horizontally is the mate of the natural transformation obtained by pasting the mates of these
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squares in Radj. The “calculus of mates” refers to this fact, which, when used in conjunction

with Examples II.2.4–II.2.6, implies that mates satisfy dual diagrams.

For instance, suppose the functors H and K of (II.2.2) are monads (H, η, µ), (K, η, µ) and

suppose T = T ′ and S = S ′. A pair (S , ρ) as in the right square of (II.2.2) is a lax morphism of

monads if

S
ηS

}}|||||||| S η

!!BBBBBBBB

HS
ρ // S K

and

HS K
ρK

%%JJJJJJJJJ

HHS

Hρ
99sssssssss

µS ��8888888 S KK

Sµ���������

HS
ρ // S K

(II.2.8)

commute. We will frequently use

Lemma II.2.9 (Appelgate [Joh75]). A lax morphism of monads (S , ρ) determines and is deter-

mined by a lift of S to a functor from the category of K-algebras to the category of H-algebras.

Proof. The H-algebra structure assigned the image under S of a K-algebra t : Kx→ x is

HS x
ρx // S Kx S t // S x �

The dual notion, a colax morphism of monads, is a pair (S , ρ) satisfying diagrams analogous

to (II.2.8) but with the direction of ρ reversed. Theorem II.2.7 can be used to prove

Lemma II.2.10. Suppose (S , ρ) is a lax morphism of monads, T a S , and λ is the mate of ρ with

respect to this adjunction. Then (T, λ) is a colax morphism of monads.

Proof. We show (T, λ) satisfies the pentagon and leave the triangle as an exercise. The pentagon

for (S , ρ) says that the left pasted squares

· HH //

µu

·

·

1
OO

H
//

ρu

·

1
OO

·

S
OO

K
// ·

S
OO =

· H //

ρu

· H //

ρu

·

·

S
OO

K
//

µu

·
K
//

S
OO

·

S
OO

·

1
OO

K
// ·

1
OO

· HH //

µw1
��

·

1
��

·

T
��

H
//

λw

·

T
��

·
K
// ·

=

· H //

T
��
λw

·

T
��

H //

λw

·

T
��

·

1
��

K
//

µw

·
K
// ·

1
��

·
K

// ·

are equal in Radj. By Theorem II.2.7 the pasted composites of their mates in Ladj, displayed on

the right above, also agree. �
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Of course, analogous results hold with any 2-category in place of CAT. At this level of gener-

ality, Theorem II.2.7 asserts that the functors LAdj,RAdj : 2-CAT⇒ DblCAT are isomorphic.

II.2.2 Parameterized mates

By a lemma below, in the context of a two-variable adjunction, or more generally a parameter-

ized adjunction, the mates correspondences for the adjunctions obtained by fixing the parameter

are natural in the parameter. This means that the two sets of mates assemble into natural trans-

formations of two variables. We say that natural transformations corresponding in this way are

parameterized mates. We do not know if this correspondence has been studied before, but it is

essential to describe the interactions between awfs and two-variable adjunctions. The following

lemmas establish the bare bones of this theory.

First, we prove that if we fix one of the variables in a natural transformation between bifunc-

tors which are pointwise adjoints and then take mates, the resulting pointwise mates assemble to

give a natural transformation between the appropriate bifunctors.

Lemma II.2.11. Suppose given a pair of left-closed bifunctors ⊗,⊗′; ordinary functors K,M,N;

and a natural transformation λk,m : Kk ⊗′ Mm→ N(k ⊗ m) as displayed

K ×M

⊗
��

K×M //

λw

K′ ×M′

⊗′

��
N N

// N

Let ρk,− denote the mate of the natural transformation λk,− with respect to the adjunctions k⊗− a

hom(k,−) and Kk ⊗′ − a hom′(Kk,−). Then the ρk,− are also natural in K and assemble into a

natural transformation ρk,n : M hom(k, n)→ hom′(Kk,Nn)

M
M //

uρ

M′

Kop ×N

hom

OO

K×N
// K′op ×N′

hom′
OO
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Proof. Naturality of λ in K says that for any f : k′ → k in K, the pasted composites

M

k⊗−
��

1 //

f⊗−w

M

k′⊗−
��

λk′,−w

M //M′

Kk′⊗′−
��

N 1
// N N

// N′

= M

k′⊗−
��

M //

λk,−w

M′

Kk⊗′−
��

1 //

K f⊗′−w

M′

Kk′⊗′−
��

N N
// N′ 1

// N′

are equal. By Theorem II.2.7, the pasted composites

M
1 //

uhom( f ,−)

M

u
ρk′,−

M //M′

N 1
//

hom(k,−)

OO

N N
//

hom(k′,−)

OO

N′
hom′(Kk′,−)

OO = M
M //

u
ρk,−

M′
1 //

uhom′(K f ,−)
M′

N N
//

hom(k,−)

OO

N′ 1
//

hom′(Kk,−)

OO

N′
hom′(Kk′,−)

OO

are also equal, which says that the ρk are natural in K. �

The following lemma establishes the parameterized mates correspondence.

Lemma II.2.12. Suppose given two-variable adjunctions (⊗, hom`, homr), (⊗′, hom′
`
, hom′r) and

functors K,M,N as below. There is a natural bijective correspondence between natural transfor-

mations

K ×M

⊗
��

K×M //

λw

K′ ×M′

⊗′

��
N N

// N

M
M //

uρ`

M′

Kop ×N

hom`

OO

Kop×N
// K′op ×N′

hom′
`

OO K
K //

uρr

K′

Mop ×N

homr

OO

Mop×N
//M′op ×N′

hom′r

OO

obtained by applying the pointwise mates correspondence to either variables.

Proof. By symmetry, it suffices to show that if we fix K and takes pointwise mates to define ρ`

from λ and then fix N and take pointwise mates to define ρr from ρ`, the result is the same as

fixing M and taking pointwise mates to define ρr from λ. This follows from the formulas (II.2.3),

the compatible hom-set isomorphisms (II.1.3) and a diagram chase. We leave this as an exercise

to the reader with the following hint: when in a sequence of composable arrows, one sees the

unit followed by arrows in the image of the right adjoint, this asserts that the composite is adjunct

to whatever remains when the unit and the right adjoint are erased. Dually, the composite of an

arrow in the image of the left adjoint with the counit is adjunct to what remains when the counit

and left adjoint are erased. We made frequent use of this observation. �
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The lemma says that taking pointwise mates is a “Klein four groupoid,” by which we mean

the chaotic groupoid on three objects. The point is that any distinct isomorphisms compose to the

other.

Lemma II.2.13. Composition of parameterized mates in any of the three variables with ordinary

mates pointing in compatible directions is well-defined.

Proof. Suppose α and β are mates with respect to the top squares and λ, ρ`, ρr are parameterized

mates with respect to the bottom squares of the following diagram in Ladj� Radj.

J

T
��
a

J // J′

T ′
��
a

J

T
��
a

J // J′

T ′
��
a

K

S

OO

K
//

−⊗m

��

a

K′

S ′
OO

−⊗′Mm �� a

K

S

OO

K
//

hom`(−,n)

��

a

K′

S ′
OO

hom′
`
(−,Nn) �� a

N N
//

homr(m,−)
OO

N′
hom′r(Mm,−)

OO

Mop

homr(−,n)
OO

M
//M′op

hom′r(−,Nn)

OO

Applying Theorem II.2.7 and Lemma II.2.11 to the left-hand rectangle, we conclude that

T ′J ⊗′ M
α⊗′1 // KT ⊗′ M

λT,1 // N(T ⊗ −) and

JS homr(−,−)
βhomr // S ′Khomr(−,−)

S ′ρr
// S ′hom′r(M,N)

are mates; from right-hand rectangle, we conclude that this second natural transformation and

Mhom`(T,−)
ρ`T,1 // hom′

`
(KT,N)

hom′
`
(α,N)
// hom′

`
(T ′J,N)

are mates. By Lemma II.2.12, the three composite natural transformations are parameterized

mates. �

As a consequence, algebraic Quillen two-variable adjunctions pointing in the direction of the

left adjoints can be composed in any of their variables with algebraic Quillen adjunctions pointing

also in the direction of the left adjoints; see Lemma II.6.11.
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II.3 Algebraic Quillen adjunctions via double categories and cellularity

In this section, we give a streamlined presentation of one of the main topics of Part I: the def-

initions, characterizations, and examples of algebraic Quillen adjunctions. All the results are

contained in Part I, but they are not presented in quite this way. This narrative will inspire

the extension to algebraic Quillen two-variable adjunctions, the primary technical component

of monoidal algebraic model structures. In §II.3.1, we discuss ordinary weak factorization sys-

tems and functorial factorizations, and introduce a category of solutions to lifting problems. In

§II.3.2, we define awfs, characterize awfs as double categories, and state the universal properties

associated to Garner’s small object argument. In §II.3.3, we define adjunctions of awfs, the main

structural components of algebraic Quillen adjunctions, and characterize those whose domain is

cofibrantly generated. Such adjunctions of awfs arise precisely when the image of the generators

under the left adjoint is cellular, in the sense described in the introduction. In §II.3.4, we define

algebraic Quillen adjunctions and outline the proof that there are interesting examples.

II.3.1 Preliminaries

We write 1, 2, 3, 4, etc for the categories assigned to these ordinals; e.g., 2 is the “walking arrow”

category, 3 is the free category containing a composable pair of arrows, and so on. The func-

tor category M2 is the category whose objects are arrows in M, depicted vertically, and whose

morphisms, denoted (u, v) : f ⇒ g, are commutative squares

·

f
��

u // ·

g
��

· v
// ·

(II.3.1)

Any such square presents a lifting problem of f against g; a solution would be an arrow from the

bottom left to the upper right such that both resulting triangles commute. If every lifting problem

presented by a morphism f ⇒ g has a solution, we say that f has the left lifting property with

respect to g and, equivalently, that g has the right lifting property with respect to f .

Definition (I.2.3, I.2.4). A weak factorization system on M is a pair (L,R) of classes of mor-

phisms such that

(factorization) every arrow of M can be factored as an arrow of L followed by an arrow of R
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(lifting) every lifting problem (II.3.1) with f ∈ L and g ∈ R has a solution

(closure) every arrow with the left lifting property with respect to every arrow in R is in

L and every arrow with the right lifting property every arrow of L is in R.

In the presence of the first two axioms, the third can be replaced by

(closure′) the classes L and R are closed under retracts

as a consequence of the so-called “retract argument,” familiar from the model category literature.

A homotopical category (M,W) is a complete and cocomplete category M together with

a class of morphisms W called weak equivalences that satisfy the 2-of-3 property. A model

structure on a homotopical category is given by a pair of interacting weak factorization systems.

Definition II.3.2. A model structure on a homotopical category (M,W) consists of two classes

of morphisms C,F such that (C ∩W,F) and (C,F ∩W) are weak factorization systems.

Adopting standard notation

Ll = {g ∈M2 | g has the right lifting property with respect to all f ∈ L}

lR = { f ∈M2 | f has the left lifting property with respect to all g ∈ R}

the lifting and closure axioms combine to assert that R = Ll and L = lR. In particular, it is

clear that either class determines the other. For any class of morphisms R, the class lR is closed

under coproducts, pushouts, (transfinite) composition, retracts, and contains the isomorphisms:

precisely the familiar closure properties for the cofibrations in a model category.

We will now “categorify” the notation just introduced.

Definition (I.2.25). If J → M2 is some subcategory of arrows, not necessarily full, define Jl

be the category whose objects are pairs ( f , φ f ), where f ∈ M2 and φ f is a lifting function that

specifies a solution

·

j
��

a // ·

f
��

·
b

//

φ f ( j,a,b)
u

u

::u
u

·

to any lifting problem against some j ∈ J in such a way that the specified lifts commute with

morphisms in J. A morphism ( f , φ f ) → (g, φg) is a morphism f ⇒ g in M2 that preserves the

chosen lifts.
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When J is discrete, the set of objects in the image of the forgetful functor Jl → M2 is

precisely the set Jl, as defined above. In fact, Jl is the category of vertical arrows for a

double category, which we also denote Jl, with vertical composition defined as follows. If

( f , φ f ), (g, φg) ∈ Jl with cod f = domg, their composite is denoted (g f , φg • φ f ) where

φg • φ f ( j, a, b) := φ f ( j, a, φg( j, f a, b))

·

j

��

a // ·

f
��
·

g
��

·
φg( j, f a,b)

55jjjjjjjjjj
b

//

φ f ( j,a,φg)

::v
v

v
v

v
v

v
v

v
v

v
·

(II.3.3)

There is a forgetful double functor Jl → Sq(M) which restricts to the above forgetful functor

on the categories of vertical arrows. The category lJ is defined dually, and also forms a double

category.

A functorial factorization on M is a section ~E : M2 → M3 of the “composition” functor

M3 → M2; ~E is often described by a pair of functors L,R : M2 ⇒ M2 whose respective

codomain and domain define a common functor E : M2 →M, as depicted below

· u //

f
��

·

g
��

· v
// ·

~E
7→

· u //

L f
��

·

Lg
��

E f
E(u,v)//

R f
��

Eg

Rg
��

· v
// ·

◦
7→

· u //

f
��

·

g
��

· v
// ·

(II.3.4)

Throughout, the vector notation is used to decorate functors and natural transformations on arrow

categories whose primary data is described by one component; e.g., E contains all the data of ~E

on morphisms.

II.3.2 Algebraic weak factorization systems

The endofunctors L,R arising from a functorial factorization ~E are equipped with canonical nat-

ural transformations ~ε : L ⇒ 1, ~η : 1 ⇒ R, described in §I.2.3. A functorial factorization gives

rise to an algebraic weak factorization system when this data can be extended to a compatible

comonad and a monad.
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Definition (I.2.9). An algebraic weak factorization system (L,R) on a category M consists of a

comonad L = (L, ~ε, ~δ) and a monad R = (R, ~η, ~µ) arising from a functorial factorization and such

that (δ, µ) : LR⇒ RL is a distributive law.

The underlying weak factorization system is (L,R), the retract closures of the classes of maps

admitting coalgebra and algebra structures, respectively. Unraveling the definition, an R-algebra

is an arrow f equipped with a specified lift against its left factor

dom f

L f
��

dom f

f
��

E f
s

::u
u

u
u

u

R f
// cod f

(II.3.5)

that is compatible with the multiplication µ f . The arrow s can be used to define a canonical

solution to any lifting problem against an L-coalgebra in such a way that the canonical solution to

the lifting problem posed in (II.3.5) is s; see I.2.10. Morphisms of R-algebras preserve the chosen

solutions to lifting problems. Dually, L-coalgebra structures determine canonical solutions to

lifting problems against R-algebras, defining an embedding

L-coalg lift //

U ##HHHHHHHHH
lR-alg

U{{wwwwwwwww

M2

(II.3.6)

Unusually for comonads on M2, the category L-coalg embeds as the vertical arrows and

squares of a double category Coalg(L):

L-coalg ×
M
L-coalg ◦ // L-coalg

dom //

cod
//Midoo

Objects are objects of M, horizontal arrows are morphisms of M, vertical arrows are L-coalgebras,

and squares are maps of L-coalgebras. The essential point is that L-coalgebras have a canonical

composition law—the functor ◦ above—that is functorial with respect to L-coalgebra morphisms.

This vertical composition, given by the formula (II.3.7) below, is derived from the embedding

(II.3.6) and (II.3.3): if (i, s), ( j, t) ∈ L-coalg with codi = dom j, then the arrow ji is canonically
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an L-coalgebra with coalgebra structure t • s defined by

t • s := cod j t // E j
E(E(1, j)·s,1)// ER( ji)

µ ji // E( ji). (II.3.7)

As in (II.3.3), t • s is defined to be the canonical solution to the lifting problem displayed on the

left

dom j

j

��

E(1, j)·s // E( ji)

R( ji)

��

domi

i

��

domi

ji
��

L( ji) // E( ji)

R( ji)

��

E(E(1, j)s,1)
//_______

µ ji
OO�
�
� E(1, j) //_________

E(L( ji),1)
//_______

1
77oooooo
µ ji

OO�
�
�

cod j
t

OO�
�
�

cod j codi = dom j

s

OO�
�
�

j
// cod j

whose top component, by a monad triangle identity, is the canonical solution to the lifting prob-

lem displayed on the right.

There is an obvious forgetful double functor Coalg(L) → Sq(M) which factors through the

left class of the underlying wfs of (L,R). A double category Alg(R) is defined similarly with

composition law, dual to (II.3.7), arising from the vertical composition in L-coalgl.

Lemma II.3.8. For any awfs (L,R), the functor R-alg lift // L-coalgl over M2 preserves com-

position of algebras.

Proof. The functor “lift” assigns anR-algebra (II.3.5) the lifting function φ( f ,s) defined in (I.2.10)

using the awfs (L,R) and the algebra structure s. Given composable ( f , s), (g, t) ∈ R-alg, we must

show that φ(g,t)•φ( f ,s), defined by the formula (II.3.3), equals φ(g f ,t•s). Using the dual to (II.3.7),

the chosen solution φ(g f ,t•s)(( j, z), a, b) to a lifting problem (II.3.3) against an L-coalgebra ( j, z)

is

cod j z //

z
%%KKKKKKKKKK
E j

E(a,b) //

δ j %%LLLLLLLLLLL E(g f )
δg f // EL(g f )

E(1,E( f ,1))// E(Lg · f )
E(1,t) // E f s //dom f

Ez
E(1,z)

// EL j
E(a,E(a,b))

77pppppppppppp

by naturality of δ and the comultiplication compatibility condition for the L-coalgebra z. By
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definition φ(g,t) • φ( f ,s)(( j, z), a, b) is

cod j z // E j
E(a,φg)

// E f s // dom f

where φg is shorthand for φ(g,t)(( j, z), f a, b) := t ·E( f a, b) · z. The lifting problem (a, φg) : j⇒ f

factors as

·

j
��

· a //

L j
��

·

L(g f )
��

·

Lg· f
��

·

f
��

· z
// ·

E(a,b)
// ·

E( f ,1)
// ·

t
// ·

E(a, φg) is the image of this factorization under E : M2 →M; hence φ(g f ,t•s) = φ(g,t)•φ( f ,s). �

These double categories capture the entire structure of the awfs (L,R).

Lemma II.3.9 (Garner, I.2.24). Either of the double categories Coalg(L) or Alg(R) completely

determines the awfs (L,R).

Proof. Given Alg(R), the functorial factorization ~E, and in particular the functor L and counit ~ε,

can be read off from the unit ~η of the monad R. The comultiplication δ can be defined in terms

of the algebra structure assigned to the composite of the free algebras (R f , µ f ) ◦ (RL f , µL f ) as

follows:

δ f := E fE(L2 f ,1)// E(R f · RL f )
µ f •µL f // EL f (II.3.10)

See §I.2.5 for more details. �

The following theorem enables the theory of algebraic model categories.

Theorem II.3.11 (Garner [Gar09]). Suppose M permits the small object argument (see I.2.28)

and J is any small category of arrows of M. Then M has an awfs (L,R) such that there is

(I.2.26) a functor J→ L-coalg over M2 universal among morphisms of awfs

(I.2.27) an isomorphism of categories R-alg � Jl over M2

Here Jl is the category defined above whose objects are arrows in M which lift coherently

against elements of J together with specified solutions to all lifting problems, which morphisms

of Jl preserve. We make frequent use of both universal properties. Indeed, the universal property
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(I.2.26) of the unit functor J→ L-coalg is even stronger than originally stated. We first extended

it in §I.6.4, Theorem II.3.24 below, and will do so again in Theorem II.5.16.

The isomorphism (I.2.27) factors as

R-alg lift // L-coalgl res // Jl ,

the restriction along the unit functor. Many applications of the second universal property stem

from the following consequence of Lemma II.3.8: (I.2.27) preserves vertical composition, defin-

ing an isomorphism of double categories Alg(R) � Jl.

The essential application of these universal properties is

Corollary II.3.12 (I.3.6). An ordinary cofibrantly generated model structure, with generating

trivial cofibrations J and generating cofibrations I, has an algebraic model structure with the

same generators if and only if the elements of J are I-cellular, i.e., if and only if there is a functor

J→ C-coalg over M2.

Proof. Given such an algebraic model structure (Ct,F) → (C,Ft), the functor Ct-coalg →

C-coalg arising from the comparison map defines C-coalgebra structures for the generating triv-

ial cofibrations. Conversely, given J → C-coalg, where (C,Ft) is the awfs generated by I, the

universal property of Garner’s small object argument tell us that this functor factors through the

unit J → Ct-coalg along a functor induced by a morphism of awfs (Ct,F) → (C,Ft), where

(Ct,F) is the awfs generated by J. On account of the isomorphisms F-alg � Jl,Ft-alg � Il

the underlying wfs of the awfs (Ct,F) and (C,Ft) coincide with the wfs in the ordinary model

structure generated by J and I. So this defines an algebraic model structure compatible with the

original model structure, as desired. �

Remark II.3.13. In fact, any cofibrantly generated ordinary model structure gives rise to an alge-

braic model structure even if the elements of J aren’t I-cellular, though at the cost of changing

one of the generating sets. See I.3.7 and I.3.8.

II.3.3 Adjunctions of algebraic weak factorization systems

The appropriate sorts of morphisms between categories equipped with a weak factorization sys-

tem preserve one class or the other; both is too much to expect. By convention, lax morphisms
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preserve the right class and colax morphisms preserve the left class. An easy argument shows

that, for any adjunction T a S , the left adjoint T is colax if and only if the right adjoint S is lax.

In the algebraic setting, we ask that the right and left adjoints preserve algebraic right and left

maps, in the sense that they lift to functors between the categories of algebras and coalgebras,

respectively. But simply asking for lifted functors is not strong enough. Because a single lifted

functor doesn’t capture the full data of an awfs, in the way that it does in the non-algebraic setting,

a lift of the left adjoint does not guarantee the existence of, much less determine, a lift of the right

adjoint and conversely.

Suppose T a S : M � K is an adjunction, T the left adjoint, and let M and K have awfs

(C,F) and (L,R), respectively. The most succinct statement of the correct definition uses Lemma

II.3.9.

Definition II.3.14. An adjunction of awfs (C,F)→ (L,R) is determined by either

• a double functor Coalg(C)→ Coalg(L) lifting the left adjoint

• a double functor Alg(R)→ Alg(F) lifting the right adjoint

On its own, the lifted double functor Coalg(C) → Coalg(L) is called a colax morphism of

awfs (C,F) → (L,R) and the lifted double functor Alg(R) → Alg(F) is called a lax morphism of

awfs (L,R) → (C,F). What is far from obvious with this definition is that in the presence of an

adjunction T a S , lax morphisms of awfs lifting S determine colax morphisms of awfs lifting T

and conversely. To prove this, we will work towards an alternate, equivalent definition.

Passing to the category of vertical arrows, the double functors in particular determine functors

C-coalg→ L-coalg, R-alg→ F-alg lifting T and S . The following extension of Lemma II.3.9 is

essentially a tautology.

Lemma II.3.15. A lifted double functor Alg(R) → Alg(F) is precisely a lifted functor R-alg →

F-alg that preserves the canonical composition of algebras. Dually, a lifted double functor

Coalg(C) → Coalg(L) is precisely a composition-preserving lifted functor C-coalg → L-coalg

of coalgebras.
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Proof. A double functor Alg(R) → Alg(F) lifting S is determined by a commuting diagram of

functors

R-alg ×
K
R-alg ◦ //

S̃×S S̃
��

R-alg
dom //

cod
//

S̃
��

Kidoo

S
��

F-alg ×
M
F-alg ◦ // F-alg

dom //

cod
//Midoo �

A lifted functor, R-alg → F-alg preserves composition of certain free algebras if and only

if the characterizing natural transformation satisfies a pentagon involving the comultiplication.

This leads to an equivalent definition of lax and colax morphisms of awfs.

Lemma (I.6.9). Lax morphisms of awfs S : (L,R) → (C,F) correspond bijectively to natural

transformations ρ : QS ⇒ S E satisfying diagrams (I.6.5). Dually, colax morphisms of awfs

T : (C,F) → (L,R) correspond to natural transformations λ : T Q ⇒ ET satisfying diagrams

(I.6.7).

Proof. Use Lemma II.3.15 and a diagram chase; see I.6.9 for more details. �

Given ρ : QS ⇒ S E, its mate with respect to

M2

T 2
��
a

Q //M

T
��
a

K2

S 2
OO

E
// K

S

OO (II.3.16)

is a natural transformation λ : T Q ⇒ ET . Using the previous two lemmas, we can restate Defi-

nition II.3.14 in such a way that it is apparent that the two defining conditions are equivalent.

Definition (I.6.10). An adjunction of awfs (T, S , λ, ρ) : (C,F)→ (L,R) consists of an adjoint pair

of functors together with mates λ and ρ, as above, such that (S , ρ) is a lax morphism of awfs and

(T, λ) is a colax morphism of awfs.

Corollary II.3.17. The conditions defining an adjunction of awfs are equivalent.

Proof. The mates correspondence associates each diagram of (I.6.5) to a corresponding diagram

of (I.6.7). Hence, by Lemma II.2.10 and its dual, a natural arrow ρ gives rise to a lax morphism

of awfs lifting S if and only if its mate λ gives rise to a colax morphism of awfs lifting T . �
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Example (I.6.14). The comparison map in an algebraic model structure is an adjunction of awfs,

the adjunction in question being the identity. Indeed, the morphisms of awfs defined in [Gar09]

are exactly adjunctions of awfs lifting identity adjunctions: in such cases, the diagrams (I.6.5)

and (I.6.7) agree and coincide with those diagrams defining morphisms of awfs.

Lemma II.3.15 can also be used to characterize the adjunctions of awfs whose domain is

cofibrantly generated. The non-trivial direction of the following theorem was first suggested by

Mike Shulman; his proof appears as I.6.17. Below, we give a streamlined proof, whose essential

details are the same but whose argument is more conceptual.

Theorem II.3.18. Suppose M has an awfs (C,F) generated by J and K has an awfs (L,R), not

necessarily cofibrantly generated. An adjunction T a S : M� K is an adjunction of awfs if and

only if there is a lift

J

��

//___ L-coalg

��

M2 T 2
//
K2

(II.3.19)

in which case the adjunction of awfs (T, S , λ, ρ) : (C,F)→ (L,R) is canonically determined.

In other words, there is an adjunction of awfs (C,F) → (L,R) if an only if the image of the

generators under T 2 is cellular. Write T 2J for the category J over K2; with this notation, the

lifted functor of (II.3.19) is precisely a functor T 2J→ L-coalg over K2.

Proof of Theorem II.3.18. We employ Lemma II.3.15. A categorical expression for the familiar

fact that adjunctions interact nicely with lifting problems is that

(T 2J)l

��

adj //
y

Jl

��

K2
S 2

//
M2

(II.3.20)

is a pullback in CAT. The functor adj : (T 2J)l → Jl sends an arrow f with lifting function φ f to

the arrow S f with lifting function φ]f , whose chosen solutions are adjunct to the solutions chosen

by φ f to the transposed lifting problem. Define R-alg→ F-alg � Jl to be the composite

R-alg lift // (L-coalg)l res // (T 2J)l
adj // Jl (II.3.21)
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where the restriction is along the functor T 2J → L-coalg. Each functor preserves composition:

the first by Lemma II.3.8, the second trivially, and the third by naturality of adjunctions—this last

diagram chase is given in the proof of Theorem I.6.15. �

Remark II.3.22. In fact, all of the functors of (II.3.21) are double functors and the pullback

(II.3.20) defines a pullback in DblCAT.

Remark II.3.23. The definition of (II.3.21) works for any adjunction T a S : M2 � K2, not only

for those defined pointwise by adjunctions M � K. However in the general case, the functor

adj : (TJ)l → Jl won’t preserve vertical composition; indeed S and hence adj won’t necessarily

preserve composability of vertical arrows. This accounts for nearly all the technical difficulties

in §II.5 and §II.6.

Conversely, there is a unique adjunction of awfs arising from a specified cellular structure for

the generators T 2J. This is an immediate consequence of the following extension of the universal

property of Theorem II.3.11.

Theorem II.3.24 (I.6.22). Garner’s small object argument reflects small categories of arrows

over categories permitting the small object argument along the forgetful functor

AWFSladj // CAT/(−)2ladj.
ss _c

(II.3.25)

In particular, if (C,F) is generated by J, the canonical functor J → C-coalg is universal among

adjunctions of awfs.

AWFSladj is the category of awfs and adjunctions of awfs, and CAT/(−)2ladj is the category of

categories over an arrow category, where morphisms are left adjoints between the bases together

with a specified lift to the fibers.

II.3.4 Algebraic Quillen adjunctions

An algebraic Quillen adjunction T a S : M � K between categories equipped with algebraic

model structures is an adjunction of awfs with respect to the (trivial cofibration, fibration) and

(cofibration, trivial fibration) awfs that satisfies an additional compatibility condition.

90



Definition (I.3.11). Suppose M has an algebraic model structure ξM : (Ct,F) → (C,Ft) and K

has an algebraic model structure ξK : (Lt,R) → (L,Rt). An algebraic Quillen adjunction is an

adjunction T a S : M� K together with adjunctions of awfs

(Ct,F)

(T,S )
PPPP

((PPPP

(T,S ) //

ξM
��

(Lt,R)

ξK
��

(C,Ft) (T,S )
// (L,Rt)

such that both triangles commute.

In particular, an algebraic Quillen adjunction consists of commuting lifted double functors

Alg(Rt)

ξK
��

S 2
// Alg(Ft)

ξM
��

Alg(R)
S 2

// Alg(F)

and
Coalg(Ct)

ξM
��

T 2
// Coalg(Lt)

ξK
��

Coalg(C)
T 2
// Coalg(L)

(II.3.26)

Because all of these double functors are lifts, this compatibility condition is equivalent to (I.3.12),

which asks that the ordinary lifted functors on algebraic (trivial) cofibrations and fibrations com-

mute. Taking either perspective, functors on the left-hand or right-hand sides determine those

on the other. In particular, it suffices to check commutativity of one of these two diagrams. For

example

Theorem II.3.27. Suppose M has an algebraic model structure ξ : (Ct,F) → (C,Ft). Then the

category M∗ of pointed objects in M has an algebraic model structure such that the disjoint

basepoint–forgetful adjunction (−)+ a U : M�M∗ is an algebraic Quillen adjunction.

Proof. The category M∗ is isomorphic to the slice category ∗/M, where ∗ denotes the terminal

object. An arrow or a commutative square in M∗ is determined by the arrow or square in the

image of the forgetful functor together with the basepoint of its initial object; the other basepoints

are defined by composition. This says that

(M∗)2
U2

//

dom
��

y M2

dom
��

M∗ U
//M
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is a pullback. We will see that this implies that the entire structure of the algebraic model structure

on M can be lifted along U to define an algebraic model structure on M∗.

The comonad C is domain-preserving, so its constituent functor and natural transformations

can be pulled back to (M∗)2; this works for the 2-cells because limits in CAT are also 2-limits

[Kel89].

(M∗)2
U2

//

C∗
$$H

H
H

H
H

dom

��

M2

C

  BBBBBBBB

dom
��

(M∗)2

dom
��

y

U2
//
M2

dom
��

M∗ U
//M

The multiplication for the monads also lifts to M∗: e.g., the basepoint of FR f is the image

of the basepoint of dom f , which maps to the basepoint of R f , which proves that µ f preserves

basepoints. For similar reasons, the comparison map lifts along U. This defines an algebraic

model structure we denote ξ∗ : ((Ct)∗,F∗)→ (C∗, (Ft)∗) on M∗.

Algebra structures for fibrations in M∗ are precisely algebra structures for the underlying

fibrations in M: the basepoint of R f is in the image of the basepoint of dom f and hence maps via

the algebra structure map back to the basepoint of dom f . It follows that the left-hand diagram

Alg(F∗) //

��

y
Alg(F)

��
Sq(M∗) U

// Sq(M)

Alg((Ft)∗)

ξ∗
��

// Alg(Ft)

ξ
��

Alg(F∗) // Alg(F)

is a pullback in DblCAT. By this fact and the definition of ξ∗, the right-hand square commutes,

establishing the algebraic Quillen adjunction. �

We use the fact that it suffices to verify the compatibility condition (II.3.26) on the level of the

categories of algebraic (trivial) cofibrations together with Theorems II.3.18 and II.3.24 to prove

Theorem II.3.28. Suppose that M and K have algebraic model structures, as above, such that

the algebraic model structure on M is generated by categories J and I. Then T a S : M � K is
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an algebraic Quillen adjunction if and only if there exist lifts

J

��

//____ Lt-coalg

��

such that J

%%LLLLLL

��

// Lt-coalg

��

ξK

''PPPPP

I

������
//_______ L-coalg

wwooooooo
C-coalg

yysssss
// L-coalg

wwooooooo

M2
T 2

//
K2 M2

T 2
//
K2

commutes. In this case, the algebraic Quillen adjunction is canonically determined.

The first condition says that the images of J and I must be cellular for Lt and L respectively.

The second condition says that the two canonical ways of assigning L-coalgebra structures to J—

one using ξM and one lifted functor and the other using ξK and the other lifted functor—must

agree.

Proof of Theorem II.3.28. By Theorem II.3.18, the lifts of T 2 give rise to adjunctions of awfs

(T, S ) : (Ct,F)→ (Lt,R) (T, S ) : (C,Ft)→ (L,Rt).

These combine to specify an algebraic Quillen adjunction if and only if the lifted functors

Ct-coalg
ξM
''PPPPP

��

// Lt-coalg
ξK

''PPPPP

��

C-coalg
wwnnnnnnn

// L-coalg
wwooooooo

M2
T 2

//
K2

(II.3.29)

commute. The reflection (II.3.25) defines the functor Ct-coalg → Lt-coalg by factoring J →

Lt-coalg through Ct-coalg. By the universal property of J → Ct-coalg in Theorem II.3.24,

(II.3.29) commutes if and only if the restriction to J does, which was a hypothesis. �

In particular, the conditions of Theorem II.3.28 are satisfied if the algebraic model structure

on K is constructed by lifting the algebraic model structure on M along an adjunction

Theorem (I.3.10, I.3.13). Suppose M has an algebraic model structure generated by J and I,

T a S : M� K is an adjunction, and K permits the small object argument. If

(††) S maps the T 2J-cellular arrows into weak equivalences
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then T 2J and T 2I generate an algebraic model structure on K such that T a S is canonically an

algebraic Quillen adjunction.

This theorem gives an important class of algebraic Quillen adjunctions, including the geo-

metric realization–total singular complex adjunction between simplicial sets and spaces, the ad-

junction between G-spaces and space-valued presheaves on the orbit category for a group G, the

adjunctions establishing the projective model structure, as well as many other classical examples.

II.4 Algebraic Quillen two-variable adjunctions

A two-variable adjunction such as (⊗, hom`, homr) : M ×M → M for a closed monoidal cat-

egory, or (�, {−,−}, hom): V ×M → M for a tensored and cotensored V-enriched category, or

(⊗, hom`, homr) : K ×M→ N in general consists of three bifunctors

K ×M
−⊗− // N Kop ×N

hom`(−,−)
//M Mop ×N

homr(−,−)// K (II.4.1)

together with hom-set isomorphisms

N(k ⊗ m, n) � M(m, hom`(k, n)) � K(k, homr(m, n)) (II.4.2)

natural in all three variables. In particular, these form parameterized adjunctions: fixing any

one variable gives rise to families of adjunctions in the ordinary sense. When K and M have

pullbacks and N has pushouts, there is an induced two-variable adjunction

K2 ×M2 −⊗̂− //
N2 (K2)op ×N2

ˆhom`(−,−)
//
M2 (M2)op ×N2

ˆhomr(−,−)//
K2 (II.4.3)

defined in (II.5.2) below. The bifunctor −⊗̂− is sometimes called the pushout-product; we call
ˆhom` and ˆhomr pullback-homs.

If K, M, and N are model categories, the two-variable adjunction (⊗, hom`, homr) is Quillen

if the following equivalent conditions are satisfied [Hov99]:

(a) if i ∈ K2 and j ∈M2 are cofibrations then i⊗̂ j ∈ N2 is a cofibration that is trivial if either i

or j is, in which case we say that ⊗ is a left Quillen bifunctor
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(b) if i ∈ K2 is a cofibration and f ∈ N2 is a fibration then ˆhom`(i, f ) ∈ M2 is a fibration that

is trivial if either i or f is, in which case we say that hom` is a right Quillen bifunctor

(c) if j ∈M2 is a cofibration and f ∈ N2 is a fibration then ˆhomr( j, f ) ∈ K2 is a fibration that

is trivial if either j or f is, in which case we say that homr is a right Quillen bifunctor

The equivalence of the three conditions rests on the interplay between adjunctions and lifting

problems. This should be thought of as a strengthening of the usual lifting axiom. For instance,

the corresponding axiom (c) for simplicial model categories implies that any two solutions to a

lifting problem under a cofibrant object are homotopic relative to that object [GJ99, §II.3].

In analogy with §II.3, we say a two-variable Quillen adjunction (⊗, hom`, homr) is algebraic

if the two-variable adjunction (⊗̂, ˆhom`, ˆhomr) lifts to functors of algebraic (trivial) cofibrations

and fibrations as appropriate. Importantly, we can also capture the symmetry of the classical

setting—the equivalence of conditions (a), (b), and (c)—by requiring that the parameterized

mates of the natural transformation characterizing the lift of one of the functors (⊗̂, ˆhom`, ˆhomr)

characterizes the others. A priori, this would be rather difficult to check in practice because each

natural transformation must satisfy a number of diagrams, but a theorem below gives a particu-

larly simple necessary and sufficient condition for all of this structure to exist in the case that the

model structures on K and M are cofibrantly generated.

The components of an algebraic Quillen two-variable adjunction are three two-variable ad-

junctions of awfs. The precise definition is somewhat technical and will be given in §II.6 below,

but the main idea is simple enough to state. Suppose K, M, and N are equipped with awfs

(C′,F′), (C,F), and (L,R) respectively.

Definition II.4.4. A two-variable adjunction of awfs ⊗ : (C′,F′) × (C,F) → (L,R) is a two-

variable adjunction (⊗, hom`, homr) : K ×M→ N equipped with lifted functors

⊗̂ : C′-coalg × C-coalg→ L-coalg

ˆhom` : C′-coalgop × R-alg→ F-alg

ˆhomr : C-coalgop × R-alg→ F′-alg

such that their characterizing natural transformations, described in §II.6 below, are parameterized

mates.

95



Now suppose K, M, and N have algebraic model structures

ξK : (C′t ,F
′)→ (C′,F′t ), ξM : (Ct,F)→ (C,Ft), and ξN : (Lt,R)→ (L,Rt).

Definition II.4.5. An algebraic Quillen two-variable adjunction (⊗, hom`, homr) : K ×M→ N

consists of specified two-variable adjunctions of awfs

⊗ : (C′,F′t ) × (C,Ft)→ (L,Rt)

⊗ : (C′t ,F
′) × (C,Ft)→ (Lt,R)

⊗ : (C′,F′t ) × (Ct,F)→ (Lt,R)

The algebraic Quillen two-variable adjunction is maximally coherent if the lifted functors

C′t -coalg × Ct-coalg
ξK×1

!!BBBBBBBB

,,YYYYYYYY
1×ξM yyrrrrr

C′t -coalg × C-coalg

ξK×1 !!BBBBBBBB
// Lt-coalg

ξN

!!BBBBBBBBB
C′-coalg × Ct-coalg

11ddddd

1×ξMyyrrrrr

C′-coalg × C-coalg // L-coalg

(II.4.6)

commute.

The condition (II.4.6) asks that three squares relating each pair of two-variable adjunctions of

awfs commute. The square comparing the last two, together with Lemma II.6.11 below, defines

a fourth two-variable adjunction of awfs ⊗ : (C′t ,F
′)× (Ct,F)→ (Lt,R); compare with I.3.11. By

the calculus of parameterized mates, the coherence conditions (II.4.6) are equivalent to coherence

conditions for the lifts of ˆhom` or ˆhomr displayed in (II.6.13) below.

Evaluating a maximally coherent algebraic Quillen two-variable adjunction at an algebraic

cofibrant object or an algebraic fibrant object gives rise to an ordinary algebraic Quillen adjunc-

tion.

Lemma II.4.7. If (⊗, hom`, homr) : K×M→ N is a maximally coherent algebraic Quillen two-

variable adjunction and A is an algebraic cofibrant object of K, then A ⊗ − a hom`(A,−) : M�

N is canonically an algebraic Quillen adjunction. Dually, if X is an algebraic fibrant object of

N, then hom`(−, X) a homr(−, X) : K�Mop is canonically an algebraic Quillen adjunction.
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Proof. Using the notation of Definition II.4.5, an algebraic cofibrant object A is a C′-coalgebra

i : ∅ → A. The adjunction i⊗̂− a ˆhom`(i,−) coincides with the pointwise-defined adjunction

A ⊗ − a hom`(A,−) : M2 � N2.

Hence, upon evaluating at i ∈ C′-coalg, the front rectangle of (II.4.6) exhibits the desired alge-

braic Quillen adjunction. �

An immediate corollary to two hard theorems, whose proofs are deferred to §II.5 and §II.6,

gives a simple criterion characterizing algebraic Quillen two-variable adjunctions in the case

where the algebraic model structures on K and M are cofibrantly generated. The first theorem

constructs a two-variable adjunction of awfs assuming the pushout-product of the generators is

cellular.

Theorem II.4.8 (Cellularity Theorem). Suppose I generates (C′,F′) on K and J generates (C,F)

on M and N has an awfs (L,R). Then (⊗, hom`, homr) gives rise to a two-variable adjunction of

awfs if and only if I⊗̂J is cellular, that is, if and only if there is a lift

I × J

��

//____ L-coalg

��

K2 ×M2 −⊗̂− //
N2

Conversely, a cellular structure for I⊗̂J determines a unique adjunction of awfs.

Theorem II.4.9 (Uniqueness Theorem). There can be at most one two-variable adjunction of

awfs (C′,F′)× (C,F)→ (L,R) whose lifted left adjoint restricts along the unit functors to a given

lifted functor I × J→ L-coalg.

Corollary II.4.10. Suppose the algebraic model structures on K and M are cofibrantly gener-

ated, with generating cofibrations J′, I′, J, and I. Then (⊗, hom`, homr) is an algebraic Quillen

two-variable adjunction if and only if the category I′ × I is L-cellular and the categories J′ × I
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and I′ × J are Lt-cellular, and is maximally coherent if and only if

I′ × J
++WWWWWWWWW






��






J′ × I

��

// Lt-coalg

��
C′-coalg × C-coalg // L-coalg

and

J′ × J

��

// C′t -coalg × C-coalg

��
C′-coalg × Ct-coalg // Lt-coalg

commute.

At this point the definition of a monoidal algebraic model structure is rather obvious. A reader

who is willing to take these results on faith and uninterested in the categorical work necessary to

make these definitions precise might wish to skip directly to §II.7, perhaps detouring to absorb

the composition criterion of Theorems II.5.12 and II.6.4.

In §II.5, we study single variable adjunctions on arrow categories arising from two-variable

adjunctions, extending the definitions and theorems of §II.3.3 to include adjunctions of this par-

ticular sort. To a great extent, the two-variable case reduces to the single variable one. In par-

ticular, we prove Theorem II.4.9 at the end of §II.5. In §II.6, we focus on difficulties particular

to bifunctors, giving an explicit description of the parameterized mates characterizing the lifted

functors in a two-variable adjunction of awfs, and proving Theorem II.4.8.

Notation II.4.11. In §II.5 and §II.6, we only concern ourselves with the interactions between a

two-variable adjunction and categories equipped with a single awfs each, for which we adopt

the following notation. We write (C′,F′), (C,F), and (L,R) for the awfs on K, M, and N,

respectively, with functors Q′ : K2 → K, Q : M2 → M, and E : N2 → N accompanying the

functorial factorizations. We write i : A → B, j : K → L, and f : X → Y for generic elements

of K2, M2, and N2 respectively. Whenever we assume further that i has the structure of a C′-

coalgebra, j has the structure of a C-coalgebra, or f has the structure of an R-algebra, we always

make this explicit.

II.5 Adjunctions of algebraic weak factorization systems, revisited

We now begin to get our hands dirty. In §II.5.1, we extend the definition of adjunction of awfs

to include adjunctions M2 � N2 obtained by evaluating the two-variable adjunction (II.4.3)

at fixed i ∈ K2. In §II.5.2, we give a cellularity criterion analogous to Theorem II.3.18 that
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characterizes these sorts of adjunctions of awfs whenever the domain is cofibrantly generated. Of

particular interest is new composition criterion, conceived to prove this result, that is analogous

to, though considerably harder to state than, Lemma II.3.15. In later sections, we will see that

this is essentially our only trick for recognizing two-variable adjunctions of awfs.

In §II.5.3 we further extend the universal property of the unit functor constructed via Garner’s

small object argument, proving that Theorem II.3.24 still holds with the extended terminology.

The general structure of the proof parallels our original argument, though the technical details

are somewhat more complicated.

II.5.1 Adjunctions arising from two-variable adjunctions

We consider adjunctions

i⊗̂− : M2 //
⊥ N2 : ˆhom`(i,−)oo (II.5.1)

obtained by fixing i : A → B ∈ K and evaluating the induced two-variable adjunction (II.4.3).

Because the right closure homr won’t appear in this section, we abbreviate ˆhom` to ˆhom and use

exponential notation for hom`. For j : K → L in M2 and f : X → Y in N2, the arrows i⊗̂ j and
ˆhom(i, f ) are defined to be the “pushout-product” and the “pullback-hom” displayed below

A ⊗ K

i⊗K
�� p

A⊗ j // A ⊗ L

�� i⊗L

��

XB

ˆhom(i, f )
E

E

""EE

ˆhom(B, f )

%%

ˆhom(i,X)

��

B ⊗ K //

B⊗ j ,,

·

i⊗̂ j
H

H

$$HHH

· //

��

y YB

ˆhom(i,Y)
��

B ⊗ L XA
ˆhom(A, f )

// YA

(II.5.2)

In addition to (II.5.1), these functors induce an adjunction on the categories of composable triples

of arrows.

Lemma II.5.3. For fixed i : A→ B, there is an adjunction

(i⊗̂−, i⊗̂−) : M4 //
⊥ N4 : ( ˆhom(i,−), ˆhom(i,−))oo
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Proof. The left and right adjoints are

I

j
��

A ⊗ J t
A⊗I

B ⊗ I

i⊗̂ j
��

X

f
��

XB

ˆhom(i, f )
��

J

k

��

B ⊗ J

ι◦(B⊗k)
��

Y

g

��

YB ×YA XA

gB◦π

��

7→ and 7→

K

l
��

A ⊗ L t
A⊗K

B ⊗ K

i⊗̂l
��

Z

h
��

ZB

ˆhom(i,h)
��

L B ⊗ L W WB ×WA ZA

where ι and π are the obvious legs of the pushout and pullback cones. The diagram

A ⊗ J t
A⊗I

B ⊗ I

i⊗̂ j
��

atb // X

f
��

I

j
��

b] // XB

ˆhom(i, f )
��

B ⊗ J
B⊗k ��

c // Y

g

��

J

k

��

c] ))SSSSSSS
c]×a] // YB ×YA XA

π��
B ⊗ K

e

))TTTTTTT
ι ��

! YB

gB
��

A ⊗ L t
A⊗K

B ⊗ K
dte

//

i⊗̂l
��

Z

h
��

K

l
��

e] // ZB

ˆhom(i,h)
��

B ⊗ L
z // W L

z]×d] // WB ×WA ZA

exhibits the adjoint correspondence: the top and bottom squares of each diagram are adjunct

under i⊗̂− a ˆhom(i,−) and the middle quadrangles are adjunct under B ⊗ − a (−)B. �

Remark II.5.4. Despite the horrendous notation, we introduce these functors as a convenience,

allowing us to quote Theorem II.2.7 rather than chase diagrams. But while there exist similar

bifunctors

K4 ×M4 → N4 (K4)op ×N4 →M4 (M4)op ×N4 → K4

these no longer form any sort of adjunction. Hence, the categories of composable triples of arrows

will not appear in §II.6.
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Now adopt the notation of II.4.11. By Lemma II.2.9 and its dual, lifts of i⊗̂− and ˆhom(i,−)

to functors on coalgebras and algebras correspond to natural transformations

i⊗̂C
~λ(i) +3 L(i⊗̂−) and F ˆhom(i,−)

~ρ(i) +3 ˆhom(i,R),

that satisfy (co)unit and (co)multiplication conditions. The (co)unit condition defines the domain

of ~λ(i) and the codomain of ~ρ(i) in such a way that that component of the pentagon is for free.

Write λ(i) = cod ~λ(i) and ρ(i) = dom ~ρ(i) for the non-trivial components. Their (co)unit conditions

are usually expressed by saying that λ(i) and ρ(i) define colax and lax morphisms of functorial

factorizations in a sense we will exhibit in (II.5.7) below. The (co)multiplication conditions for

λ(i) and ρ(i) are non-trivial; these pentagons appear in the statement of Lemma II.5.9.

In analogy with Definition I.6.10 and (II.3.16), we define

Definition II.5.5. The functors i⊗̂− and ˆhom(i,−) form an adjunction of awfs (C,F) → (L,R) if

there exist mates λ(i) and ρ(i) with respect to the adjunctions

M2 Q //

i⊗̂−
��
a

M

B⊗−
��

a

N2

ˆhom(i,−)

OO

E
// N

(−)B

OO

such that ~λ(i) and ~ρ(i) determine lifts of i⊗̂− and ˆhom(i,−).

We give another presentation of the mates correspondence of λ(i) and ρ(i) that captures the

full data of ~λ(i) and ~ρ(i). Adopting simplicial notation, write s1 for precomposition with the

functor 4 → 3 that collapses the middle two objects of 4 to the middle object of 3. Mates with

respect to the adjunctions

M2
~Q //

i⊗̂−
��
a

M3 s1 //
M4

(i⊗̂−,i⊗̂−)
��
a

N2
~E

//

ˆhom(i,−)

OO

N3
s1

//
N4

( ˆhom(i,−), ˆhom(i,−))

OO
(II.5.6)
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are natural transformations

( ~λ(i), ~λ′(i)) : (i⊗̂C−, i⊗̂C−)⇒ L(i⊗̂−, i⊗̂−)

( ~ρ′(i), ~ρ(i)) : F( ˆhom(i,−), ˆhom(i,−))⇒ ( ˆhom(i,R−), ˆhom(i,R−))

whose components at j : K → L ∈M and f : X → Y ∈ N are

A ⊗ Q j t
A⊗K

B ⊗ K

i⊗̂C j
��

A⊗F jt1 // A ⊗ L t
A⊗K

B ⊗ K

L(i⊗̂ j)
��

XB

C ˆhom(i, f )
��

XB

ˆhom(i,L f )
��

B ⊗ Q j
λ(i) j //

ι

��

E(i⊗̂ j) Q ˆhom(i, f )
ρ′(i) f // E f B ×E f A XA

π

��

and

A ⊗ L t
A⊗Q j

B ⊗ Q j

i⊗̂F j

��

λ′(i) j // E(i⊗̂ j)

R(i⊗̂ f )

��

Q ˆhom(i, f )

F ˆhom(i, f )
��

ρ(i) f // E f B

ˆhom(i,R f )
��

B ⊗ L B ⊗ L YB ×
YA

XA

1×L f A
// YB ×YA E f A

(II.5.7)

Obviously λ′(i) determines λ(i) but, under the hypothesis that the left-hand side is the mate of a

lax morphism of functorial factorizations, the converse also holds. One component of λ′(i) is λ(i)

and the other is necessarily a component of L(i⊗̂−) on account of the appearance of the functor

L in the bottom component of the right-hand natural transformation. Similarly, when the mate of

the right-hand side is a colax morphism of functorial factorizations, ρ(i) determines ρ′(i), whose

other component is defined from F ˆhom(i,−).

Extending the notation introduced above, write ~λ(i), ~λ′(i), ~ρ′(i), and ~ρ(i) for the natural trans-

formations of the upper left, lower left, upper right, and lower right squares, respectively. Note
~λ(i) and ~ρ′(i) are mates and ~λ′(i) and ~ρ(i) are mates with respect to

M2 C //

i⊗̂−

��

a

M2

i⊗̂−

��

a

M2

i⊗̂−

��

a

F //
M2

i⊗̂−

��

aand

N2
L

//

ˆhom(i,−)

OO

N2

ˆhom(i,−)

OO

N2

ˆhom(i,−)

OO

R
//
N2

ˆhom(i,−)

OO
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respectively. Indeed:

Lemma II.5.8. λ(i) and ρ(i) are mates if and only if ( ~λ(i), ~λ′(i)) and ( ~ρ′(i), ~ρ(i)) are mates.

Proof. Pasting

M4 ev12 //

uπ

ιw

(i⊗̂−,i⊗̂−)

��

a

M2

(B⊗−)2

��

a

ev0 //

uhom(B,−)

B⊗−w

M

B⊗−

��

a

N4
( ˆhom(i,−), ˆhom(i,−))

OO

ev12
//
N2

hom(B,−)2

OO

ev1
// N

hom(B,−)

OO

on the right of (II.5.6) defines λ(i), ρ(i) in terms of ( ~λ(i), ~λ′(i)) and ( ~ρ′(i), ~ρ(i)). It follows from

Theorem II.2.7 that if the latter are mates, so are the former. Conversely, using the definitions of
~λ′(i) and ~ρ′(i) above, a diagram chase shows that if λ(i) and ρ(i) are mates, then so are ( ~λ(i), ~λ′(i))

and ( ~ρ′(i), ~ρ(i)). �

With (II.5.7), we can now be more explicit about the conditions on the natural transformations

that satisfy Definition II.5.5.

Lemma II.5.9. The adjunction (i⊗̂−, hom(i,−)) is an adjunction of awfs (C,F)→ (L,R) if either

• There exists λ(i) as in (II.5.7) such that the pentagons

i⊗̂C
i⊗̂~δ
���������

~λ(i) // L(i⊗̂−)
~δi⊗̂−
��;;;;;; R(i⊗̂F) R ~λ′(i)**VVVV

i⊗̂F2

i⊗̂~µ ��;;;;;;;

~λ′(i)F 44hhhhhh
R2(i⊗̂−)

~µi⊗̂−��������
i⊗̂C2

~λ(i)C
**VVVVVV L2(i⊗̂−)

L(i⊗̂C) L ~λ(i)
44hhhh

i⊗̂F
~λ′(i)
// R(i⊗̂−)

commute, in which case we say that (i⊗̂−, λ(i)) is a colax morphism of awfs (C,F)→ (L,R).

• There exists ρ(i) as in (II.5.7) such that the pentagons

C ˆhom(i,−)~δ ˆhom(i,−)

��������

~ρ′(i) // ˆhom(i, L)
ˆhom(i,~δ)
��======

C2 ˆhom(i,−)

C ~ρ′(i)
++WW

ˆhom(i, L2)

C ˆhom(i, L) ~ρ′(i)L

33gg

F ˆhom(i,R) ~ρ(i)R++WW

F2 ˆhom(i,−)

~µ ˆhom(i,−) ��======

F ~ρ(i) 33gg
ˆhom(i,R2)

ˆhom(i,~µ)��������

F ˆhom(i,−)
~ρ(i)
// ˆhom(i,R)
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commute, in which case we say that ( ˆhom(i,−), ρ(i)) is a lax morphism of awfs (L,R) →

(C,F).

Proof. When λ(i) and ρ(i) are mates, so are ~λ(i) and ~ρ′(i) and ~λ′(i) and ~ρ(i); hence, in each

column, the top pentagon commutes if and only if the bottom one does by Theorem II.2.7. �

II.5.2 Composition and cellularity criteria

In practice, it is often easier to define a lifted functor than to describe its natural transformation,

so it is useful to have a criterion to detect which lifted functors are (co)lax morphisms of awfs.

Recall that for cofibrantly generated awfs, vertical composition in R-alg � Jl is particularly

easy to describe. If ( f , φ f ), (g, φg) ∈ Jl with cod f = domg, their composite is (g f , φg • φ f )

where

φg • φ f ( j, a, b) := φ f ( j, a, φg( j, f a, b))

·

j

��

a // ·

f
��
·

g
��

·
φg( j, f a,b)

55jjjjjjjjjj
b

//

φ f ( j,a,φg)

::v
v

v
v

v
v

v
v

v
v

v
·

(II.5.10)

Note that ( f , 1) : (g f , φg •φ f )⇒ (g, φg) is a morphism in Jl, but (1, g) : f ⇒ g f is not. However

this latter arrow, appearing as the middle square below, does preserve solutions to some lifting

problems: namely those whose bottom arrow is the solution φg to a lifting problem of the form

·

j

��

a // ·

f

��

·

g f

��

f // ·

g

��
·

b

44

φg( j, f a,b)jjjjjj

44jjjjjj

//_____ · g
// · ·

(II.5.11)

More generally, for any awfs (L,R) and composable R-algebras f and g, ( f , 1) : g f ⇒ g is a

morphism of R-algebras, while (1, g) : f ⇒ g f only preserves the canonical solutions to lifting

problems of the form (II.5.11). This point will return in the proof of Theorem II.5.15.
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Theorem II.5.12 (Composition criterion). Composing with the embedding (II.3.6), a lifted func-

tor ˆhom(i,−) : R-alg→ F-alg gives rise to

R-alg

��

// F-alg

��

lift // C-coalgl

yyssssssssss

N2
ˆhom(i,−)//

M2

The functor R-alg → F-alg defines a lax morphism of awfs if and only if the lifting functions

assigned to a composable pair f , g ∈ R-alg have the following property: given a lifting problem

(a, b× c) between j ∈ C-coalg and ˆhom(i, g f ), composition with the right square of the rectangle

below determines a lifting problem against ˆhom(i, g), whose canonical solution is determined

by the awfs (C,F) and the lifted functor. This solution d determines a lifting problem against
ˆhom(i, f ), which can again be solved by (C,F) and the lifted functor, and this solution e should

be the chosen solution to the original lifting problem.

K a //

j
��

XB

ˆhom(i, f )
��

XB

ˆhom(i,g f )��

f B
// YB

ˆhom(i,g)
��

L

e
99ssssssss

e
33hhhhhhhhhhhhhhhhh

d

22eeeeeeeeeeeeeeeeeeeeeeeeeee
d×c

//_____

b×c

55
YB ×YA XA

gB×gA1
// ZB ×ZA XA

1×1 f A
// ZB ×ZA YA

(II.5.13)

Proof. By Lemmas II.2.9 and II.5.9, the lifted functor R-alg→ F-alg determines a lax morphism

of awfs if and only if its characterizing natural transformation ρ(i) is such that the left-hand

pentagon

Q ˆhom(i, f )
ρ′(i) f//

δ ˆhom(i, f )
����������

E f B ×E f A XA

δB
f ×δA

f
1

��9999999
Q ˆhom(i, f )

ρ(i) f //

δ ˆhom(i, f )
����������

E f B

δB
f
��99999999

QC ˆhom(i, f )
Q(1,ρ′(i) f ) **

UUUU
EL f B ×EL f A XA QC ˆhom(i, f )

Q(1,ρ′(i) f ) **
UUUU

EL f B

Q ˆhom(i, L f )
ρ′(i)L f
44iii

Q ˆhom(i, L f )
ρ(i)L f

44iiiiiii

commutes. Projecting to one leg of the pullbacks, the left pentagon implies the right one, but

an easy diagram chase—the essential point being that the other leg of ρ′(i) f is defined to be a
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leg of F ˆhom(i, f )—shows that the right pentagon also implies the left. Thus, it suffices to prove

that the lifted functor satisfies the composition criterion if and only if this right-hand pentagon

commutes.

Suppose ˆhom(i,−) : R-alg → F-alg is a lax morphism of awfs and consider composable R-

algebras ( f , s) and (g, t). The lifted functor assigns the image of their composite (g f , t • s) the

F-algebra structure

Q ˆhom(i, g f )
ρ(i)g f

// E(g f )B
(t•s)B

// XB =

Q ˆhom(i, g f )
ρ(i)g f

// E(g f )B
δB

g f

// EL(g f )B
E(1,E( f ,1))B

// E(Lg · f )B
E(1,t)B

// E f B
sB
// XB

(II.5.14)

As for any F-algebra structure, this map is the canonical solution assigned to the lifting problem

XB

C ˆhom(i,g f )
��

XB

ˆhom(i,g f )
��

Q ˆhom(i, g f )
F ˆhom(i,g f )

// ZB ×ZA XA

The composition criterion says that (II.5.14) should be obtained in the following manner. First,

solve the composite lifting problem

XB

C ˆhom(i,g f )

��

XB
f B

//

��

YB

ˆhom(i,g)

��

Q(1,F ˆhom(i,g f )) //
Q( f B,1×1 f A)

//

tB·ρ(i)g
OO

Q ˆhom(i, g f )
1

55kkkkkkkkkkkkkkkk

F ˆhom(i,g f )
//

δ

OO

ZB ×ZA XA
1×1 f A

// ZB ×ZA YA

in the manner displayed using the awfs (C,F) and the F-algebra structure assigned to ˆhom(i, g).

The first two arrows in this lift compose to the identity by a triangle identity for the comonad C;

hence, by naturality of ρ(i), the canonical solution to this lifting problem is

Q ˆhom(i, g f )
ρ(i)g f // E(g f )B E( f ,1)B

// EgB tB // YB .
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This arrow defines the other leg of the lifting problem

XB

C ˆhom(i,g f )
��

XB

ˆhom(i, f )
��

Q ˆhom(i, g f ) // YB ×YA XA

whose canonical solution must agree with the F-algebra structure of ˆhom(i, g f ). This lifting

problem factors as

XB

C ˆhom(i,g f )
��

XB

ˆhom(i,L(g f ))
��

XB

ˆhom(i,Lg· f )
��

XB

ˆhom(i, f )
��

Q ˆhom(i, g f )
ρ′(i)g f

// E(g f )B ×E(g f )A XA
E( f ,1)B×E( f ,1)A1

// EgB ×EgA XA
tB×tA1

// ZB ×ZA XA

so its canonical solution, by naturality of ρ(i), is the composite

Q ˆhom(i, g f )
δ ˆhom(i,g f )// QC ˆhom(i, g f )

Q(1,ρ′(i)g f )
// Q ˆhom(i, L(g f ))

ρ(i)L(g f ) // EL(g f )B · · ·

· · ·
E(1,E( f ,1))B

// E(Lg · f )B E(1,t)B
// E f B sB

// XB

which agrees with (II.5.14) if the pentagon for g f is satisfied.

Conversely, suppose the lifted functor satisfies the composition criterion. Consider the com-

posable pair of free R-algebras EL f
RL f // E f

R f // Y . Employing the definition (II.3.10) of δ,
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the upper right composite of the pentagon is the top composite of

E f B E(L2 f ,1)B
// E(R f · RL f )B

(µ f ·µL f )B

))SSSSSSSSSSSSSSSSS

Q ˆhom(i, f )
δ ˆhom(i, f )

��

ρ(i) f
44jjjjjjjjjjjjjjjjjjj

E((L2 f )B,1×1(L2 f )A)
// Q ˆhom(i,R f · RL f )

ρ(i)R f ·RL f

44iiiiiiiiiiiiiiii

δ ˆhom(i,R f ·RL f )
��

EL f B

QC ˆhom(i, f ) //

Q(1,ρ′(i) f )
��

QC ˆhom(i,R f · RL f )

Q(1,ρ′(i)R f ·RL f )
��

ERL f B

µB
L f

OO

Q ˆhom(i, L f )

ρ(i)L f **TTTTTTTTTTTTTTTTTT
// Q ˆhom(i, L(R f · RL f ))

ρ(i)L(R f ·RL f )
**UUUUUUUUUUUUUUUU

E(LR f · RL f )B

E(1,µ f )B
OO

EL f B
E(L2 f ,E(L2 f ,1))B

// EL(R f · RL f )B
E(1,E(RL f ,1))B

55kkkkkkkkkkkkkkk

The squares commute by naturality of ρ(i), δ, ρ′(i), and ρ(i); names for the unlabeled arrows can

be deduced from this. The octagon is exactly the composition criterion, in the form just deduced,

so the outer decagon commutes. The composite of the last four arrows along the bottom right is

(−)B applied to an identity

EL(R f · RL f )
E(1,E(RL f ,1))// E(LR f · RL f )

E(1,µ f )
// ERL f

µL f
��

EL f

E(L2 f ,E(L2 f ,1))

OO

E(L2 f ,1) //

1

22ERL f

E(1,E(L f ,1))
OO

1

55kkkkkkkkkkkkkkk
EL f

using functoriality of E and two applications of a monad triangle identity. So the exterior of our

decagon is desired pentagon. �

A dual theorem describes those lifts of i⊗̂− which determine colax morphisms of awfs. While

the composition criterion of Theorem II.5.12 is a bit of a mess to state, it enables us to prove a

cellularity theorem.

Theorem II.5.15. Suppose M has an awfs (C,F) generated by J and K has an awfs (L,R), not

necessarily cofibrantly generated. Then i⊗̂− a ˆhom(i,−) is an adjunction of awfs (C,F)→ (L,R)
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if and only if there is a lift

J //___

��

L-coalg

��

M2
i⊗̂−

//
N2

That is to say, these functors form an adjunction of awfs if and only if i⊗̂J is cellular.

Proof. As in Theorem II.3.18, we define the lift R-alg → F-alg � Jl of ˆhom(i,−) to be the

composite

R-alg lift // L-coalgl res // (i⊗̂J)l
adj // Jl

Explicitly, the image of an R-algebra f in Jl is the arrow ˆhom(i, f ) equipped with a lifting

function φ ˆhom(i, f ) defined so that the chosen solution φ ˆhom(i, f )( j, a, d × c) to a lifting problem of

the form displayed in the left-hand square of (II.5.13) is adjunct to the solution constructed via

the awfs (L,R) and the functor J→ L-coalg.

By Lemma II.3.8, the functor R-alg → (i⊗̂J)l preserves composition, so it suffices to show

that adj : (i⊗̂J)l → Jl satisfies the criterion of Theorem II.5.12. Given ( f , φ]f ), (g, φ]g) ∈ (i⊗̂J)l

with cod f = domg, their composite is (g f , φ]g • φ
]
f ) where

φ
]
g • φ

]
f (i⊗̂ j, c] t a], b]) := φ

]
f (i⊗̂ j, c] t a], φ]g(i⊗̂ j, f c] t f a], b]))

Transposing across the adjunction, we get the formula

φ ˆhom(i,g f )( j, a, b × c) := φ ˆhom(i, f )( j, a, φ ˆhom(i,g)( j, f Ba, b × f Ac) × c)

which says that algebra structure for ˆhom(i, g f ) is obtained precisely as described in the statement

of Theorem II.5.12. Indeed, this is how that condition was deduced. �

II.5.3 Extending the universal property of the small object argument

In the remainder of this section, whenever we refer to an adjunction between arrow categories we

always mean either an adjunction of the form T 2 a S 2 defined pointwise via an adjunction on

the underlying categories, an adjunction of the form i⊗̂− a ˆhom(i,−) arising from a two-variable

adjunction on the underlying categories, or a composite of the two.
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We extend Theorem I.6.22 to the newly defined adjunctions of awfs. The uniqueness theorem,

Theorem II.4.9, is a corollary of this result.

Theorem II.5.16. If M permits the small object argument and if J →M2 is a small category of

arrows, then the unit functor (I.2.26) is universal among adjunctions of awfs.

Proof. Our argument extends the proof given for I.6.22. We broaden our interpretation of the

categories

Gladj = AWFSladj
G

ladj
1 // LAWFSladj

G
ladj
2 // Cmd(−)2ladj

G
ladj
3 // CAT/(−)2ladj (II.5.17)

of (I.6.21). In each case the objects are the same, but we extend the class of morphisms to include

those involving the sorts of adjunctions detailed above, always pointing in the direction of the

left adjoint. A morphism in CAT/(−)2ladj is an adjunction between arrow categories together

with a specified lift of the left adjoint to the fibers. A morphism in Cmd(−)2ladj is an adjunction

between the arrow categories together with a specified colax comonad morphism over the left

adjoint. LAWFSladj is the full subcategory on comonads over the domain functor. AWFSladj is

the category of awfs and adjunctions of awfs, newly defined.

We must show that Garner’s small object argument constructs a reflection along each functor

G
ladj
i . The first of these, the reflection along G

ladj
3 , proceeds exactly as in I.6.22: left adjoints

preserve left Kan extensions, regardless of how the adjunctions are defined.

The argument given in I.6.22 to establish the reflection along G
ladj
2 requires that the functor

i⊗̂− preserve morphisms in the arrow category that are pushout squares in the underlying cate-

gory. This follows from Lemma I.5.6 and the fact that the left adjoints A⊗− and B⊗− necessarily

preserve pushouts. The rest of the argument is unchanged.

Thus, it is only for the final reflection along G
ladj
1 that we must do a bit of work. The context

for the argument of I.6.22 is the category FFladj whose objects are functorial factorizations and

whose morphisms are colax morphisms of functorial factorizations lifting left adjoints. Because

functors of the form i⊗̂− preserve neither domains nor composability, a colax morphism of func-

torial factorizations λ(i) : ~Q→ ~E lifting i⊗̂− now has the form displayed in the left-hand diagram

(II.5.7). Because colax morphisms of functorial factorizations are composable, it suffices to con-

sider only those colax morphisms lifting functors the form i⊗̂−, the other case completed in the

original proof.
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The argument of I.6.22 applies once we establish that the category FFladj has the following

two properties. Each fiber, that is, each category of functorial factorizations on a fixed category,

has two monoidal structures ⊗ and �, given by re-factoring the right or the left factor, respectively.

We must show

• a pair of morphisms φ, ψ lifting the same left adjoint i⊗̂− can be combined to give φ ⊗ ψ

and φ � ψ

• the distributive law α, defined in each fiber using the functorial factorizations, is natural

with respect to colax morphisms lifting i⊗̂−, i.e., the following diagram commutes:

(~X � ~X′) ⊗ (~Z � ~Z′)
α //

(φ�φ′)⊗(ψ�ψ′)
��

(~X ⊗ ~Z) � ( ~X′ ⊗ ~Z′)

(φ⊗ψ)�(φ′⊗ψ′)
��

(~Y � ~Y′) ⊗ ( ~W � ~W′) α
// (~Y ⊗ ~W) � ( ~Y′ ⊗ ~W′)

It follows that if φ and ψ are �-comonoid morphisms, that is, if φ and ψ are morphisms in

LAWFSladj, then so is φ ⊗ ψ.

We define the products φ ⊗ ψ and φ � ψ of colax morphisms lifting i⊗̂− and leave the tedious

but straightforward diagram chase exhibiting the distributive law to the reader. Given functorial

factorizations ~Q = (C, F), ~Q∗ = (C∗, F∗) on M and ~E = (L,R), ~E∗ = (L∗,R∗) on N together

with morphisms φ : ~Q → ~E and ψ : ~Q∗ → ~E∗ lifting i⊗̂−, φ ⊗ ψ is the composite E(ψ′, 1) · φF′

displayed below

B ⊗ K t
A⊗K

A ⊗ QF∗ j
B⊗C∗ jt1

))TTTTTTTTTT

i⊗̂(CF∗·C∗) j

��

1tA⊗FF∗ j // B ⊗ K t
A⊗K

A ⊗ L

L∗(i⊗̂ j)
��

B⊗C∗ jt1
uujjjjjjjjj

B ⊗ Q∗ j t
A⊗Q∗ j

A ⊗ QF∗ j //

i⊗̂CF∗ juujjjjjjjjjjjjj

B ⊗ Q∗ j t
A⊗Q∗ j

A ⊗ L
ψ′j

//

L(i⊗̂F∗ j)
��

E∗(i⊗̂ j)

LR∗(i⊗̂ j)
��

B ⊗ QF∗ j
φF∗ j //

ι ��

E(i⊗̂F∗ j)

R(i⊗̂F∗ j)

��

E(ψ′j,1)
// ER∗(i⊗̂ j)

RR∗(i⊗̂ j)

��

B ⊗ QF∗ j t
A⊗QF∗ j

A ⊗ L

i⊗̂FF∗ j
��

φ′F∗ j

22eeeeeeeeeeeeeeeeeeeeeeeeeeeee

B ⊗ L B ⊗ L B ⊗ L
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Similarly, φ � ψ is the composite E(1 t A ⊗ F∗, ψ) · φC∗ displayed below

B ⊗ K t
A⊗K

A ⊗ QC∗ j

i⊗̂CC∗ j

��

1tA⊗FC∗ j **VVVVVVVVVVV

1tA⊗(F∗·FC∗) j // B ⊗ K t
A⊗K

A ⊗ L

LL∗(i⊗̂ j)

��

B ⊗ K t
A⊗K

A ⊗ Q∗ j
1tA⊗F∗ j

44hhhhhhhhhhh

L(i⊗̂C∗ j)
��

B ⊗ QC∗ j

ι ��

φC∗ j // E(i⊗̂C∗ j)

R(i⊗̂C∗ j)
��

E(1tA⊗F∗ j,ψ)
// EL∗(i⊗̂ j)

RL∗(i⊗̂ j)
��

B ⊗ QC∗ j t
A⊗QC∗ j

A ⊗ L

φ′C∗ j
44hhhhhhhhhhhhhh

i⊗̂FC∗ j //

i⊗̂(F∗·FC∗) j
��

B ⊗ Q∗ j
ψ j

//

B⊗F∗ jtthhhhhhhhhhhhhhhhhhhhh E∗(i⊗̂ j)

R∗(i⊗̂ j)
��

B ⊗ L B ⊗ L

�

Theorem II.4.9 follows as a corollary.

Theorem II.4.9. There can be at most one two-variable adjunction of awfs (C′,F′) × (C,F) →

(L,R) whose lifted left adjoint restricts along the unit functors to a given lifted functor I × J →

L-coalg.

Proof. Suppose given a pair of two-variable adjunctions of awfs

C′-coalg × C-coalg⇒ L-coalg

extending I×J→ L-coalg. On morphisms their behavior is completely specified by the condition

that they lift −⊗̂−, so it suffices to consider whether these functors agree at each pair of objects.

Restricting along the unit I → C′-coalg, we obtain a pair of functors I × C-coalg ⇒ L-coalg

necessarily distinct: if they agreed for each j ∈ C-coalg, their extensions at each j, the adjunc-

tions of awfs C′-coalg ⇒ L-coalg, would also agree by Theorem II.5.16. Now restricting these

functors along the unit J → C-coalg we obtain, in both cases, the original I × J → L-coalg, by

hypothesis. But this contradicts the argument just given: at each i ∈ I, the extension to an adjunc-

tion of awfs C-coalg → L-coalg is unique by Theorem II.5.16. Thus, there can be at most one

functor I×C-coalg→ L-coalg, and hence at most one C′-coalg×C-coalg→ L-coalg extending

I × J→ L-coalg. �
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II.6 Two-variable adjunctions of algebraic weak factorization systems

Using the technical material developed in the previous section, we now give the precise defini-

tion of a two-variable adjunction of awfs and prove the main cellularity theorem, Theorem II.4.8.

As defined in §II.4, the data of a two-variable adjunction of awfs ⊗ : (C′,F′) × (C,F) → (L,R)

consists of lifted functors, characterized by the natural transformations, displayed below (ab-

breviating the codomain and domain functors from arrow categories to their base with “c” and

“d”)

C′-coalg × C-coalg //__

��

L-coalg

��
K2 ×M2 −⊗̂− // N2

C′-coalgop × R-alg //__

��

F-alg

��
(K2)op ×N2

ˆhom`(−,−) //M2

C-coalgop × R-alg //__

��

F′-alg

��
(M2)op ×N2

ˆhomr(−,−) // K2

d ⊗ Q t
d⊗d

Q′ ⊗ d

C′⊗̂C
��

1⊗FtF′⊗1 // d ⊗ c t
d⊗d

c ⊗ d

L(−⊗̂−)
��

Q′ ⊗ Q λ // E(−⊗̂−)

Q ˆhom`(−,−)
ρ` //

F ˆhom`
��

hom`(Q′, E)

ˆhom`(C′,R)
��

hom`(c, c) ×
hom`(d,c)

hom`(d, d)
hom`(C′,1)×hom`(1,L)

// hom`(Q′, c) ×
hom`(d,c)

hom`(d, E)

Q′ ˆhomr(−,−)

F′ ˆhomr
��

ρr
// homr(Q, E)

ˆhomr(C,R)
��

homr(c, c) ×
homr(d,c)

homr(d, d)
homr(C,1)×homr(1,L)

// homr(Q, c) ×
homr(d,c)

homr(d, E)

=: ~λ

=: ~ρ`

=: ~ρr

(II.6.1)

Given the lifted functors displayed above left, the natural transformations displayed above

right are defined by composing the (co)algebra structures assigned free (co)algebras with the

appropriate (co)unit maps. Conversely, by Lemma II.2.9 and the observation that a product of

monads is a monad on a product category, e.g., the natural transformation ~ρr corresponding to
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the lift of ˆhomr satisfies

F′ ˆhomr(C,R) ~ρr
C,R

,,YYYYYYYYYYYYYY

ˆhomr~η ˆhomr
yyrrr

ˆhomr(~ε,~η)
''OOOO F′2 ˆhomr

~µ ˆhomr ��??????????

F′~ρr 33ffffffffffff
ˆhomr(C2,R2)

ˆhomr(~δ,~µ){{wwwwwwwwwwww

F′ ˆhomr ~ρr
// ˆhomr(C,R)

F′ ˆhomr ~ρr
// ˆhomr(C,R)

The maps ~λ, ~ρ`, ~ρr are determined by the components λ = cod~λ, ρ` = dom ~ρ`, ρr = dom ~ρr.

As in §II.5, the unit condition determines cod ~ρr and stipulates that ρr = dom ~ρr satisfy

homr(cod, dom)

C′ ˆhomr(−,−)
��

homr(cod, dom)

homr(F,L)
��

Q′ ˆhomr(−,−)

F′ ˆhomr(−,−)
��

ρr
// homr(Q, E)

ˆhomr(C,R)
��

homr(cod, cod) ×
homr(dom,cod)

homr(dom, dom)
homr(F,1)×homr(1,L)

// homr(Q, cod) ×
homr(dom,cod)

homr(dom, E)

(II.6.2)

The diagram (II.6.2) asserts that ρr defines a bilax morphism of functorial factorizations; compare

with (II.5.7) in light of Remark II.5.4.

In order that each lifted functor interact with the entire awfs, we ask that the natural transfor-

mations λ, ρ`, ρr specifying the lifted functors are parameterized mates

K2 ×M2

⊗̂
��

Q′×Q//

λw

K ×M

⊗

��
N2

E
// N

M2 Q //

uρ`

M

(K2)op ×N2

ˆhom`

OO

Q′×E
// Kop ×N

hom`

OO K2 Q′ //

uρr

K

(M2)op ×N2

ˆhomr

OO

Q×E
//Mop ×N

homr

OO

as defined in §II.2.2. It follows that, any of the lifted functors (II.6.1) determines the others, cap-

turing an important feature of the classical setting, where the criteria for a two-variable Quillen

adjunction can be stated in terms of the pushout-product or one of the pullback-homs alone.

We can now give the precise version of Definition II.4.4.
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Definition II.6.3. Given a two-variable adjunction (⊗, hom`, homr) : K×M→ N, a two-variable

adjunction of awfs ⊗ : (C′,F′) × (C,F)→ (L,R) consists of lifted functors

−⊗̂− : C′-coalg × C-coalg→ L-coalg Q′i ⊗ Q j
λi, j
−→ E(i⊗̂ j)

ˆhom`(−,−) : C′-coalgop × R-alg→ F-alg Q ˆhom`(i, f )
ρ`i, f
−→ hom`(Q

′i, E f )

ˆhomr(−,−) : C-coalgop × R-alg→ F′-alg Q′ ˆhomr( j, f )
ρr

j, f
−→ homr(Q j, E f )

characterized by natural transformations ~λ, ~ρ`, and ~ρr whose components λ, ρ`, ρr are parame-

terized mates.

Without an abundance of examples, this definition would be too strong. However, as in

Part I, we can use a composition criterion, extending Theorem II.5.12, to recognize two-variable

adjunctions of awfs.

Theorem II.6.4 (Composition criterion). Let (⊗, hom`, homr) : K ×M → N be a two-variable

adjunction between categories equipped with awfs (C′,F′), (C,F), (L,R). A single lifted functor

C′-coalg×C-coalg→ L-coalg, C′-coalgop×R-alg→ F-alg, or C-coalgop×R-alg→ F′-alg

specifies a two-variable adjunction of awfs if and only if it satisfies the criterion of Theorem

II.5.12 or its dual, as appropriate, in each variable.

Proof. This follows easily from the calculus of parameterized mates. Without loss of generality,

suppose given C′-coalg×C-coalg→ L-coalg. Evaluating at i ∈ C′-coalg defines a lifted functor

i⊗̂− : C-coalg → L-coalg characterized by a natural transformation λ(i) : codi × Q− ⇒ E(i⊗̂−).

By Theorem II.5.12, the mates ρ`(i) : Q ˆhom`(i,−) ⇒ hom`(codi, E−) specify lifted functors
ˆhom`(i,−) : R-alg → F-alg. Because the λ(i) are natural in C′-coalg, so are the ρ`(i), applying

Lemma II.2.11. By definition of the lifted functor ˆhom`(i,−) in terms of ρ`(i) and an easy diagram

chase, these functors assemble into a lifted bifunctor

ˆhom`(−,−) : C′-coalgop × R-alg→ F-alg.
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It remains only to show that the characterizing natural transformation of this functor is a pa-

rameterized mate of the natural transformation characterizing the original C′-coalg×C-coalg→

L-coalg. By definition λ : Q′ ⊗ Q ⇒ E(−⊗̂−) and ρ` : Q ˆhom`(−,−) ⇒ hom`(Q′, E) are ob-

tained by composing λ(C′−) and ρ`(C′−) with the comonad counit. Explicitly, λi,− and ρ`i,−
are the pasted composites displayed below in the squares involving the left and right adjoints

respectively

M2
i⊗̂−

��
a

1 //

u(~ei)∗

(~εi)∗w

M2
C′i⊗̂−

��
a

Q //

uρ`(C′i)

λ(C′i)w

M
Q′i⊗−

��

a

N2
1

//
ˆhom`(i,−)

OO

N2
ˆhom`(C′i,−)

OO

E
// N

hom`(Q′i,−)

OO

Hence, λi,− and ρ`i,− are pointwise mates by Theorem II.2.7 and thus parameterized mates by

Lemma II.2.12. �

In particular, this allows us to prove the now-familiar cellularity condition, classifying all two-

variable adjunctions of awfs (C′,F′)× (C,F)→ (L,R) whenever the first two awfs are cofibrantly

generated.

Theorem II.4.8. Suppose I generates (C′,F′) on K and J generates (C,F) on M and N has an

awfs (L,R). Then (⊗, hom`, homr) gives rise to a two-variable adjunction of awfs if and only if

I⊗̂J is cellular, that is, if and only if there is a lift

I × J

��

//____ L-coalg

��

K2 ×M2 −⊗̂− //
N2

Proof. By Theorem II.5.15, for each fixed i ∈ I, the functor i⊗̂− : J → L-coalg determines an

adjunction of awfs (i⊗̂−, ˆhom`(i,−)) : (C,F)→ (L,R). A morphism (a, b) : i′ ⇒ i in I determines

a natural transformation ˆhom`(i,−) ⇒ ˆhom`(i′,−) on the arrow categories. The lifted functors
ˆhom`(i,−) : R-alg→ F-alg assemble into a functor

ˆhom`(−,−) : Iop × R-alg→ F-alg � Jl
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if and only if each component ˆhom`(i, f ) ⇒ ˆhom`(i′, f ) ∈ M2 lifts to a morphism in Jl. If

this is the case, it follows that the natural transformations ρ`(i) characterizing each lifted functor
ˆhom`(i,−) are natural in I. By Lemma II.2.11, their mates are then also natural in I, and so the

lifts of the left adjoints will assemble into a functor I × C-coalg → L-coalg, as we saw in the

proof of Theorem II.6.4.

In other words, we must show that each lifted functor ˆhom`(i,−) assigns, to each R-algebra

f , solutions to all lifting problems between j ∈ J and ˆhom`(i, f ) that are natural with respect to

morphisms in J (so that this defines an object of Jl), R-alg (so that this defines a functor), and

I (so that the functors assemble into a bifunctor). The construction of Theorem II.5.15, which

solves the adjunct lifting problem and using the functor I× J→ L-coalg and the awfs (L,R), has

all of these properties.

To see this, note that the top composite below specifies the chosen solution to any lifting

problem; in other words, this defines ˆhom`(i, f ) as an element of Jl.

N2( j, ˆhom`(i, f ))
� //

ˆhom`((a,b), f )∗
��

N2(i⊗̂ j, f )

((a,b)⊗̂ j)∗
��

solve// N(B ⊗ L, X)

(b⊗L)∗
��

� //M(L, hom`(B, X))

hom`(b,X)∗
��

N2( j, ˆhom`(i′, f )) �
// N2(i′⊗̂ j, f )solve

// N(B′ ⊗ L, X) �
//M(L, hom`(B′, X))

(II.6.5)

Given (a, b) : i′ ⇒ i in I, the left square and right squares commute by naturality of the param-

eterized adjunctions in K2 and K. The essential point is that the middle square, whose hori-

zontal arrows use the awfs (L,R) to solve the lifting problem, also commutes, by functoriality

of I × J → L-coalg in the first variable and the fact that morphisms of L-coalgebras preserve

the chosen solutions to lifting problems against R-algebras. The left bottom composite of the

rectangle choses solutions to lifting problems against ˆhom`(i′, f ) that factor through lifting prob-

lems against ˆhom`(i, f ). Commutativity of (II.6.5) asserts that these are the same lifts obtained

by solving the lifting problem against ˆhom`(i, f ) and then composing. This says exactly that the

arrow in M2 induced from (a, b) : i′ ⇒ i lifts to Jl, as desired.

We now use the lifted functor

I × C-coalg→ L-coalg (II.6.6)

and repeat the argument just given. For each fixed j ∈ C-coalg, the functor −⊗̂ j : I → L-coalg
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determines an adjunction of awfs

(−⊗̂ j, ˆhomr( j,−)) : (C′,F′)→ (L,R)

that depends also on the C-coalgebra structure for j. As above, the characterizing maps are also

natural in C-coalg and so the lifted functors assemble into functors

− ⊗̂− : C′-coalg × C-coalg→ L-coalg ˆhomr(−,−) : C-coalgop × R-alg→ F′-alg. (II.6.7)

Furthermore, their characterizing natural transformations are parameterized mates by the second

half of the proof of Theorem II.6.4.

The last step is subtle. We use the dual of the composition criterion of Theorem II.5.12 to

show that for each f ∈ R-alg, the lift

ˆhomr(−, f ) : C-coalgop → F′-alg

obtained by restricting the right-hand functor of (II.6.7) is a lax morphism of awfs. It follows

from Theorem II.6.4 that the parameterized mates of the natural transformations characterizing

the lifted functors (II.6.7) define the final lifted functor

ˆhom`(−,−) : C′-coalgop × R-alg→ F-alg,

completing the desired two-variable adjunction of awfs.

In order to apply Theorem II.5.12, we must show that given j : J → K, k : K → L ∈ C-coalg,

the unlabeled solutions ˆhomr(−, f ) : C′-coalgop → F′-alg � Il assigns to lifting problems below

(where we have abbreviated homr using exponential notation) agree.

A a //

I3i

��

XL

ˆhomr(k, f )

��

XL

ˆhomr(k j, f )
��

Xk
// XK

ˆhomr( j, f )
��

B

;;w
w

w
w

w
w

w
w

w

44jjjjjjjjjjjjjjjjjj

d

33ffffffffffffffffffffffffffff
b×d

//______

b×c

55
YL ×

YK
XK

1×Y j X j
// YL ×

Y J
XJ

Yk×1
// YK ×

Y J
XJ

(II.6.8)
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The chosen lifts are defined by solving the adjunct lifting problems using the awfs (L,R) and

(II.6.6); transposing across the adjunction, it suffices to show that the unlabeled chosen solutions

in the diagram

A ⊗ K t
A⊗J

B ⊗ J

i⊗̂ j
��

A⊗kt1 // A ⊗ L t
A⊗J

B ⊗ J

i⊗̂(k j)

��

1tA⊗ jB⊗ j
//

a]tc]

))A ⊗ L t
A⊗K

B ⊗ K

i⊗̂k ��

a]td] // X

f
��

B ⊗ K
B⊗k

//
d

11ccccccccccccccccccccccccccccccccccc B ⊗ L

22ffffffffffffffffffffff B ⊗ L
b]

//

77ooooooooo
Y

agree.

If j and k have C-coalgebra structures s and t and f has R-algebra structure r, the left-most

unlabeled solution is defined to be

B ⊗ L
B⊗(t•s) // B ⊗ Q(k j)

λ(i)k j // E(i⊗̂(k j))
E(a]tc],b])// E f r // X (II.6.9)

while the right-most is defined to be

B ⊗ L B⊗t // B ⊗ Qk
λ(i)k // E(i⊗̂k)

E(a]td],b])// E f r // X (II.6.10)

where d, by naturality of λ(i) with respect to the morphism (1, k) : j⇒ k j of M2, is

B ⊗ K B⊗s // B ⊗ Q j
B⊗Q(1,k)// B ⊗ Q(k j)

λ(i)k j // E(i⊗̂(k j))
E(a]tc],b])// E f r // X

We use this factorization of d to factor the morphism (a] t d], b]) : i⊗̂k ⇒ f of N2 as

A ⊗ L t
A⊗K

B ⊗ K

i⊗̂k
��

1tB⊗[Q(1,k)s]// A ⊗ L t
A⊗Q(k j)

B ⊗ Q(k j)

i⊗̂F(k j)
��

λ′(i)k j // E(i⊗̂(k j))

R(i⊗̂(k j))
��

E(a]tc],b])// E f

R f
��

r // X

f
��

B ⊗ L B ⊗ L B ⊗ L
b]

// Y Y
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Applying the functor E and substituting this factorization for E(a] t d], b]) in (II.6.10),

r·E(r, 1) · E(E(a] t c], b]), b]) · E(λ′(i)k j, 1) · E(1 t B ⊗ Q(1, k)s, 1) · λ(i)k · B ⊗ t

= r · E(r, 1) · E(E(a] t c], b]), b]) · E(λ′(i)k j, 1) · λ(i)F(k j) · B ⊗ Q(Q(1, k)s, 1) · B ⊗ t

= r · µ f · E(E(a] t c], b]), b]) · E(λ′(i)k j, 1) · λ(i)F(k j) · B ⊗ Q(Q(1, k)s, 1) · B ⊗ t

= r · E(a] t c], b]) · µi⊗̂(k j) · E(λ′(i)k j, 1) · λ(i)F(k j) · B ⊗ Q(Q(1, k)s, 1) · B ⊗ t

= r · E(a] t c], b]) · λ(i)k j · B ⊗ µk j · B ⊗ Q(Q(1, k)s, 1) · B ⊗ t

= r · E(a] t c], b]) · λ(i)k j · B ⊗ (t • s)

by naturality of λ(i), associativity of r, naturality of µ, the monad pentagon for λ(i)k j which holds

because λ(i) defines a colax morphism of awfs, and the definition of t • s. This last line is (II.6.9),

completing the proof. �

An advantage of the calculus of parameterized mates is that the following proof requires no

diagram chasing.

Lemma II.6.11. Two-variable adjunctions of awfs can be composed with adjunctions of awfs

(pointing in the correct direction) in any of the variables to obtain another two-variable adjunc-

tion of awfs.

Proof. The functors lifting the left adjoints can clearly be composed; unpacking Lemma II.2.9,

the natural transformation characterizing the composite is a pasted composite of the natural trans-

formations characterizing each piece. By Lemma II.2.13 and the calculus of parameterized mates,

the parameterized mates of this composite natural transformation are obtained by pasting the

mates of characterizing natural transformations, and hence characterizes the functor obtained by

composing the appropriate right adjoints. So we see that the composite is again a two-variable

adjunction of awfs. �

Corollary II.6.12. The lifted functors (II.4.6) commute if and only if the lifts

C′t -coalg × Rt-alg
ξK×1

!!BBBBBBBB

,,YYYYYYYYY
1×ξN yyrrrrr

C′t -coalg × R-alg

ξK×1 !!BBBBBBBB
// Ft-alg

ξM

!!BBBBBBBBB
C′-coalg × Rt-alg

11dddddddd

1×ξNyyrrrrr

C′-coalg × R-alg // F-alg

(II.6.13)
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of ˆhom` commute, and similarly for ˆhomr.

Proof. The mate of the composite two-variable adjunction of awfs defined by each commuting

square of (II.4.6) characterizes the corresponding commuting square of (II.6.13). �

II.7 Monoidal algebraic model structures

Finally, we define

Definition II.7.1. A monoidal algebraic model structure on a closed monoidal category

(⊗, hom`, homr) : M ×M→M

with monoidal unit I is an algebraic model structure ξ : (Ct,F)→ (C,Ft) such that

(i) (⊗, hom`, homr) is an algebraic Quillen two-variable adjunction

(ii) tensoring on either side with the cofibrant replacement comonad counit εI : QI → I sends

(algebraic) cofibrant objects to weak equivalences.

Monoidal algebraic model categories are in particular monoidal model categories in the sense

of [Hov99]. It makes no difference whether condition (ii) is stated for algebraic cofibrant objects

or ordinary cofibrant objects. If the unit is cofibrant, (ii) is automatic from (i) and Ken Brown’s

lemma.

In the case where the monoidal structure is symmetric, a two-variable adjunction of awfs

(Ct,F)×(C,Ft)→ (Ct,F) gives rise to a two-variable adjunction of awfs (C,Ft)×(Ct,F)→ (Ct,F)

by composing with the symmetry isomorphism. When (C,Ft) is generated by I, by Theorem

II.4.9, the two-variable adjunction of awfs (C,Ft)× (C,Ft)→ (C,Ft) commutes with the symme-

try isomorphism if and only if the functor I⊗̂I→ C-coalg is defined symmetrically. Thus,

Definition II.7.2. On a closed symmetric monoidal category

(⊗, hom, hom): M ×M→M

with monoidal unit I, a symmetric monoidal algebraic model structure is an algebraic model

structure such that
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(i) (⊗, hom, hom) is an algebraic Quillen two-variable adjunction such that the lifted functors of

algebraic (trivial) cofibrations commute up to isomorphism with the symmetry isomorphism

(ii) tensoring with εI : QI → I sends (algebraic) cofibrant objects to weak equivalences

We now use Theorems II.4.8, II.4.9, and II.6.4 to find examples.

Theorem II.7.3. The folk model structure on Cat is a maximally coherent (cartesian) monoidal

algebraic model structure.

Proof. The folk model structure on Cat is generated by the following sets of functors

I =


∅_

c
��
•

,

• _

d
��

•

• // •

,

•
////_

e
��

•

• // •

 J =


•_

j
��

•
//
•oo


Write I for the codomain of j, that is, the free-standing isomorphism

By Corollary II.3.12, Cat has an algebraic model structure generated by I and J if and only

if j is I-cellular, i.e., if and only if there is a functor J→ C-coalg, where C is the comonad of the

awfs generated by I. The comonadC is particularly simple to describe. By a dimension argument,

it can be constructed by running Garner’s small object argument first using the generator c, then

using d, and then using e. Each process converges after a single step, which means that the

comonad C is constructed in three steps: each of which forms a single pushout of the coproduct

over squares of the generator in question. Verifying these assertions is an easy exercise once one

understands the small object argument; see [Gar09, §4] or §I.2.5.

The resulting functorial factorization is equivalent to the usual mapping cylinder construction:

A
f //

i1
�� p

B

��
A i0

// A × I // A × I
∐

A B

Concretely, A × I
∐

A B is the unique category with objects A0
∐

B0 such that the functor ( f , id)

to B is fully faithful, and hence a trivial fibration. The bottom composite above is used to define

the functorial factorization

A
f
−→ B 7→ A

C f :=i0 // A × I
∐

A B
Ft f :=( f ,id) // B
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Here A does not necessarily inject into the mapping cylinder, because arrows in A that become

equal in B get identified, but it is injective on objects; hence i0 is a cofibration.

On morphisms, the functor C : Cat2 → Cat2 sends

A u //

f
��

A′

f ′
��

B v
// B′

to
A u //

i0
��

A′

i0
��

A × I
∐

A B
(u×id,v)

// A′ × I
∐

A′ B′

The counit and comultiplication natural transformations have components

~ε f =

A
i0
��

A

f
��

A × I
∐

A B
( f×id,id)

// B

and ~δ f =

A
i0
��

A
i0
��

A × I
∐

A B
(i0,id)

// A × I
∐

A(A × I
∐

A B)

In particular, δ f includes A× I into the first copy of this object in the coproduct; the second copy

is not in the image of this map.

It turns out that every cofibration in Cat admits a unique C-coalgebra structure. Suppose f is

injective on objects. Then there is a unique arrow from its codomain to the mapping cylinder so

that

A

f
��

i0 // A × I
∐

A B

( f ,id)
��

B

99s
s

s
s

s
B

commutes. Objects b ∈ B of the form b = f (a) necessarily map to (a, 0) ∈ A× I while objects not

in the image of A necessarily map to themselves in B. Because ( f , id) is full and faithful, there is

no need to define the functor B → A × I
∐

A B on morphisms. It is easy to check that this arrow

makes f a C-coalgebra; its clear that there is no other possibility. In particular, the cofibration j

is automatically I-cellular, and I and J give Cat an algebraic model structure.

To show that it is monoidal, we apply Theorem II.4.8 and examine pushout-products of gener-

ating (trivial) cofibrations. must check the cellularity and compatibility conditions. I-cellularity

is automatic from the fact that Cat is a monoidal model category in the ordinary sense [Lac07],

so we must only check that the pushout-product of elements of I with elements of J is J-cellular.
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By an easy computation

c×̂ j = j and d×̂ j = e×̂ j = id2×I.

The first of these has a canonical and the second a unique Ct-coalgebra structure. This defines

−×̂− : C-coalg × Ct-coalg→ Ct-coalg.

Because C-coalgebra structures are unique, the lifted functors with codomain C-coalg au-

tomatically commute. Because the functors C-coalg × Ct-coalg → Ct-coalg and Ct-coalg ×

C-coalg → Ct-coalg are defined symmetrically and J consists of a single generator, we can

apply Theorem II.4.9 to conclude that

Ct-coalg × Ct-coalg

��

// Ct-coalg × C-coalg

��
C-coalg × Ct-coalg // Ct-coalg

commutes. �

Theorem II.7.4. Quillen’s original model structure on simplicial sets is a monoidal algebraic

model structure with the usual generating (trivial) cofibrations.

Proof. It is well-known that simplicial sets form a symmetric monoidal model category generated

by the usual sets I and J of sphere and horn inclusions. As with Cat, a dimension argument can

be used to give an inductive description of the comonad C in such a way that it is clear that all

cofibrations admit unique C-coalgebra structures. In particular, the generators J are I-cellular—

we give an explicit description of their I-cellular structures below—defining an algebraic model

structure.

Because all cofibrations are uniquely cellular, to show that the cartesian product forms an

algebraic Quillen two-variable adjunction, we need only worry about the algebraic trivial cofi-

brations. By work of André Joyal in the appendices to [Joy08], elements of the pushout-product

J×̂I is cellular. This is to say, the maps in J×̂I can be factored as composites of pushouts of the

generating horn inclusions J. By Theorem II.4.8, we are done. �

The monoidal algebraic model structure on simplicial sets is mostly but not maximally coher-

ent. It is instructive to see why. It is mostly coherent because all monomorphisms of simplicial
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sets have a unique C-coalgebra structure, so the lifted functors with codomain C-coalg commute

because the functors they are lifting commute.

However, the pushout-product of a pair of generating trivial cofibrations is assigned two dif-

ferent Ct-coalgebra structures, depending on which generator is regarded as a C-coalgebra. We

illustrate with an example. Write h1
0 : Λ1

0 → ∆1 and h2
1 : Λ2

1 → ∆2 for the inclusions of 1- and

2-dimensional horns missing the 0th and 1st faces, respectively. The pushout-product h1
0×̂h2

1 has

codomain the solid cylinder ∆1 ×∆2 and domain a hollow “trough” with one of the end triangles

and the two ∆1 × ∆1 missing.

•
=

=

//

��@@@@@

((RRRRRRRRRRRRRRRRRRRRR •

((RRRRRRRRRRRRRRRRRRRRR

=

•

??~~~

((RRRRRRRRRRRRRRRRRRRRR
,,XXXXXXXXXXXXXX [[ [[ [[

--[[[[[[[[[[[[[[[
•

��@@@@@= =
•

•

??~~~~~

(II.7.5)

For simplicial sets, C-coalgebra structures are precisely I-cellular structures, that is, factoriza-

tions of a given monomorphism into pushouts of coproducts of elements of I filtered by attaching

degree; see the preface. The I-cellular structure assigned the horn inclusion hn
k is given by the

factorization

Λn
k

// ∂∆n // ∆n (II.7.6)

The first map is a pushout of ∂∆n−1 → ∆n−1 and attaches the “missing face” to the horn; the

second map fills the resulting sphere.

The following general lemma, stated using the notation relevant to this example, will facilitate

our computation. This is an application of the converse of the composition criterion of Theorem

II.6.4.

Lemma II.7.7. Given i : A → B ∈ Ct-coalg and j : J → K, k : K → L ∈ C-coalg, the lifted

functor −×̂− : Ct-coalg × C-coalg → Ct-coalg of a two-variable adjunction of awfs assigns

i×̂(k j) the Ct-coalgebra structure of the composite of the following pushout of the Ct-coalgebra
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i×̂ j with the Ct-coalgebra i×̂k

A × K t
A×J

B × J

i×̂ j
�� p

A×kt1 // A × L t
A×J

B × J

i×̂(k j)

��

p=1tA× jB× j
��

B × K ι //

B×k --

A × L t
A×K

B × K

i×̂k

''PPPPPPPPPPPP

B × L

(II.7.8)

Proof. It is straightforward to check that (II.7.8) makes sense, i.e., that the square is a pushout

and gives the described factorization of i×̂(k j). We compute the canonical Ct-coalgebra structure

assigned i×̂(k j) as the composite of these maps and show that it agrees with that assigned i×̂(k j)

by the composition criterion. Write p for the pushout of i×̂ j, and write z j, zk, zp respectively

for the Ct-coalgebra structures assigned to i×̂ j, i×̂k, and p. Because p is assigned the coalgebra

structure of a pushout, zp equals

A × L t
A×K

B × K �

(
A × L t

A×J
B × J

)
t
∼

B × K
Ct ptR(A×kt1,ι)·z j // Rp.

The coalgebra structure assigned the composite is

B × L
zk // R(i×̂k)

R(R(1,i×̂k)·zp),1)
// RF(i×̂(k j))

µi×̂(k j) // R(i×̂(k j)) (II.7.9)

By definition, R(1, i×̂k) · zp is the top arrow of the lifting problem

A × L t
A×K

B × K

i×̂k
��

Ct(i×̂(k j))tR(A×kt1,B×k)·z j // R(i×̂(k j))

F(i×̂(k j))
��

B × L B × L

whose canonical solution is the composite (II.7.9). But this is precisely what is required by the

composition criterion of Theorem II.5.12, which holds for the lifted functor i×̂− obtained from a

two-variable adjunction of awfs. �

By a similar dimension argument, Ct-coalgebra structures on sSet are J-cellular structures,

that is sequences of monomorphisms which attach fillers for all previously unexamined horns. We
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use this intuition and the above lemma to compute the coalgebra structures assigned to h1
0×̂h2

1 by

the two lifted functors.

We first apply Lemma II.7.7 to the I-cellular decomposition (II.7.6) of h1
0. The pushout-

product of h2
1 with the inclusion ∅ → ∆1 is simply h1

0. Hence, the J-coalgebra structure assigned

its pushouts, including in particular the first factor of h1
0×̂h2

1 defined in Lemma II.7.7, first fills

the Λ2
1-horn on the front edges of (II.7.5) to obtain a “trough,” before filling the “trough” in the

way specified by the lifted functor I × J→ Ct-coalg.

On the other hand, the pushout-product of h1
0 with ∂∆1 → ∆1 is the monomorphism

•

��

// •

• //
_

��

•

•

��@@@@@

��
=

//
=
•

��
• // •

This map has J-cellular structure given by first filling the Λ2
1-horn formed by the right and bottom

edges and then filling the resulting Λ2
0-horn formed by the top edge and the diagonal. Pushouts

of this map inherit a similar J-cellular structure. In particular the J-cellular structure assigned

h1
0×̂h2

1 by this method first fills the top of the trough (II.7.5), at which point it must fill the end

triangle very last, using a 3-dimensional horn, not a 2-dimensional one. So this Ct-coalgebra

structure can’t possibly agree with the one assigned via the other lifted functor.

Remark II.7.10. We expect this sort of argument to apply to many situations, which is why we

did not require monoidal algebraic model structures to be maximally coherent.

If (M,×, ∗) is a monoidal category such that the monoidal unit is terminal, then there is

a monoidal product ∧ on M∗ defined as follows. Write ∨ for the coproduct in M∗. Given

x : ∗ → X, y : ∗ → Y in M∗, the pushout

X ∨ Y

��

(1×y)∨(x×1)//

p

X × Y

��
∗ // X ∧ Y

defines a bifunctor − ∧ − : M∗ ×M∗ → M∗ that we call the smash product. The monoidal unit

denoted S 0 = (∗)+ = ∗ t ∗. See [Hov99, 4.2.9].
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Theorem II.7.11. If M is a monoidal algebraic model category and the monoidal unit ∗ is ter-

minal and cofibrant, then M∗ is also a monoidal algebraic model category, symmetric if M is.

Proof. By what one might call the “hyper-cube pushout lemma,” which is an application of the

fact that colimits commute with each other, the top square in the cube below is a pushout.

(A ∨ L) t
A∨K

(B ∨ K)

1

��

//

uulllllllll

p

A × L t
A×K

B × K

ttiiiiiii

i×̂ j

��

q

∗t
∗
∗ //

1

��

A ∧ L t
A∧K

B ∧ K

i∧̂ j

���
�
�
�

B ∨ L

sshhhhhhhhhhhhhh
// B × L

ssffffffffffffffff

∗ // B ∧ L

(II.7.12)

The left and bottom faces are pushouts tautologically and definitionally. It follows that the com-

posite rectangle from the top left edge to the bottom right edge is a pushout, and hence that

the right face is a pushout. This says that the pushout-smash-product i∧̂ j is a pushout of the

pushout-product i×̂ j.

On account of the pullbacks

(Ct)∗-coalg

��

//
y

Ct-coalg

��
(M∗)2

U2
//
M2

C∗-coalg

��

//
y

C-coalg

��
(M∗)2

U2
//
M2

(Ct)∗-coalgebra or C∗-coalgebra structures for based maps are given by Ct-coalgebra or C-

coalgebra structures for the underlying arrows. Hence, we define, for instance, the lifted functor

−∧̂− : (Ct)∗-coalg×C∗-coalg→ (Ct)∗-coalg by assigning i∧̂ j the Ct-coalgebra structure created

by the pushout of the Ct-coalgebra i×̂ j.

To see that this defines a two-variable adjunction of awfs, we appeal to Theorem II.6.4 and

show that this functor satisfies the composition criterion in both variables. This follows easily

from the fact that the coalgebra structures assigned to the pushout-smash-products displayed in

the front of the diagram below are determined by the coalgebra structures assigned to the pushout-

products displayed at the back. By the universal property of the pushouts, the canonical solutions

to lifting problems against the front arrows will behave analogously to those against the back
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arrows; and these, by hypothesis, satisfy the composition criterion.

·

i×̂ j

��

//

��>>>>>>>

p

·

i×̂k j

��

//

��>>>>>>>

p

·

i×̂k

��

��>>>>>>>

p

·

i∧̂ j

��

// ·

i∧̂k j

��

// ·

i∧̂k

��

//______ ·

f

��

· //

��>>>>>>> ·

��>>>>>>> ·

��>>>>>>>

· // · · // ·

Because the monoidal unit ∗ is assumed to be cofibrant and (−)+ is left Quillen, the unit S 0

for the monoidal structure on M∗ is cofibrant, and the second condition of Definition II.7.1 is

automatic. It remains only to see that the algebraic Quillen two-variable adjunction is maximally

coherent whenever the original monoidal algebraic model structure is. Because the algebraic

model structure on M∗ was defined by pullback, the left-hand square of lifted functors commutes.

(Ct)∗-coalg × C∗-coalg

ξ∗×1
��

U×U // Ct-coalg × C-coalg

ξ×1
��

×̂ // Ct-coalg

ξ
��

C∗-coalg × C∗-coalg U×U // C-coalg × C-coalg ×̂ // C-coalg

The right-hand square commutes by hypothesis. At each pair of coalgebras in (M∗)2, the (Ct)∗-

coalgebra structure assigned their pushout-smash-product is determined by the Ct-coalgebra

structure assigned the pushout of the arrow in their image along the top row of this diagram; its

C∗-coalgebra structure is similarly determined by the C-coalgebra structure assigned the pushout

of the map in the image at the bottom right. Writing down explicit formulae (I.5.4), it is easy to

see that the process of assigning coalgebra structures to pushouts commutes with the comparison

map for M. �
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