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Abstract

The homotopy coherent nerve from simplicial categories to simplicial sets and its left
adjoint € are important to the study of (oo, 1)-categories because they provide a means
for comparing two models of their respective homotopy theories, giving a Quillen equi-
valence between the model structures for quasi-categories and simplicial categories. The
functor € also gives a cofibrant replacement for ordinary categories, regarded as trivial sim-
plicial categories. However, the hom-spaces of the simplicial category €X arising from a
quasi-category X are not well understood. We show that when X is a quasi-category, all A?
horns in the hom-spaces of its simplicial category can be filled. We prove, unexpectedly,
that for any simplicial set X, the hom-spaces of €X are 3-coskeletal. We characterize the
quasi-categories whose simplicial categories are locally quasi, finding explicit examples of
3-dimensional horns that cannot be filled in all other cases. Finally, we show that when
X 1is the nerve of an ordinary category, €X is isomorphic to the simplicial category ob-
tained from the standard free simplicial resolution, showing that the two known cofibrant
“simplicial thickenings” of ordinary categories coincide, and furthermore its hom-spaces
are 2-coskeletal.

1. Introduction

In recent years, many advances have been made in the study of (oo, 1)-categories, loosely
defined to be categories enriched in co-groupoids or spaces. Models of (oo, 1)-categories
abound, but in this paper we restrict our attention to two of the simplest: quasi-categories,
which are simplicial sets that satisfy a particular horn-filling property, and simplicially en-
riched categories (henceforth, simplicial categories). The categories sSet and sCat each bear
a model structure such that the fibrant objects are the models of (oo, 1)-categories—in the
latter case, the simplicial categories whose hom-spaces are Kan complexes. Furthermore,
there is a Quillen equivalence between them, with the right adjoint the homotopy coherent
nerve N: sCat — sSet of Jean—Marc Cordier [3] (cf. the survey article [2] or [15, chapters 1
and 2]).

This adjunction provides the primary means of translating between these two models,
which accounts for its importance. Interesting examples of quasi-categories are often presen-
ted as homotopy coherent nerves of fibrant simplicial categories: the “quasi-category of
spaces” is one example. More exotically, any locally presentable quasi-category is equi-
valent to the homotopy coherent nerve of a combinatorial simplicial model category
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[15, proposition A-3-7-6]. Conversely, the left adjoint €: sSet — sCat “rigidifies” a simpli-
cial set X, in which one can define a natural notion of simplicial “hom-space” between two
vertices, into a category whose simplicial enrichment is given strictly. The vertices of the
hom-spaces of €X are “composable” paths of edges in X, meaning that the target of each
edge in the sequence is the source of the next, not necessarily that any “composite” edge
exists. If X is a quasi-category, then these edges can be composed, and the 1-simplices in
the hom-spaces correspond to higher simplices in X, which “witness” the sense in which
a particular edge is a composite of a path given by others. It is tempting to describe these
1-simplices as homotopies between the various paths, but this isn’t an exact analogy because
the 1-simplices are directed: the source is always a shorter sequence of edges than the tar-
get. Instead, we prefer to think of the 1-simplices as “factorisations,” which exhibit how one
path of edges can be deformed into a longer one. The higher simplices of the hom-spaces of
€X are “higher homotopies” that exhibit coherence relations between the “factorisations”
relating the various paths.

By a general categorical principle [12, proposition 3-1-5], the homotopy coherent nerve
and its left adjoint € are determined by a cosimplicial object in sCat, that is, a functor
CA7: A — sCat, where A is the usual category of finite non-empty ordinals [n] =
{0, ..., n}. The homotopy coherent nerve of a simplicial category C is the simplicial set
with n-simplices the simplicial functors €A" — €, and the functor € is the left Kan exten-
sion of this functor along the Yoneda embedding A — sSet. This can be computed by a
a familiar coend formula, which we describe in the next section. It follows that €X is the
simplicial category “freely generated” by X, in the sense that n-simplices in X correspond
to simplicial functors €A" — €X, which, we shall see below, should be thought of as ho-
motopy coherent diagrams in €X. Thus, to understand the adjunction € 4 N, we must first
build intuition for the €A".

There are many ways to describe the simplicial categories €A", one of which employs
the free simplicial resolution construction of [3], [9], and elsewhere. By repeatedly applying
the free category comonad on Cat induced by the free-forgetful adjunction F - U between
categories and reflexive directed graphs to the poset category [n], one obtains a simplicial
object in Cat:

<~—FUFU—
<———€FU —FnUFU—>
FU|[n] FnU— FUFU|[n] =<—Fueru— FUFUFU|n]
<—FUe —FUFnU—>
<—FUFUe

Each of these categories has the same objects as [n]. The arrows of FU[n] are sequences
of composable non-identity morphisms in [#]. The arrows of FU FU [n] are again such se-
quences but with every morphism appearing in exactly one set of parentheses. The arrows of
FUFU FU|[n] are sequences of composable non-identity morphisms with every morphism
appearing in exactly two sets of parentheses, and so forth. The face maps (FU)*e(FU)/
remove the parentheses that are contained in exactly k others; FU --- FUe composes
the morphisms inside the innermost parentheses. The degeneracy maps F(U F) n(U F)/'U
double up the parentheses that are contained in exactly k others; F - - - U FnU inserts paren-
theses around each individual morphism.

A simplicial object in Cat determines a simplicial category exactly when each of the
constituent functors acts as the identity on objects, as is the case here. Hence, this construc-
tion specifies a simplicial category, which is €A". The vertices of the hom-spaces are the



Simplicial categories associated to quasi-categories 491

sequences of composable non-identity morphisms, i.e., the arrows of F U[n]; the 1-simplices
of the hom-spaces are the arrows of F'U FU[n]; and so forth.

More geometrically, €A" is the simplicial category with objects 0, . . ., n and hom-spaces
CA"(i, j) defined to be (ordinary) nerves of certain posets P; ;. If j < i, then P; ; and hence
CA"(i, j) is empty. Otherwise P; ; is the poset of subsets of the interval {k | i < k < j} C
[7] that contain both endpoints. For j =i and j = i + 1, this poset is the terminal category.
For j > i+1, a quick calculation shows that P; ; is isomorphic to the product of the category
[1] with itself j —i — 1 times. Hence

(AY/~=! when j > i,
EA"(i, j) = A° when j =i,
%] when j < i.

For proof that these two descriptions coincide, see [6, section 2].

Here is some intuition for these definitions. The hom-space €A" (i, j) parametrises paths
from i to j in the poset [n]. The vertices count the number of distinct paths: if j = i +
2, then there are two options—one which passes through the object i + 1 and one which
avoids it—and, accordingly, the simplicial set €A"(i,i + 2) = A! has two vertices. The
higher dimensional data is designed such that homotopy coherent diagrams [n] — €, studied
extensively by Cordier and Timothy Porter (but see also [15, section 1-2-6]), correspond to
simplicial functors €A" — C. We illustrate the case where n = 3 and C = Topgg,, the
simplicially enriched category of compactly generated spaces, with simplicial enrichment
given by applying the total singular complex functor to each hom-space (cf. [4, section 1]).
A homotopy commutative diagram in Top,, picks out spaces X, Y, Z, and W and functions

such that there exist homotopies j ~ gf, k >~ hg,! ~ kf,l >~ hj, and [/ ~ hgf. Such a
diagram is homotopy coherent if one can chose the above homotopies in such a way that the
composite homotopies [ ~ hg f are homotopic in the sense illustrated below

| ——kf

hj —— hgf .

The data specifying these each of these homotopies is precisely the image of the simplicial
map A' x Al = €A%(0, 3) — Topyge (X, W).

A more modern treatment of these same ideas is given in the straightening construction
of [15, chapters 2 and 3], which associates contravariant simplicial (or marked simplicial)
functors with domain €X to right fibrations (Cartesian fibrations) over X, which can be
thought of as contravariant Kan-complex-valued (quasi-category-valued) pseudofunctors.
The functor € figures prominently in this correspondence. The work contained in this paper
was motivated by our attendant desire to be able to compute particular examples of this
construction.
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In the next section, we unravel the definition of the simplicial category €X associated to a
simplicial set X and describe the lower dimensional simplices of the hom-spaces €X (x, y).
The intuition provided by this calculation is satisfyingly confirmed by recent work of Dugger
and Spivak [6], which identifies the n-simplices of €X (x, y) with necklaces in X, accom-
panied by certain vertex data. In Section 3, we use this characterization to prove that all
A% horns in €X (x, y) can be filled, when X is a quasi-category. In Section 4, we demon-
strate that the necklace representation is even more useful in higher dimensions, proving
the surprising fact that for any simplicial set X, €X (x, y) is 3-coskeletal, which says that
sufficiently high dimensional simplicial spheres in these hom-spaces can be filled uniquely.

In light of these results, one might hope that the simplicial category associated to a quasi-
category is locally quasi; however, this is seldom the case. In Section 5, we show that if €X
is locally quasi, then X is the (ordinary) nerve of a category. We consider the case when
X is the nerve of a category in Section 6; €X is then its cofibrant replacement. We prove
that the hom-spaces of €X are 2-coskeletal, but that for most categories, there are A3 and
A3 horns in certain hom-spaces that cannot be filled. Finally, we show that the simplicial
category obtained by applying the free simplicial resolution construction described above to
any small category A is isomorphic to the simplicial category €N A, where N : Cat — sSet
is the ordinary nerve functor. In other words, these constructions coincide for all categories,
not just for the poset categories [n].

2. Understanding the hom-spaces €X (x, y)

Although we are most interested in understanding the simplicial category associated to
a quasi-category, all of the results in this section apply for a generic simplicial set X. The
notation for simplicial sets throughout this paper is consistent with [11]. By definition

ex= [ lew=coa| [ [Jear == [[[ew
Xn

filml—[n] X, [n] X,

It suffices to restrict the interior coproducts to the non-degenerate simplices of X and the
left outer coproduct to the generating coface maps d': [n — 1] — [n]. Write X,, for the
non-degenerate n-simplices of X. Then

do
[1, €A° ﬁ? [y, €A°

e

¢€X = colim [z, ea' == [[;, ¢!
[I;, €A°

The objects of €X are the vertices of X. The simplicial categories €A® and €A are
the free simplicial categories on the poset categories [0] and [1] respectively, and the free

' Some non-degenerate n-simplices may have degenerate n — 1-simplices as faces, so we cannot tech-
nically restrict the face maps to maps d; : X, — X,_1. Instead, one must attach each degenerate face to
the unique lower-dimensional non-degenerate simplex it represents, but this technicality will not affect our
conceptual discussion.
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simplicial category functor is a left adjoint and so commutes with colimits. Hence, if X is

1-skeletal so that X, = ¢ forall n > 1, then €X is the free simplicial category on the graph

with vertex set X, and edge set X,. Concretely, this means that the hom-spaces €X (x, y)

are all discrete simplicial sets containing a vertex for each path of edges from x to y in X.
In general, for each 2-simplex of X with boundary as shown

there exists a 1-simplex from the vertex j to the vertex gf in €X(x, y). Furthermore, for
each vertex in some hom-space representing a sequence of paths containing j, there is a 1-
simplex connecting it to the vertex representing the same sequence, except with g f in place
of j.

However, the 2-skeleton of X does not determine the 1-skeleta of the hom-spaces. For
example, for each 3-simplex o of X as depicted below

there is an edge from / to Agf in €X (x, y). In general, there is an edge between the vertices
represented by paths p; - - - p, and ¢y - - - g, of edges from x to y in X if and only if each edge
p in the first path that does not appear in the second is replaced by a sequence of n-edges
that appear as the spine of some n-simplex of X with p as its diagonal. Here, the spine of an
n-simplex is the sequence of edges between the adjacent vertices, using the usual ordering
of the vertices, and the diagonal is the edge [0, n] from the initial vertex to the final one.

In this way, each edge of €X (x, y) corresponds to a necklace

AMv...vAT — X

in X. By A" v A we always mean that the final vertex of the n-simplex is identified with
the initial vertex of the k-simplex. A necklace is comprised of a sequence of beads, the A"
above, that are strung together along the joins, defined to be the union of the initial and final
vertices of each bead. When speaking colloquially, we may associate a bead of the necklace
with its image, a simplex of the appropriate dimension in X, and the faces of the bead with
the corresponding faces of the simplex.

By a theorem of Daniel Dugger and David Spivak, necklaces can be used to characterize
the higher dimensional simplices of the hom-spaces €X (x, y) as well, provided we keep
track of additional vertex data.

THEOREM 2-1 (Dugger, Spivak [6, corollary 4-8]). Let X be a simplicial set with vertices
x and y. An n-simplex in €X (x, y) is uniquely represented by a triple (T, f, f), where
T is a necklace; f: T — X is a map of simplicial sets that sends each bead of T to a
non-degenerate simplex of X and the endpoints of the necklace to the vertices x and v,
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respectively; and Tisa flag of sets
Jp=T'CcT'cT’c--.CcT"'cT"=V;

of vertices Vi of T, where Jr is the set of joins of T.

Necklaces f: T — X with the property described above are called fotally non-
degenerate. Note that the map f need not be injective. If x = y is a vertex with a non-
degenerate edge e: x — y, the map e: A' — X defines a totally non-degenerate necklace
in X.

Dugger and Spivak prefer to characterize the simplices of €X (x, y) as equivalence classes
of triples (7, f, T), which are not necessarily totally non-degenerate [6, corollary 4-4,
lemma 4-5]. However, it is always possible to replace an arbitrary triple (7, f, f) by its
unique totally non-degenerate quotient.

LEMMA 2-2 (Dugger, Spivak [6, proposition 4-7]). Let X be a simplicial set and suppose
T is a necklace; f: T — X is a map of simplicial sets; and T is a flag of sets

Jr=T°cT'cT*cCc---cT"'cT"=Vs

of vertices Vr of T, where Jr is the set of joins of T. Then there is a unique quotient

(T, f, f) of this triple such that f factors through f via a surjection T — T and (T, f, f)
is totally non-degenerate.

Proof. By the Eilenberg—Zilber lemma [10, proposition II-3-1, pp. 26-27], any simplex
o € X, can be written uniquely as eo’ where o’ € X,, is non-degenerate, with m < n, and
€: X,, = X, is a simplicial operator corresponding to a surjection [n] — [m] in A. The
necklace T agrees with T at each bead whose image is non-degenerate. If o is a degenerate
n-simplex in the image of f, then to form T we replace the bead A” of T corresponding
to o by the bead A™, where m is determined by the Eilenberg-Zilber decomposition of
o, described above. Define f: T — X restricted to this A” to equal o’. The morphism
€ defines a surjective map of simplicial sets A" — A, which defines the quotient map
T —» T at this bead in such a way that f factors through f along this map.

Let ? be the flag of sets of vertices of T given by the direct image of T under T — T. The
resulting triple (T, f, T) is totally non-degenerate and unique such that f factors through

7.

With the aid of Lemma 2-2, the face maps d;: €¢X(x,y), — €X(x, y),_; can also be
described in the language of flags and necklaces. In what follows, d;T denotes the flag of
sets

Ir=T'C...cTic.-.CT"=V;
with T removed from the sequence.

THEOREM 2-3 (Dugger, Spivak [6, remarks 4-6 and 4-9]). The faces of an n-simplex
(T, f, T) are uniquely represented by the triples

@ T i=o
d,(T,f,T)= (va,le) O<i<n
(F?mydnf) i=n
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where T' = T |1 is the maximal subnecklace of T with vertices T"™ Land T* IS the maximal
subnecklace of T with joins T'. If the triples (T*, f|r-, doT) and (T', fl7, d, T) are totally
non-degenerate, then these are the zeroth and nth faces, respectively; otherwise, these faces
are given by the unique quotients of Lemma 2-2.

We call T* the T'-splitting of T. Each bead of T is replaced by a necklace with the same
spine whose beads are each faces of the original bead. The vertices of each new bead will
be a consecutive subset of vertices of the bead of T with initial and final vertices in T
The sum of the dimensions of these new beads will equal the dimension of the original
bead.

Example 2-4. We use Theorem 2.3 to compute the faces of the 3-simplex
(A% o: A — X,{0,6} C {0,3,4,6} C {0,1,3,4,6} C[6]).
The necklace A3 Vv A' v A?is the {0, 3, 4, 6}-splitting of the necklace A°®, so the zeroth face
is
(APVA'VA% oo AP VAV AT > X, {0,3,4,6) C {0, 1,3,4,6} C [6])

where the map o |~ is given on the first bead by restricting o to the face containing the
vertices 0, 1, 2, and 3; on the second bead by restricting to the face containing the vertices
3 and 4; and on the third bead by restricting to the face containing the vertices 4, 5, and 6.
The first and second faces are

(A% 0: A® - X,{0,6} C {0,1,3,4,6} C [6])
and (A% o: A® = X, {0,6) C {0,3, 4,6} CI[6]).

Note that the necklace parts of these faces are the same. The third face is

(A, dydso - A* — X, {0,4} C {0,2,3,4} C [4])

where we have chosen to rename the vertices in the flag. The simplicial map d,dso : A* —
X is the restriction of o to the face containing all vertices except for 2 and 5.

We note an obvious corollary to Theorem 2-3, which will be frequently exploited.

COROLLARY 2-5. The necklaces representing the inner faces of an n-simplex (T, f, 7_;)
are all equal to T.

Proof. 1f0 < i < n, the triple (T, f, d; i") is totally non-degenerate and represents the ith
face of (T, f, T).

When describing n-simplices of €X (x, y) as triples (7, f, f’), we frequently define the
necklace as a subsimplicial set of X, in which case the map f is understood and may
be omitted from our notation. In dimensions O and 1, the flag T is completely determ-
ined by the necklace T, so we may represent the simplices of €X(x, y) by necklaces
alone.
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3. Filling A* horns in €X (x,y)

Recall, a quasi-category is a simplicial set X such that every inner horn in X has a filler,
i.e., any diagram

AZ4>X

7
7/
| .
7/

An

has the indicated extension. Here, A} is the simplicial subset of the standard (represented)
n-simplex A" generated by all of the (n — 1)-dimensional faces except for the kth, where
0<k<n.

Horn filling conditions in quasi-categories guarantee that simplices in each dimension can
be composed. In this section, we will use the characterization of simplices in the hom-spaces
€X (x, y) as necklaces to prove the following theorem, which says that the “factorisations”
relating paths of edges in a quasi-category can be composed.

THEOREM 3-1. Let X be a quasi-category and let x and y be any two vertices. Then
every horn A? — €X (x, y) has a filler A*> — €X(x, y).

Our proof will use a lemma due to André Joyal describing maps constructed from joins
of simplicial sets, where the join, denoted «, is the restriction of the Day tensor product [5]
on augmented simplicial sets arising from the monoidal structure on A, the category of
all finite ordinals and order preserving maps. The reader who wishes to verify the proofs of
Corollaries 3-4 and 3-5 below should see [13] for an explicit definition.

Recall a monomorphism of simplicial sets is mid anodyne if it is in the saturated class
generated by the inner horn inclusions A} — A" and left anodyne if it is in the saturated
class generated by the horn inclusions with 0 < k < n. The left anodyne maps are precisely
those maps which have the left lifting property with respect to the left fibrations, which are
the maps that have the right lifting property with respect to the appropriate horn inclusions.

LEMMA 3-2 (Joyal [15, lemma 2-1-2-3]). Ifu: X — Y andv: Z — W are monomorph-
isms of simplicial sets such that v is left anodyne, then the map

ur: X * WU,z Y *Z — Y+ W

is mid anodyne.

We will apply Lemma 3-2 in the case where v is the inclusion iy: A? — A" of the initial
vertex of A”.

LEMMA 3-3. The map iy: A° — A" is left anodyne.

Proof. 1t suffices to show that i lifts against any left fibration. Given a left fibration
p: X — Y and a lifting problem

AOL>X
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we may lift the edges [0, k] of the n-simplex b: A" — Y to X because we can
solve lifting problems of the form

Al———7Y.
bl

This allows us to lift all 2-dimensional faces of b containing the vertex 0 by filling A2 horns.
In turn, this allows us to lift all 3-dimensional faces of b containing the vertex 0 by filling A
horns, and inductively we can lift all (n — 1)-dimensional faces of b containing O by filling
Ag_' horns. These faces form a A{j horn in X whose image under p is the corresponding
horn of b in Y. We lift against the inclusion Aj — A" to obtain the desired lift of our
n-simplex b.

COROLLARY 3-4. The inclusion A*¥ v A" — A*™ is mid anodyne.

Proof. Apply Lemma 3-2 withu: @ — A*landv =iy: A" — A",
COROLLARY 3-5. The inclusion A* U 1-10.1) A" — A"~V is mid anodyne.
Proof. Apply Lemma 3-2 withu = iy: A° — A¥landv =ij: A - A",
We now have all of the tools necessary to prove Theorem 3-1.

Proof of Theorem 3-1. By Theorem 2-1, ahorn A7 — €X (x, y) is specified by necklaces
T and U such that dyT = d,U. We use Theorem 2-3 to compute these faces.

Let U’ be the subnecklace of U whose vertices equal the joins J; of U; we call U’ the
diagonal of U. The necklace U’ is comprised of the path of edges which form the diagonal
edges of the beads of U; for each bead A* of U, the [0, k] edge of that bead appears in U’.
By Theorem 2.3, d,U = U’, the quotient which collapses each degenerate edge of U’ to a
vertex.

Let T* to be the subnecklace of T whose joins include all of the vertices of T'; we call
T* the spine of T. The necklace T* is comprised of the path of edges [i,i + 1] between
adjacently numbered vertices in each bead of T. By Theorem 2.3, dyT = T*, the quotient
which collapses each degenerate edge of 7* to a vertex.

The equation 7% = U’ says that the spine of T equals the diagonal of U, modulo any
degenerate edges. We construct a simplicial subset A of X that contains the data of 7 and
U; by construction any necklace S representing a 2-simplex in €X (x, y) with 7 and U as
second and zeroth faces will contain A. Start with the necklace U and insert degenerate edges
between the joins of U if needed until the diagonal of this new necklace is an expansion
of the spine of T'; we might call this new necklace “stretched”. It won’t necessarily equal
the spine of 7" because it may have some extra degenerate edges, which are the diagonals
of beads of U. To form A, we glue the beads of T into this necklace along their spines.
This can be done directly whenever the spine of the bead o of 7" does not encounter any
degenerate edges arising from the diagonal of U. If the stretched version of U contains an
extra degenerate edge at the location corresponding to the i-th vertex of some bead o of
T, we replace o by the degenerate simplex s;0, which can be glued in as described above.
The resulting simplicial set A is obtained by gluing a “thickened” version of 7', where some
beads have been expanded to degenerate beads to accommodate any degenerate diagonals of
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U, to the stretched necklace U, which has “gaps” between beads occurring wherever there
are degenerate edges in the spine of T'.

f./\/ N3

U=A3v A3 . . ~ / ‘ ./\g
NN [ NN
AN ‘ ‘

We wish to fill in A to obtain a new necklace S in X on the vertices of A, whose joins
contain the joins of 7 and any extra copies of these vertices that appear from degenerate
diagonals of U. To construct such a necklace S, we need to “fill” each simplicial subset
between our so-designated joins to a simplex of the appropriate dimension; this constructs
the beads one at a time. Inductively, there are only two types of fillings necessary: for one,
we must expand two adjacent beads A* and A" to form a single bead A**". For the other
we must expand two overlapping beads, where the diagonal of one is the first edge along
the spine of another. Such extensions are possible because the maps of 3-4 and 3-5 and its
dual are mid anodyne, and X is a quasi-category. This construction defines a totally non-
degenerate necklace S in X which contains A.

Let S be the flag Js C S' C Vg, where S! is the vertex set of T plus, for each degenerate
edge of U, an extra copy of the corresponding vertex. We claim that the triple (S, &, 3‘)
is a filler for the horn A7 — €X(x, y). The necklace representing the face da(S, §) =

(S, d, 5’) is obtained by restricting S to S!, which contains the vertices of T together with
some extra copies arising from degenerate edges of U. This amounts to restricting A to
the same vertices, and so it is clear that the totally non-degenerate quotient S’ is 7. Hence,

(s, dz_g') = (T, f). Similarly, the necklace S* of dy (S, 5‘) = (§*, do_g‘) contain_s the beads of
U but also some degenerate edges between beads. This says exactly that (S*, d; S )= (U, U ),
as desired.

Recall from the introduction that the 1-simplices in the hom-spaces of €X can be thought
of as “factorisations,” which aren’t reversible. As a result, we would not expect that A% or A%
horns in the hom-spaces can be filled in general, even if X is a Kan complex: if these horns
could be filled, it would follow that every 1-simplex would be invertible up to homotopy. It is
easy to find examples of outer horns that cannot be filled: for any non-degenerate 2-simplex
in €X (x, y), the representatives of the outer faces are proper subnecklaces of the necklace
representing the inner face. Exchanging the first face for either the zeroth or the second, one
obtains a A3 or A2 horn that has no filler.

Unexpectedly, many higher horns in these hom-spaces can be filled uniquely, without any
hypotheses on X, by an immediate corollary to the main theorem of the next section.

4. Forany X, all €X (x, y) are 3-coskeletal

Theorems 2-1 and 2-3 can also be used to prove the following.

THEOREM 4-1. For any simplicial set X and vertices x and y, the hom-space €X (x, y)
is 3-coskeletal.
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Recall, a simplicial set X is n-coskeletal if any sphere 0 A* — X, with k > n, can be
filled uniquely to a k-simplex A¥ — X, where 3 A¥ is the simplicial subset of A* generated
by all of its (k — 1)-dimensional faces (cf. [8, section 0-7]). Morally, an n-coskeletal Kan
complex corresponds to an (n — 1)-type from classical homotopy theory.

Proof. We must show that for n > 4 any sphere d A" — €X(x, y) has a unique filler.
Using Theorem 2-1, an n-sphere in €X (x, y) is a collection

(To, To), - -, (T, T,)
of totally non-degenerate necklaces in X accompanied by flags f} of vertices

JiCT'c---CT'?*cCV,

i
satisfying the relations
di(T;, T;)) =d;_(T;, T;) foralli < j.
By Corollary 2-5 the necklaces 7; are equal for 0 < i < n; we call this common necklace S.
Furthermore, when n > 4, the relations between the inner faces define a flag S of vertices
JsCS'co-Cc8TCVs

suchthatdS' f’,, forO <1i<n.
It is clear that (S, S) is the _only possible filler for this sphere. It remains to show that
dy(S, S) (To, TO) and d, (S, S) (T,, T,l) Using any inner face i, we compute that

di—1(To, To) = do(T;, T;) = dodi (S, S) = d;_1do(S, S). 4-1)
We may choose i > 1 so that (4-1) is an inner face &lation; it follows from Corollary 2-5
that Tj is the necklace of dy(S, §) and d;_, fo = di_ldog ﬁy choosing a different inner face
i > 1, we learn that the omitted sets of the flags fo and dog’ also agree, so we conclude that

fo = dog", and hence that d, (S, 3’) = (T, fo).
Similarly, using any inner face j, we compute that

di(T,. T,) = du_y (T}, T;) = du_1d;(S. S) = d;d, (S, S). (4-2)
We may choose j < n — 1 so that (4-2) is an inner face relation; it follows from Corollary
2.5 that T, is the necklace of d,(S, 5‘) and d; f,, =d jdn_g‘. We choose any other inner face
Jj < n — 1to conclude that the flag f,, = dn_S' and hence that d,, (S, S’) = (T,, f,,).

It is well-known that n-coskeletal simplicial sets have unique fillers for all horns of di-
mension at least n + 2 (cf., e.g., [7, section 2-3]).

COROLLARY 4-2. Forn > 4, every horn A}, — CX (x, y) has a unique filler.

Proof. When n > 4, the map skzA] — sk3A" induced by the inclusion is an iso-
morphism. Hence, any map sksA} — €X(x,y) can be extended uniquely to a map
sksA" — €X(x,y). By adjunction, any horn A} — cosks€X(x,y) = €X(x,y) has a
unique filler.

Example 4-3. Let X be a simplicial set with two vertices x and y, two edges f and g from
x to y, and a 2-simplex « and a 3-simplex o as shown.
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x—5 oy x £ .
f $0y f S0
y y

The necklaces Ty = T3 = A? mapping onto « and 7; = T, = A* mapping onto o, with
flags

Ty {0,2} c{0,1,2} Cc {0, 1,2}
T, {0,3} c{0,2,3} c{0,1,2,3}
T, {0,3} c{0,1,3} Cc{0,1,2,3}
5 {0,2} c{0,2} C{0,1,2}

deﬁne a 3- sphere in QX (x, ¥). This sphere cannot be filled because there is no flag S with
d, S = T1 and dQS T2 Hence, €X (x, y) is not 2-coskeletal, a fact that can also be verified
by direct computation of €X.

This shows that the result of Theorem 4-1 is the strongest possible.

5. €X is not locally quasi, if the quasi-category X is not a category

In light of the prior results, one might hope that all inner horns in the hom-spaces of the
simplicial category associated to a quasi-category can be filled. However, we will show in
this section that for any quasi-category X that is not the nerve of an ordinary category, we
can find a hom-space in €X that is not a quasi-category, proving the following theorem.

THEOREM 5-1. If X is a quasi-category and its simplicial category €X is locally quasi,
then X is isomorphic to the nerve of a category.

More explicitly, we will show that if X is any quasi-category that fails to satisfy either of
the following conditions:

(i) X is 2-coskeletal;
(ii) X has unique fillers for A2, A3, and A3 horns,

then there is a A} horn in some hom-space of €X that cannot be filled. By a lemma below,
any quasi-category that satisfies both of these conditions is isomorphic to the nerve of a
category. Thus, if X is a quasi-category such that the simplicial category €X is locally
quasi, then X must be the nerve of a category. In the following section, we complete our
characterization of the quasi-categories whose simplicial categories are locally quasi, by
considering the case where X is isomorphic to the nerve of a category.?

It is well known that a simplicial set is isomorphic to the nerve of a category if and
only if every inner horn has a unique filler. A third equivalent condition is given in the

2 Note that the simplicial category QZA2 is locally quasi, its three non-empty hom-spaces being trivial,
but A2 is not itself a quasi-category. We don t concern ourselves with the technicalities of determining
Wthh non-quasi-categories have locally quasi simplicial categories as a fluke.



Simplicial categories associated to quasi-categories 501

following lemma, though we only prove the implication needed here. For a full proof see
[14, proposition 1-13].

LEMMA 5-2. Let X be a 2-coskeletal simplicial set such that for n = 2 or 3 every inner
horn A} — X has a unique filler. Then X is isomorphic to the nerve of a category.

Proof. By the argument given for Corollary 4.2, any horn A} — X withn > 3 has a
unique filler.

The following lemmas give explicit A7 horns that cannot be filled.

LEMMA 5-3. Let X be a quasi-category with distinct n-simplices o and t with the same
boundary, for some n > 3. Let x and y be the common initial and terminal vertices, respect-
ively, of these simplices. Then there is a horn A3 — €X (x, y) with no filler.

Proof. Degenerate simplices with given boundaries are unique, so at least one of ¢ or t
is non-degenerate; assume it is t. Let S and T equal A" with maps § — X and T — Y that
send the unique bead to ¢ and 7, respectively. Pick some proper subset J of vertices of A"
that contains both the initial and final vertices and at least one other. Let U be the maximal
subnecklace of A" that has these vertices as joins; i.e., let U be the J-splitting of A”. There
is a natural map U — X that factors through both S and T because the image of U in X sits
inside the common boundary of ¢ and .

We claim that U, S, and T form, respectively, the zeroth, second, and third faces of a horn
A} — €X(x, y) when given flags

J C[n] C[n]
{0,n} C J C[n]
{0,n} C J C[n]

N Ll

where we replace (U, U ) and (S, §) by their totally non-degenerate quotients if necessary;
we ignore this possibility in our notation as it does not change the argument in any substantial
way. To prove this, we must check that dyS = d,U, dyT = d,U, and d,S = d,T. The first
two equations say that the J-splittings of S and 7 are U, which is true by definition. The
final equation says that S and T are the same when restricted to J, which is true because the
image of this restriction lies in the common boundary of ¢ and .

A filler of this horn would necessarily have (S, S ) as its second face. By Corollary 2.5,
any such 3-simplex must be given by the necklace S itself together with the flag

{0,n} c J C §*C[n]

But the third face any such 3-simplex can’t possibly be represented by the necklace T'.
Hence, this horn has no filler.

LEMMA 5-4. Let X be a quasi-category with distinct 3-simplices o and T such that dyo =
dot and dyo = dyt. Let x and y be the common initial and terminal vertices, respectively,
of these simplices. Then there is a horn Af — CX (x, y) with no filler.

Proof. The argument given in the above proof with n = 3 and J = {0, 1, 3} applies in
this case. The conditions that U, S, and T form a A? horn amount to the requirement that the
simplices o and t in the images of S and T respectively share common zeroth and second
faces.
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Proof of Theorem 5-1. If X is not 2-coskeletal, then either there exist distinct n-simplices
with the same boundary, in which case we may apply Lemma 5-3, or there exists an n-sphere
in X that cannot be filled for some n > 2. In the latter case, choose 0 < i < n and fill the
A horn contained in the n-sphere to obtain, as the ith face of the filler, and (n — 1)-simplex,
necessarily distinct from the one appearing in the sphere, but with the same boundary. Unless
n was equal to 3, we have found distinct simplices of dimension 3 or higher with the same
boundary, and we can apply Lemma 5-3 to show that €X is not locally quasi.

In the remaining case, we have two distinct 2-simplices o and 8 with common boundary.
We construct the 3-simplices o and T of Lemma 5-4 by filling two A3-horns with second
face «, third face either « or 8, and zeroth face the appropriate degeneracy. Applying Lemma
5-4, we conclude that €X is not locally quasi if X is not 2-coskeletal.

Alternatively, if X has some A3 or A3 horn with two distinct fillers, it is clear that Lemma
5-4 or the dual argument can be applied. If X has some A? horn with distinct fillers & and 8,
we repeat the construction just given, noting that it does not matter if d o & d; 8. Thus, if X
does not have unique fillers for low dimensional inner horns, then €X is not locally quasi.

6. Simplicial categories associated to categories

It remains to consider the simplicial categories €N A associated to (ordinary) nerves of
categories A; €N A is often referred to as the “simplicial thickening” of A. More specifically,
CNA is the cofibrant replacement of A, regarded as a trivial simplicial category, in the
usual model structure for simplicial categories [1]. In this section, we show that the hom-
spaces of €X are 2-coskeletal when X is isomorphic to the nerve of a category. We then
provide examples of A} and A3 horns in some hom-spaces that cannot be filled, whenever
the category has a non-trivial factorization of an identity morphism. Finally, we show that
the simplicial category €N A is isomorphic to another known cofibrant replacement of A in
sCat: namely, the standard free simplicial resolution of Section 1.

Throughout this section, we assume that X is isomorphic to the nerve of a category. We
begin by noting an obvious lemma with a useful corollary.

LEMMA 6-1. A simplex in X is degenerate if and only if its spine contains a degenerate
edge.

COROLLARY 6-2. If T — X is a totally non-degenerate necklace and Jy C K C Vy is
a collection of vertices of T containing the joins, then the K-splitting of T is totally non-
degenerate.

Proof. The spine of T equals the spine of its K -splitting.

Remark 6-3. In particular, if (T, i’) is totally non-degenerate, its zeroth face is the T
splitting of T with flag dyT . In practice this means that we can recover much of the data of
the flag T from its zeroth face, as well as from the inner faces.

THEOREM 6-4. For any simplicial set X that is the nerve of a category and any objects
x and 'y, the hom-space €X (x, y) is 2-coskeletal.

Proof. By Theorem 4-1, it remains to show that any sphere dA* — €X(x, y) has a
unique filler. Recall, a 3-sphere in €X (x, y) is a collection

(To, To), ..., (T3, T3)
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of totally non-degenerate necklaces in X accompanied by flags f", of vertices
JiCT'cV
satisfying the relations
di(T;, T)) = d;_(T;, T;) foralli < j.

Corollary 2-5 and the relation between the inner faces implies that the necklaces 7, and
T, are equal; we call this common necklace S. By Remark 6-3, the relations between the
zeroth, first, and second faces define a flag S of vertices

h=h CT=JyCT =T C Vo=V =V,

such that diS' = i for i < 3. It is clear that (S, S‘) is the only possible ﬁllfir for this
sphere; The relagion (4-1) with i = 2 implies that T is the necklace of dy(S, S); henge,
do(S, S) = (Tp, Tp). The relation (4-2) with j = 1 implies that Tj is the Iﬂdace of dz(S, S).
By Rejrlark 6-3,qwe may use j = 0 in (4-2) to conclude that 7_”;1 = d33‘, and hence that
dy(S, ) = (15, T5).

Example 6-5. Suppose X is the nerve of a category with non-identity morphisms s: x —
y and r: y — x such that rs is the identity at x. Let T be the necklace A® and let U be
the necklace A? v A! whose images in X have spines srs. Then there is a 2-simplex « in
CX (x, y) with zeroth face U, first face T, and second face a degeneracy, but there is no
2-simplex with the positions of U and T reversed. The simplex « can be glued to degenerate
simplices to form horns, depicted below, that have no filler.

A3 s A3 s
AR AR
U U
N — SIS N — STrS.
U S0
T so(srs) Sos U
Srs N

Remark 6-6. When X is isomorphic to the nerve of a category such that identity morph-
isms cannot be factored, or equivalently, so that there do not exist r and s as above, then any
restriction of a totally non-degenerate necklace in X is totally non-degenerate. By arguments
similar to those given above, all A?, A?, and A% horns in hom-spaces of €X can be filled
uniquely, and it follows from Lemma 5-2, that the €X (x, y) are themselves nerves of cat-
egories in this case. The poset categories [n] do satisfy this condition, but most interesting
examples do not.

We conclude with a theorem that is most likely known somewhere, given the ubiquity
of the simplicial resolution construction described in the introduction, but which, with
Theorem 2-1, admits a particularly simple proof.

THEOREM 6-7. For any category A, the simplicial category €N A is isomorphic to the
simplicial category obtained as the standard free simplicial resolution of A.

Proof. The objects of both simplicial categories are the objects of A. It remains to show
that the hom-spaces coincide. A necklace in the nerve of a category is uniquely determ-
ined by its spine and the set of joins; i.e., a necklace is a sequence of composable non-
identity morphisms each contained in one set of parentheses, indicating which morphisms
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are grouped together to form a bead. An n-simplex in a hom-object of the standard free
simplicial resolution is a sequence of composable non-identity morphisms, each contained
within (n — 1) sets of parentheses. The morphisms in the sequence describe the spine of a
necklace and the locations of each level of parentheses defines the corresponding set in the
flag of vertex data; by Theorem 2-1, this exactly specifies an n-simplex in the corresponding
hom-object of €N A.
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