
Emily Riehl

Johns Hopkins University

A categorical view

of computational effects

Lambda World Cádiz



Preview

Let T denote a computational effect.

• A T-program is a function A
f−→ T(B) from the set of values of type

A to the set of T-computations of type B.

• T is a monad just when it has the structure needed to turn

T-programs into a category.

• The T-programs between finite types define a Lawvere theory.

• The Lawvere theory presents the operations and equations for the

computational effect T.*

*If T is not finitary, these operations and equations define a different monad.



0. Functions, composition, and categories

1. Categories for computational effects (monads)

2. Categories of operations and equations (Lawvere theories)

3. Lawvere theories = (finitary) monads



0

Functions, composition, and
categories



The mathematician’s view of functions

A function, e.g.:

f (x) = x2 − x

always comes with specified sets of “possible input values” and “potential

output values.” One writes

I O
f

to indicate that f is a function with source I and target O.

Why bother with sources and targets? This data indicates when two

functions are composable:

A B and B C
f g

are composable just when the target of f equals the source of g.



What is a category?

A category is a two-sorted structure that encodes the algebra of

composition. It has

• objects: A, B, C . . . and

• arrows: A
f−→ B, B

g−→ C, each with a specified source and target

so that

• each pair of composable arrows:

B

A C

gf

g◦f

has a composite arrow

• and each object has an identity arrow A
idA−→ A

for which the composition operation is associative and unital.



What is the point of identity arrows?

An isomorphism consists of:

A B
f

g

so that

g ◦ f = idA and f ◦ g = idB

Isomorphism invariance principle:

If A and B are isomorphic then every

category theoretic property of A is also true of B.



Examples of categories

In the category Set the

• objects are (finite) sets X, Y, . . .

• arrows are functions X
f−→ Y, . . .

In the syntactic category for some programming language the

• objects are types X, Y, . . .

• arrows are programs X
f−→ Y, . . .

Note that the same notation describes the data in any category. The

precise ontology of the objects and arrows won’t matter much.



1

Categories for computational effects
(monads)



Computational effects

Let us introduce some constructions

Set Set
T

each encoding a computational effect:

• list(X) := finite lists of elements of X

• maybe(X) := X + {⊥}
• exceptionsE(X) := X + E

• side-effectsS(X) := {S → S× X}
• non-det(X) := {finite non-empty subsets of X}
• prob-dist(X) := {X p−→ [0, 1] |

∑
x∈X p(x) = 1}

• continuationsR(X) := {(X → R) → R}



T-programs

For any notion of computation T

• list(X) := finite lists of elements of X

• maybe(X) := X + {⊥}
• exceptionsE(X) := X + E

• side-effectsS(X) := {S → S× X}
• non-det(X) := {finite non-empty subsets of X}
• prob-dist(X) := {X p−→ [0, 1] |

∑
x∈X p(x) = 1}

• continuationsR(X) := {(X → R) → R}

a T-program from A to B is a function A
f−→ T(B), from the set of values

of type A to the set of T-computations of type B.

Write A
f

B to mean A
f−→ T(B).



Programs should form a category

A T-program from A to B is a function A
f−→ T(B), from the set of values

of type A to the set of T-computations of type B.

The notion of monad arises from the following categorical imperative:

programs should form a category

Slogan: A computational effect T defines a monad just when the

T-programs A
f

B define the arrows in a category of T-programs.



The category of T-programs

To define the category of T-programs KlT we need:

• identity arrows A
idA

A; a monad has pure functions A
pure−−→ T(A)

• a composition rule for T-computations:

B

A C

gf

g◦f

Problem: A
f−→ T(B) and B

g−→ T(C) are
not composable!

With a monad, any function B
g−→ T(C) can be extended to a function

T(B)
g∗−→ T(C) via the bind operation. Then

T(B)

A T(C)

g∗f

g∗◦f

defines the Kleisli composite of A
f

B and B
g

C.



The category Klmaybe of maybe-computations
For maybe(X) := X + {⊥}

• A maybe-program A
f

B is a function A
f−→ B+ {⊥}, i.e., a partial

function from A to B.

• The identity A
idA

A is the function A
incl−→ A+ {⊥}.

• Any function B
g−→ C + {⊥} extends to a function

B+ {⊥} g∗−→ C + {⊥}

by the rule g∗(⊥) = ⊥.

• The Kleisli composite

B B+ {⊥}

A C A C + {⊥}

g g∗f

g◦f

f

g∗◦f

is the largest partial function from A to C.



The category Kllist of list-computations
For list(X)

• A list-program A
f

B is a function A
f−→ list(B), i.e., a

function from A to lists in B.

• The identity A
idA

list(A) is the function A
singleton−−−−→ list(A).

• Any function B
g−→ list(C) extends to a function

list(B)
g∗−→ list(C)

by applying g to each term in a list of elements of B and

concatenating the result.

• The Kleisli composite

B list(B)

A C A list(C)

g g∗f

g◦f

f

g∗◦f

is defined by application of f and g followed by concatenation.



2

Categories of operations and
equations (Lawvere theories)



Kleisli arrows define operations

Let n := {x1, . . . , xn} denote the set with n elements.

An arrow 1 n in the category of list-programs Kllist is

• a function 1 → list(n) (by definition) or equivalently

• an element of list(n) (the image of the previous function).

E.g.

1
x3x5x2x5

6 ! x3x5x2x5 ∈ list(6)

which encodes a 6-ary operation “λ.x3x5x2x5.”

Arrows 1 n define n-ary operations.



Kleisli composites define equations between operations

Arrows 1 n in the category of list-programs Kllist
define n-ary operations.

Compositions
n

1 m

define equations between operations.

E.g.

2

1 3

(x1,x2x3)x1x2

x1x2x3

corresponds to x1(x2x3) = x1x2x3.

2

1 3

(x3,x1x2)x2x1

x1x2x3

corresponds to (x1x2)x3 = x1x2x3.

Together these operations and equations define the list-theory Llist.



Lawvere theories from monads

A model for the list-theory Llist is:

• a set A

• together with a function An → A for each n-ary operation 1 n

• satisfying the equations determined by the compositions in the

category of list-programs.

E.g.

2

1 3

2

(x1,x2x3)x1x2

x2x1

x1x2x3

(x3,x1x2)

are modeled by

A2

A A3

A2

λ.(x1,x2x3)λ.x1x2
λ.x1x2x3

λ.(x3,x1x2)λ.x2x1

For any monadic computational effect T, let LT denote the category of

T-programs between finite sets. The opposite category LT
op, obtained

by formally reversing the arrows, defines a Lawvere theory.



3

Lawvere theories = (finitary) monads



monads vs Lawvere theories

A monad is

• a “computational effect” Set
T−→ Set

• so that T-programs A
f−→ T(B) define the arrows A

f

B in a

category KlT.

The opposite of the category of T-programs between finite sets defines

a Lawvere theory LT
op. Conversely, any Lawvere theory L defines a

monad TL on Set.

Theorem: The category of Lawvere theories is equivalent to the

category of finitary monads∗ on Set.

Finitary monads and Lawvere theories describe equivalent cate-

gorical encodings of universal algebra.



Advantages of Lawvere theories

Why bother with Lawvere theories if they are equivalent to monads?

• Each monad acts on just one category, whereas models of Lawvere

theories can be defined in any category with finite products — and

the construction of the category of models is functorial in both

arguments.

• Lawvere theory operations can be added: any two Lawvere

theories L and L′ have a sum L+ L′— indeed the category of

Lawvere theories is locally finitely presentable.

• Lawvere theory operations can be intertwined: any two Lawvere

theories L and L′ have a tensor product L⊗ L′.

• In practice, Lawvere theories are generated by computationally

natural operations satisfying computationally meaningful equations

— e.g., exceptions, side-effects, interactive input-output,

binary non-determinism, probabilistic non-determinism …



Continuations

All of computational effects mentioned thusfar fit into this framework for

categorical universal algebra with one exception:

Even for 2 = {>,⊥}, the continuations monad

continuations2(X) := {(X → 2) → 2} = P(P(X))

is not finitary. It does define a large Lawvere theory, but this is specified

with a proper class of operations.

“It appears that the continuations monad transformer

should be seen as something sui generis.”

– Martin Hyland and John Power



Review

Let T denote a computational effect.

• A T-program is a function A
f−→ T(B) from the set of values of type

A to the set of T-computations of type B.

• T is a monad just when it has the structure needed to turn

T-programs into a category.

• The T-programs between finite types define a Lawvere theory.

• The Lawvere theory presents the operations and equations for the

computational effect T.*

*If T is not finitary, these operations and equations define a different monad.



References

• Eugenio Moggi, “Computational lambda-calculus and monads”

— describes monads and the category of programs

• Gordon Plotkin and John Power, “Computational Effects and

Operations: An Overview”

— describes the connection between

Moggi’s monads and Lawvere theories

• Martin Hyland and John Power, “The Category Theoretic

Understanding of Universal Algebra: Lawvere Theories and

Monads”

— inspired this talk

Gracias!


	Functions, composition, and categories
	Categories for computational effects (monads)
	Categories of operations and equations (Lawvere theories)
	Lawvere theories = (finitary) monads

