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Abstract. We present a spectrum-level version of the norm map in equivari-
ant homotopy theory based on the algebraic construction in the 1997 paper

by Greenlees and May. We show that this new norm map is the same as the
construction in the 2009 paper by Hill, Hopkins and Ravenel. Our comparison
of the two norm maps gives a conceptual understanding of the choices inherent
in the definition of the multiplicative norm map.

This paper serves to contextualize and explain the construction of the norm
maps in equivariant stable homotopy theory. The norm map should be thought
of as a sort of multiplicative induction functor that takes H–equivariant spectra
to G–equivariant spectra, where H is a finite index subgroup of a compact Lie
group G. We compare the definition of the norm map used in the recent solution
to the Kervaire invariant one problem [3] to the norm map implicit in earlier work
of Greenlees and May [2]. Greenlees and May define an algebraic norm map on
homotopy groups, whereas Hill, Hopkins and Ravenel have a spectrum-level con-
struction that agrees with the Greenlees–May construction on the algebraic level.
We give a spectrum-level version of the Greenlees–May construction and compare
the two constructions at the spectrum level. Our comparison gives a new concep-
tual understanding of the choices inherent in the definition of the multiplicative
norm map.

First, note that we will use orthogonal spectra and push all of the choice of
universe issues into choice of model structure. It follows from [7, Theorem V.1.7]
that we can thus get away with thinking of G–spectra as simply G–objects in the
category of spectra. In turn, we will think of these as covariant functors from the
one-object category G into the category S of spectra.

Let G be a compact Lie group and H < G be a subgroup such that [G : H] = n.
Let BG/HG be the translation groupoid of G acting on G/H. That is, BG/HG has

objects x ∈ G/H and morphisms x
g−→ gx for all g ∈ G. If we think of H as a

one-object category, we have an inclusion of groupoids ι : H ↪→ BG/HG given by
sending the object ∗H of H to the identity coset. Since BG/HG is connected and
the endomorphisms of eH ∈ G/H are just H, this is an equivalence of categories.
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1414 ANNA MARIE BOHMANN

Definition 1. The Hill–Hopkins–Ravenel norm map is the following composite:

SH
� ��

NG
H ���

��
��

���
��

SBG/HG

p∧
∗

��
SG

Here the map SH → SBG/HG is given by the choice of an inverse equivalence
to the inclusion ι : H → BG/HG. The map p∧∗ is the “monoidal pushforward” of

[3, page 109]. For a functor X ∈ SBG/HG, p∧∗ is defined at the object ∗G of G by

(2) (p∧∗X)(∗G) =
∧

x∈G/H

X(x).

The image of a morphism g ∈ G is given by the smash product of the images of
the morphisms in BG/HG induced by the action of g on the elements of G/H. If

we denote by gx the map x
g−→ gx in BG/HG, we can write (p∧∗X)(g) explicitly as

the map

(3)
∧

x∈G/H

X(x)
∧X(gx)−−−−−→

∧

x∈G/H

X(gx).

In [2], Greenlees and May define only an “algebraic” version of the norm on
equivariant homotopy or cohomology groups. However, implicit in their discussion
of algebraic norm maps is a definition of norm maps on the spectrum level. This
norm map again can be described as a composite of functors as follows.

Definition 4. The spectrum-level version of the Greenlees–May norm map is the
composite

SH
∧n

��

NG
H ���

��
��

��
��

SΣn�H

α∗

��
SG

Here Σn�H is the wreath product of H and the symmetric group Σn, and the
horizontal map corresponds to taking an n-fold smash power of an H-spectrum.
We will be more explicit about this construction in Lemma 10. The vertical map
α∗ is the pullback along a homomorphism α : G → Σn�H. Concretely, we get our
homomorphism α by choosing a transversal to H in G. This construction will in
fact be key in what follows, so we give details now. A set of coset representatives
{t1, . . . , tn} of G/H defines a homomorphism α : G → Σn�H by the formula

(5) α(g) = (σg, h1(g), . . . , hn(g)),

where σg ∈ Σn and hi(g) ∈ H are defined by the equation gti = tσg(i)hi(g). In
other words, σg is the permutation determined by the action of g on the cosets of
G/H, and the hi(g) give the H-action induced on each coset.

Remark 6. The construction of Definition 4, with its use of the wreath product
Σn�H, is nicely parallel to the construction of the norm map in group cohomology
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A COMPARISON OF NORM MAPS 1415

given by Evens [1, Chapter 5]. In fact, our homomorphism α is his “monomial repre-
sentation”, and Evens’s notion of the “tensor induced module”—a monoidal induc-
tion from H–modules to G–modules—is precisely our definition of the Greenlees–
May norm map where the category S is replaced by the category of modules over a
ground ring.

The heart of our comparison of the construction of the norm map in Definitions 1
and 4 is the following diagram:

(7) SH

c

��

κ∗

�
����

���
���

��

SBnΣn×H

n∧

��

β∗
�� SBG/HG

p∧
∗

��
SΣn�H α∗

�� SG

In this diagram the left vertical composite is a factorization of the n-fold smash
product construction in the Greenlees–May norm map, so that the composite down
the left side is the Greenlees–May norm and the composite along the right side is the
Hill–Hopkins–Ravenel norm. We think of the “norm” construction as having two
parts: “choosing a transversal” and “indexed smash product”. By “indexed smash
product” we mean a construction defined by an (unordered) n-fold smash product,
as in equations (2) and (3). This concept is formalized in Appendix A. In diagram
(7), all the maps from the left column to the right can be specified by choosing a
transversal, whereas the lower two vertical maps are forms of indexed smash prod-
ucts. Thus, the Greenlees–May norm is given by taking an indexed smash product
and then choosing a transversal, whereas the Hill–Hopkins–Ravenel norm map is
given by first choosing a transversal and then taking indexed smash products. The
fact that these two constructions agree—that this diagram commutes—essentially
says that one can perform these constructions in either order. We devote the rest
of this section to proving this compatibility.

Theorem 8. For compatible choices of the homomorphism α : G → Σn�H and
equivalence of the categories BG/HG → H, diagram (7) commutes. Thus the Hill–
Hopkins–Ravenel norm map and the Greenlees–May norm map agree.

The proof proceeds from the following two lemmas.

Lemma 9. A choice of transversal {t1, . . . , tn} of H in G determines functors
κ : BG/HG → H and β : BG/HG → BnΣn ×H such that the diagram

H

BnΣn ×H

��

BG/HG
β��

κ

��������������

commutes.

Proof. Fix a transversal {t1, . . . , tn} of H in G, where t1 = e. This choice deter-
mines an inverse to the equivalence of categories ι : H → BG/HG described above.
Explicitly, the inverse κ : BG/HG → H is given by identifying Aut(tiH, tiH) with

H via t−1
i Hti. The transversal also gives a convenient shorthand for labeling the
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1416 ANNA MARIE BOHMANN

arrows in the BG/HG: we henceforth use gi : tiH → tσg(i)H to denote the map
gtiH : tiH → tσg(i)H. With this notation, a map gi : tiH → tσg(i)H in BG/HG is
mapped under the functor κ to hi(g) : ∗H → ∗H . Here we use ∗H to denote the
single object of the category H.

Our choice of transversal also allows us to define the functor β. On objects,
β(tiH) = (i, ∗H) = i, and on a morphism gi : tiH → tσg(i)H we define β(gi) =
(σgi, hi(g)) : i → σg(i). We next check that β is functorial. Given g and γ in G, we
must check that the diagram

β(tiH)
β(gi) ��

β(γgi) ����
���

���
��

β(tσg(i))

β(γσg(i))

��
β(tσγg(i)H)

commutes in BnΣn. The diagonal arrow is the map (σγg, hi(γg)) : i → σγg(i), while
the composite around the top right is

(σγ , hσg(i)(γ)) ◦ (σg, hi(g)) = (σγσg, hσg(i)(γ)hi(g)).

Since σγg is the permutation given by the action of γg, we see that σγ ◦ σg = σγg.
Furthermore, by definition hi(γg) is the element of H such that γgti = tσγg

hi(γg).
Thus we have equalities

γgti = γtσg(i)hi(g)

= tσγ(σg(i))hσg(i)(γ)hi(g)

= tσγg(i)hσg(i)(γ)hi(g),

which prove that β is functorial.
Commutativity of the triangle

H

BnΣn ×H

��

BG/HG
β��

κ

��������������

is verified directly from the definitions of β and κ. Note that the vertical map here
is just the projection of BnΣn to the terminal category. �

From Lemma 9, we obtain the functors κ∗ and β∗ in diagram (7) by precom-
position. The following lemma tells us how to define the remaining functor of
diagram (7).

Lemma 10. There exists an indexed smash product functor n∧ : SBnΣn×H → SΣn�H

whose value on an object X ∈ SBnΣn×H is the functor n∧X : Σn�H → S defined by
the equations

(n∧X)(∗Σn�H) =
∧

i∈n

X(i),

(n∧X)(σ, h1, . . . , hn) =
∧

i∈n

X(σi, hi) :
∧

i∈n

X(i) →
∧

i∈n

X(σ(i)).

We postpone the proof of Lemma 10 until after the proof of Theorem 8.
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A COMPARISON OF NORM MAPS 1417

Proof of Theorem 8. Fix a transversal {t1, . . . , tn} of H in G. By Lemma 9, this
determines functors κ and β. This choice also determines the homomorphism
α : G → Σn�H in equation (5). Precomposition with these maps determines the
functors κ∗, β∗ and α∗ in diagram (7). The commutativity of the triangle in
Lemma 9 thus implies commutativity of the upper triangle in diagram (7).

We now turn to the lower square in diagram (7). We have already described the
functor p∧∗ in equations (2) and (3), and it makes sense to think of p∧∗ as a smash
product “indexed over G/H”. Lemma 10 defines the functor n∧, which has the
form of a “smash product indexed over n”. We explicitly check that the square in
question commutes.

Given X ∈ SBnΣn×H , the functor p∧∗ (β
∗X) ∈ SG is given at the object ∗G by

p∧∗ (β
∗X)(∗G) =

∧

tiH∈G/H

β∗(X)(tiH) =
∧

tiH∈G/H

X(β(tiH)) =
∧

i∈n

X(i).

On the other hand, α∗(n∧(X)) is given at ∗G by

α∗(n∧X)(∗G) = (n∧X)(α(∗G)) = (n∧X)(∗Σn�H) ∼=
∧

i∈n

X(i).

Hence p∧∗ (β
∗X) and α∗(n∧X) are the same on objects.

Unraveling the definitions on morphisms, we see that for g ∈ G, the map
p∧∗ (β

∗X)(g) is

∧

tiH∈G/H

(β∗X)(tiH)
∧
(β∗X)(gi) ��

∧

tiH∈G/H

(β∗X)(tσg(i)H)

∧

tiH∈G/H

X(β(tiH))

∧
X(β(gi)) ��

∧

tiH∈G/H

X(β(tσg(i)H))

∧

i∈n

X(i)

∧
X(σgi,hi(g)) ��

∧

i∈n

X(σg(i)).

Meanwhile, (α∗n∧(X))(g) is

n∧X(α(∗G))
n∧X(α(g)) �� n∧(Xα(∗G))

n∧X(∗Σn�H)
n∧X(σg,hi(g),...,hn(g)) �� n∧X(∗Σn�H)

∧

i∈n

X(i)

∧
X(σgi,hi(g)) ��

∧

i∈n

X(σg(i)).
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1418 ANNA MARIE BOHMANN

Thus we see that the lower square of diagram (7) commutes, which completes the
proof that the entirety of diagram (7) commutes. Hence, given the choice of homo-
morphism α and an inverse equivalence κ coming from a transversal of H < G, the
two constructions of the norm map agree. �

Remark 11. One way to conceptualize this result is by saying that in order to have
a norm map, one must fix a transversal and take an indexed smash product, but it
doesn’t matter in which order one performs these constructions.

We now turn to the technical business of proving that the functor n∧ of Lemma 10
is well defined. This functor can be constructed by hand, and we give this construc-
tion below. A categorical description that unifies the construction of p∧∗ and n∧ is
given in Appendix A.

Proof of Lemma 10. Given an object X ∈ SBnΣn×H , define n∧X to be the functor
Σn�H → S given by the equations

(n∧X)(∗Σn�H) =
∧

i∈n

X(i),

(n∧X)(σ, h1, . . . , hn) =
∧

i∈n

X(σi, hi) :
∧

i∈n

X(i) →
∧

i∈n

X(σ(i)).

We must check that this is actually a functor. Since the product of (σ, h1, . . . , hn)
and (τ, k1, . . . , kn) in Σn�H is (στ, hτ(1)k1, . . . , hτ(n)kn), this amounts to showing
that the diagram

∧

i∈n

X(i)
∧

X(τi,ki) ��

∧
X(στi,hτ(i)ki)

		���
����

����
����

����
����

�

∧

i∈n

X(τ (i))

∧
X(στ(i),hτ(i))

��∧

i∈n

X(σ(τ (i)))

commutes. This follows from the definition of the morphisms in BnΣn. Hence

n∧(X) is a well-defined object of SΣn�H .

We also need to show that n∧ is functorial, i.e. that if X
f−→ Y is a natural

transformation in SBnΣn×H , we have a natural transformation n∧f : n∧X → n∧Y
in SΣn�H . We define the map n∧f : n∧X(∗Σn�H) → n∧Y (∗Σn�H) to be

∧
i∈n fi,

where fi denotes the component of f at the object i ∈ BnΣn × H. Naturality of
n∧f is then just the commutativity of the following diagram:

(12)
∧

i∈n

X(i)

∧
X(σi,hi) ��

∧
fi

��

∧

i∈n

X(σ(i))

∧
fσ(i)

��∧

i∈n

Y (i) ∧
Y (σi,hi)

��
∧

i∈n

Y (σ(i))
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A COMPARISON OF NORM MAPS 1419

Naturality of f implies the commutativity of this square at any component i of
the smash product; the desired commutativity follows. �

Appendix A.
A unifying framework for indexed tensor products

Let FinSetiso denote the category of finite sets and isomorphisms. For any
small category J , the data of a functor P : J → FinSetiso can be encoded by a
functor p : I → J of the form described below. Functors p arising in this way
are called finite covering categories ; in the categorical literature, it is more com-
mon to say that p is both a discrete left fibration and a discrete right fibration.
In Section A.1, we first give a concise and then a concrete description of finite
covering categories and explain the Hill–Hopkins–Ravenel construction of the
indexed tensor product associated to p. In Section A.2, we give an alternate
description of the Hill–Hopkins–Ravenel construction, implicit in the appendices
of [3], that makes use of the so-called Grothendieck construction. By appealing to
this categorical machinery, the proofs of several of the basic propositions concern-
ing indexed tensor products are automatic. Finally, in Section A.3, we show that
the hypotheses on the functors p : I → J necessary to construct an indexed tensor
product may be relaxed. In so doing, we unify the description of the norms of
Greenlees–May and Hill–Hopkins–Ravenel, the main objective of the body of this
paper.

A.1. Indexed tensor products via finite covering categories. Write ∗ for
the terminal category with a single object and a single identity arrow and 2 for
the category with two objects 0, 1 and a single non-identity arrow 0 → 1. A finite
covering category is a functor p : I → J such that for each commuting square, there
are unique lifts:

∗

0

��

i �� I

p

��
2

f
��

∃!



�
�

�
�

J

and

∗

1

��

i′ �� I

p

��
2

f
��

∃!



�
�

�
�

J

In other words, for each arrow f of J and specified lift i of its domain, there is a
unique arrow of I with domain i lifting f , and similarly, for each specified lift i′ of
its codomain, there is a unique arrow of I with codomain i′ lifting f .

Unpacking this definition, we see that the domain I of a finite covering category
can be described as follows. Denote by p−1(j) the fiber over the object j ∈ J ,
meaning the subcategory of I mapping to the identity on j. Each of these fibers is
discrete, and if J is connected, all the fibers have the same cardinality, which we
denote n. This follows from understanding the arrows of I. An arrow f : j → j′ has
n lifts to arrows from an object of p−1(j) to an object of p−1(j′), and this collection
of lifts determines a bijection between the fibers. This correspondence is injective
by the unique left lifting and surjective by the unique right lifting of arrows in a
covering category. No non-identity arrows can be in the fiber over identity arrows
of J ; hence the fibers of p are discrete.
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1420 ANNA MARIE BOHMANN

Composition of arrows in I is defined as in J . For example, the data illus-
trated in the following picture specifies a covering category in which the fibers have
cardinality three:

I i1

���
��

��
��

� i′1 �� i′′1

i2

���
��

��
��

� i′2

��	
		

		
		

	 i′′2

i3

















i′3



��������
i′′3

J j
f �� j′

g �� j′′

Given a symmetric monoidal category (C,⊗,1) and a finite covering category
p : I → J , the indexed tensor product ormonoidal pushforward is a functor p⊗∗ : CI →
CJ . The image of X : I → C is the functor J → C defined by

j

f

��

� ��
⊗

p−1(j)

X(i)

⊗X(fi)

��
j′ � ��

⊗

p−1(j′)

X(i′)

Remark 13. The categorically astute reader may be concerned to note that in the
diagram above we have not specified the order in which the tensor products indexed
on an (unordered) set are taken. Since we will only consider maps between these
“unordered” tensor products that arise from simple tensors of maps, as in the right
arrow above, the coherence and naturality of the isomorphism X ⊗ Y ∼= Y ⊗X in
our symmetric monoidal category ensures that everything is well defined, at least
up to isomorphism.

This gives a concrete description of the indexed tensor product associated to
a finite covering category. This construction also arises in a more categorical way
using the Grothendieck construction, detailed in Section A.2. The covering category
setup is crucial for this more categorical description, but is not in general necessary
to define indexed tensor products, as explained in Section A.3.

A.2. Indexed tensor products via the Grothendieck construction. There
is a functor

FinSetJiso → Cat/J

whose image consists of the finite covering categories and all maps over J . The
construction of a finite category p : I → J from P : J → FinSetiso is sometimes
called the Grothendieck construction.

Given P , we obtain a finite covering category p : I → J where the fiber p−1(j)
is the set Pj thought of as a discrete category. An arrow f : j → j′ has n lifts to I
which are determined by the isomorphism Pf : Pj → Pj′: namely, each object in
p−1(j) is the source of a unique lift of f , and each object in p−1(j′) is the target
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A COMPARISON OF NORM MAPS 1421

of a unique lift of f so that the bijection set up by this correspondence is the
isomorphism Pf in FinSetiso. Composition in I is as in J , and there are no other
morphisms in I.

In the literature, there is frequently confusion between this set-based Grothen-
dieck construction and a categorified version that encodes functors J → Cat
as fibration-like functors I → J , whose fibers are typically not discrete. Given
P : J → Cat, the categorified Grothendieck construction returns a category I with
the same set of objects: pairs (j ∈ J, i ∈ Pj). But morphisms now have the form

(f, h) : (j, i) → (j′, i′)

with f : j → j′ in J and such that h is an arrow in the category Pj′ from (Pf)(i)
to i′.

Example 14. Let C be any category and consider the constant functor J → Cat at
C. The categorified Grothendieck construction returns the category C× J together
with the projection C × J → J . If we instead apply the set-based Grothendieck
construction to the composite J → Cat → FinSetiso forgetting the arrows in C,
the result is obC× J → J .

The categorified Grothendieck construction defines a functor

CatJ → Cat/J.

The image is the subcategory of opfibrations over J and cartesian morphisms. More
details can be found in [4, Volume 1 Section B.1] or [5, Sections 2.1.1, 3.2.0]. Note
that other sources such as [6] discuss only the set-based version.

To construct the indexed tensor product, fix a symmetric monoidal category
(C,⊗,1). Consider the following two functors FinSetiso → Cat: the functor
I 	→ CI and the constant functor at C. When C is symmetric monoidal, there is a
natural transformation ⊗− from the former to the latter whose component at I is
the functor

⊗I : CI → C.

Given a finite covering category p encoded as a functor P : J → FinSetiso, we pre-
compose the above natural transformation with P to obtain a natural transforma-
tion whose target is a constant functor at C. Applying the categorified Grothendieck
construction to the morphism

J

j 
→CPj

��

C

��
��⊗− Cat

we obtain the functors
CP

��

���
��

��
��

� C× J

��





J

It follows from the preceding description of the Grothendieck construction that the
category of sections for the opfibration CP → J is CI . It is even easier to see that
the category of sections for C×J → J is CJ . Tracing through the definitions shows
that the induced functor CI → CJ between the categories of sections is the indexed
tensor product p⊗∗ . See the appendices to [3] for further details.
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1422 ANNA MARIE BOHMANN

A.3. Indexed tensor products in general. Suppose we’re given a connected
category J and an arbitrary category I. To construct an indexed tensor product
CI → CJ of “dimension” n (meaning the objects in the image of the functors J → C

are all n-fold tensors in C), we need the following data:

• for each j ∈ J , a set Pj of n distinct objects of I;
• for each f : j → j′, a set Pf of n (necessarily distinct) arrows of I specifying
a “directed bijection” between Pj and Pj′ , i.e. each object of Pj and Pj′ is
respectively the domain or codomain of a unique arrow in this collection;

• the sets Pf should depend functorially on J , so that Pgf is the set consisting
of composites of the arrows in Pg and Pf . By our condition on the object
sets, there is only one possible way in which these composites can be defined.

When p : I → J is a finite covering category, these sets are defined by the functor
P : J → FinSetiso or alternatively by taking lifts of objects and arrows of J along
p. But the point is that the category I could in principle be much larger, having
more objects and/or arrows. In such cases, it is unlikely that there will be a functor
I → J , much less a covering category. More surprisingly, I can also be too small
to be a covering category, as is the case in the construction of the functor n∧ in
Lemma 10.

In general, the data needed for an indexed tensor product CI → CJ comes from a
functor of the form described below. Let In denote the n-fold cartesian product of I
and let In\Δ be the full subcategory on the complement of the fat diagonal. That
is, objects of In\Δ are ordered n-tuples of distinct objects of I and morphisms
are ordered n-tuples of morphisms, necessarily distinct as well. The group Σn

acts naturally on In, and this action descends to In\Δ. Write (In\Δ)/Σn for the
quotient in Cat of In\Δ by this action.

Definition 15. Given categories J and I equipped with a functor

P : J → (In\Δ)/Σn,

the indexed tensor product is the functor P⊗ : CI → CJ defined as follows: An
object X ∈ CI maps to the functor J → C defined by

j

f

��

� ��
⊗

i∈Pj

X(i)

⊗

h∈Pf

X(h)

��
j′ � ��

⊗

i′∈Pj′

X(i′)

Functoriality of P implies that P⊗(X) is an object of CJ ; the verification that this
assignment is functorial in X is precisely that of equation (12).

As in Remark 13, we define only the functors in CJ up to natural isomorphism.
A strict definition requires a choice of ordering for the elements in each of our index
sets. This is equivalent to specifying a lift of the functor P through the canonical
quotient arrow In\Δ → (In\Δ)/Σn from the colimit cone.
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Example 16. Any finite covering category I → J over a connected category J
with fibers of cardinality n defines such a P : J → (In\Δ)/Σn by sending an object
j to the (unordered) set of its preimages. In particular, the construction p∧∗ of
equations (2) and (3), and more generally, the monoidal pushforward of [3], is an
example of the indexed tensor product as just defined.

Example 17. The functor n∧ of Lemma 10 is an indexed tensor product as well.
In this case, the functor P : Σn�H → (BnΣn ×H)n\Δ is given by

P (∗Σn�H) = {1, . . . , n},
P (σ, h1, . . . , hn) = {(σ1, h1), . . . , (σn, hn)}.

This example cannot arise from a covering category because there are simply not
enough morphisms in BnΣn to cover all the morphisms in Σn�H. In particular,
suppose (σ, h1, . . . , hn) and (σ, h′

1, . . . , h
′
n) are distinct in Σn�H. If hi = h′

i = h for
some i, then the morphism (σi, h) covers them both.
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