Emily Riehl

Johns Hopkins University

A synthetic theory of ∞-categories in homotopy type theory

joint with Michael Shulman

Octoberfest, Carnegie Mellon University

Why do I study category theory?

— I find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

— I find homotopy type theoretic arguments to be aesthetically appealing.

- I. Homotopy type theory
- 2. A type theory for synthetic $(\infty, 1)$ -categories
- 3. Segal types and Rezk types
- 4. The synthetic theory of $(\infty, 1)$ -categories

Main takeaway: the dependent Yoneda lemma is a directed analogue of path induction in HoTT.

Homotopy type theory

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms x : A, y : B
- dependent types $x : A \vdash B(x)$ type, $x, y : A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

- products $A \times B$, coproducts A + B, function types $A \rightarrow B$,
- dependent sums $\sum_{x:A} B(x)$, dependent products $\prod_{x:A} B(x)$, and identity types $x,y:A \vdash x =_A y$.

Propositions as types:

$$A \times B$$
 A and B
 $A + B$ A or B
 $A \rightarrow B$ A implies B

$$\begin{array}{c|c} \sum_{x:A} B(x) & \exists x.B(x) \\ \prod_{x:A} B(x) & \forall x.B(x) \\ x =_A y & x \text{ equals } y \end{array}$$

Identity types

Formation and introduction rules for identity types

$$\frac{x, y : A}{x =_{A} y \text{ type}} \qquad \frac{x : A}{\text{refl}_{x} : x =_{A} x}$$

Semantics
$$\begin{cases} \sum_{x,y:A} x =_A y \\ A \xrightarrow{\Delta} A \times A \end{cases}$$

Hence $\sum_{x,y:A} x =_A y$ is interpreted as the path space of A and a term $p: x =_A y$ may be thought of as a path from x to y in A.

Path induction

The identity type family is freely generated by the terms $\operatorname{refl}_{x}: x =_{A} x$.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then there is a function

path-ind:
$$\left(\prod_{x:A} B(x, x, \text{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=_{A}y} B(x, y, p)\right)$$
.

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl_x.

The ∞ -groupoid structure of A with

- terms x : A as objects
- paths $p: x =_A y$ as 1-morphisms
- paths of paths $h: p =_{x=Ay} q$ as 2-morphisms, ...

arises automatically from the path induction principle.

A type theory for synthetic $(\infty, 1)$ -categories

The intended model

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). $(\infty, 1)$ -categories are modeled by Rezk spaces aka complete Segal spaces.

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$\top, \bot, \land, \lor, \equiv$$
 and $0, 1, \le$

satisfying intuitionistic logic and strict interval axioms.

$$\Delta^{n} := \{(t_{1}, \dots, t_{n}) : 2^{n} \mid t_{n} \leq \dots \leq t_{1}\} \quad \text{e.g.} \quad \Delta^{1} := 2$$

$$\Delta^{2} := \begin{cases} (t_{1}, t_{1}) & (t_{1}, t_{1}) \\ (t_{2}, t_{2}) & (t_{2}, t_{2}) \end{cases}$$

$$\partial \Delta^{2} := \{(t_{1}, t_{2}) : 2^{2} \mid (t_{2} \leq t_{1}) \wedge ((0 = t_{2}) \vee (t_{2} = t_{1}) \vee (t_{1} = 1))\}$$

$$\Delta^{2} := \{(t_{1}, t_{2}) : 2^{2} \mid (t_{2} \leq t_{1}) \wedge ((0 = t_{2}) \vee (t_{1} = 1))\}$$

Because $\phi \wedge \psi$ implies ϕ , there are shape inclusions $\Lambda_1^2 \subset \partial \Delta^2 \subset \Delta^2$.

Extension types

shape inclusion: $\Phi \coloneqq \{t \in 2^n \mid \phi\}$ and $\Psi = \{t \in 2^n \mid \psi\}$ so that ϕ implies ψ , i.e., so that $\Phi \subset \Psi$.

$$\frac{\Phi \subset \Psi \text{ shape} \qquad \text{A type} \qquad {\color{red} \sigma: \Phi \to A}}{\left\langle \begin{array}{c} \Phi & \xrightarrow{ \sigma} & A \\ \downarrow & & \\ \Psi & \end{array} \right\rangle \text{ type}}$$

A term
$$f: \left\langle \begin{array}{c} \Phi & \xrightarrow{a} & A \\ \uparrow & & \\ \Psi & & \end{array} \right\rangle$$
 defines

$$f: \Psi \to A$$
 so that $f(t) \equiv a(t)$ for $t: \Phi$.

The simplicial type theory allows us to *prove* equivalences between extension types along composites or products of shape inclusions.

Segal types and Rezk types

Hom types

Formation rule for extension types

$$\frac{\Phi \subset \Psi \text{ shape} \qquad \Psi \vdash A \text{ type} \qquad a: \Phi \to A}{\left\langle \begin{array}{c} \Phi & \xrightarrow{a} & A \\ \downarrow & & \\ \Psi & & \end{array} \right\rangle \text{ type}}$$

The hom type for A depends on two terms in A:

$$x, y : A \vdash hom_A(x, y)$$

$$\frac{\partial \Delta^1 \subset \Delta^1 \text{ shape} \qquad \text{A type} \qquad \begin{bmatrix} x,y \end{bmatrix} : \partial \Delta^1 \to A}{\text{hom}_A(x,y) := \left\langle \begin{array}{c} \partial \Delta^1 & \xrightarrow{[x,y]} & A \\ \downarrow & & \\ & \Delta^1 & & \\ \end{array} \right\rangle \text{type}}$$

A term $f: hom_A(x, y)$ defines an arrow in A from x to y.

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: hom_A(x, y)$ and $g: hom_A(y, z)$ the type

$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle \quad \text{is contractible.}$$

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \rightarrow A^{\Lambda_1^2}$ has contractible fibers.

Notation. Let
$$\operatorname{comp}_{g,f}: \left\langle \begin{array}{c} \Lambda_1^2 & \xrightarrow{[f,g]} & A \\ \chi & & \\ \Lambda^2 & & \end{array} \right\rangle$$
 denote the unique

inhabitant and write $g \circ f$: hom_A(x,z) for its inner face, the composite of f and g.

Identity arrows

For any x : A, the constant function defines a term

$$id_{x} := \lambda t.x : hom_{A}(x,x) := \left\langle \begin{array}{c} \partial \Delta^{1} & \xrightarrow{[x,x]} & A \\ \downarrow & & \\ \Delta^{1} & & \end{array} \right\rangle,$$

which we denote by id_x and call the identity arrow.

For any f: hom_A(x, y) in a Segal type A, the term

$$\lambda(s,t).f(t): \left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[\mathsf{Idx},f]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$

witnesses the unit axiom $f = f \circ id_x$.

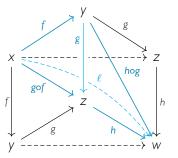
Associativity of composition

Let A be a Segal type with arrows

$$f: hom_A(x, y), g: hom_A(y, z), h: hom_A(z, w).$$

Prop. $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:



Composing defines a term in the type $\Delta^2 \to (\Delta^1 \to A)$ which yields a term ℓ : hom_A(x, w) so that $\ell = h \circ (g \circ f)$ and $\ell = (h \circ g) \circ f$.

Isomorphisms

An arrow f: hom_A(x,y) in a Segal type is an isomorphism if it has a two-sided inverse g: hom_A(y,x). However, the type

$$\sum_{g \colon \mathsf{hom}_A(y,x)} (g \circ f = \mathsf{id}_X) \times (f \circ g = \mathsf{id}_y)$$

has higher-dimensional structure and is not a proposition. Instead define

$$isiso(f) \coloneqq \left(\sum_{g: \ \mathsf{hom}_A(y,x)} g \circ f = \mathsf{id}_x\right) \times \left(\sum_{h: \ \mathsf{hom}_A(y,x)} f \circ h = \mathsf{id}_y\right).$$

For x, y : A, the type of isomorphisms from x to y is:

$$x \cong_A y := \sum_{f: hom_A(x,y)} isiso(f).$$

Rezk types

By path induction, to define a map

id-to-iso:
$$(x =_A y) \rightarrow (x \cong_A y)$$

for all x, y : A it suffices to define

$$id-to-iso(refl_x) := id_x$$
.

A Segal type A is Rezk if every isomorphism is an identity, i.e., if the map

id-to-iso:
$$(x =_A y) \rightarrow (x \cong_A y)$$

is an equivalence.

Discrete types

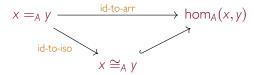
Similarly by path induction define

id-to-arr:
$$\prod_{x,y:A} (x =_A y) \to \text{hom}_A(x,y)$$
 by id-to-arr(refl_x) := id_x,

and call a type A discrete if id-to-arr is an equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms. Thus, if the Rezk types are $(\infty, 1)$ -categories, then the discrete types are ∞ -groupoids.

Proof:



The synthetic theory of $(\infty, 1)$ -categories

Covariant fibrations I

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u., i.e., if

$$\sum_{v:B(y)} \mathsf{hom}_{B(f)}(u,v)$$
 is contractible.

Here

$$\mathsf{hom}_{B(f)}(u,v) := \left\langle \begin{array}{c} B(f) \\ \downarrow \searrow \uparrow \\ \partial \Delta^1 \\ \end{array} \right\rangle \quad \mathsf{where} \quad \begin{array}{c} B(f) \\ \downarrow \\ \Delta^1 \\ \end{array} \xrightarrow{f} A$$

is the type of arrows in B from u to v over f.

Notation. The codomain of the unique lift defines a term $f_*u:B(y)$.

Prop. For u : B(x), $f : hom_A(x, y)$, and $g : hom_A(y, z)$,

$$g_*(f_*u) = (g \circ f)_*u$$
 and $(id_x)_*u = u$.

Covariant fibrations II

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u.

Prop. If $x : A \vdash B(x)$ is covariant then for each x : A the fiber B(x) is discrete. Thus covariant type families are fibered in ∞ -groupoids.

Prop. Fix a: A. The type family $x: A \vdash hom_A(a, x)$ is covariant.

For u: hom_A(a,x) and f: hom_A(x,y), the transport f_*u equals the composite $f \circ u$ as terms in hom_A(a,y)., i.e., $f_*(u) = f \circ u$.

The Yoneda lemma

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

$$ev-id := \lambda \phi.\phi(a,id_a) : \left(\prod_{x:A} hom_A(a,x) \to B(x)\right) \to B(a)$$

and

yon :=
$$\lambda u.\lambda x.\lambda f.f_*u: B(a) \rightarrow \left(\prod_{x:A} hom_A(a,x) \rightarrow B(x)\right)$$

are inverse equivalences.

Proof: The transport operation for covariant families is functorial in A and fiberwise maps between covariant families are automatically natural.

Note. A representable isomorphism $\phi: \prod_{x:A} \mathsf{hom}_A(a,x) \cong \mathsf{hom}_A(b,x)$ induces an identity $\mathsf{ev}\text{-id}(\phi): b =_A a$ if the Segal type A is Rezk.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a covariant family dependent on x, y : A and $f : hom_A(x, y)$, then evaluation at (x, x, id_x) defines an equivalence

ev-id:
$$\left(\prod_{x,y:A}\prod_{f:hom_A(x,y)}B(x,y,f)\right) \rightarrow \prod_{x:A}B(x,x,id_x)$$

This is useful for proving equivalences between various types of coherent or incoherent adjunction data.

Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then there is a function

path-ind:
$$\left(\prod_{x:A} B(x, x, \text{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=Ay} B(x, y, p)\right)$$
.

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl_x.

Dependent Yoneda Lemma: If B(x, y, f) is a covariant family dependent on x, y : A and $f : hom_A(x, y)$ and A is Segal, then there is a function

$$\mathsf{id}\text{-}\mathsf{ind}: \left(\prod_{x:A} B(x,x,\mathsf{id}_x)\right) \to \left(\prod_{x,y:A} \prod_{f:\mathsf{hom}_A(x,y)} B(x,y,f)\right).$$

Thus, to prove B(x, y, f) it suffices to assume y is x and f is id_x.

References

For considerably more, see:

Emily Riehl and Michael Shulman, A type theory for synthetic ∞-categories, arXiv:1705.07442

To explore homotopy type theory:

Homotopy Type Theory: Univalent Foundations of Mathematics, https://homotopytypetheory.org/book/

Michael Shulman, Homotopy type theory: the logic of space, arXiv:1703.03007

Thank you!