Emily Riehl

Johns Hopkins University

A categorical view
of computational effects

@ Lambda World Cadiz

LAMBDA
WORLD
by 47 Degrees.

Preview

Let T denote a computational effect.

® A T-program is a function A I T(B) from the set of values of type
A 1o the set of T-computations of type B.

® T is a monad just when it has the structure needed to tum
T-programs into a category.

® The T-programs between finite types define a Lawvere theory.

® The Lawvere theory presents the operations and equations for the
computational effect T.*

*If T is not finitary, these operations and equations define a different monad.

0. Functions, composition, and categories

|. Categories for computational effects (monads)

2. Categories of operations and equations (Lawvere theories)

3. Lawvere theories = (finitary) monads

O

Functions, composition, and
categories

The mathematician’s view of functions |

A function, e.g:
f(x) =x* — x

always comes with specified sets of “possible input values” and “potential
output values.” One writes

l—f>O

to indicate that f is a function with source | and target O.

Why bother with sources and targets! This data indicates when two
functions are composable:

Al yp and B £, ¢

are composable just when the target of f equals the source of g.

What is a category!?

A category is a two-sorted structure that encodes the algebra of
composition. It has

® objects: A,B,C...and

® arrows: A L) B, B £> C, each with a specified source and target
so that

® each pair of composable arrows:

B
N
_—

A o~ C

has a composite arrow

® and each object has an identity arrow A %A

for which the composition operation is associative and unital.

What is the point of identity arrows!?

An isomorphism consists of:

so that
gof =ida and fog=ids

Isomorphism invariance principle:
If A .and B are isomorphic then every
category theoretic property of A is also true of B.

Examples of categories

In the category Set the
® objects are (finite) sets X, Y, ...

® arrows are functions X L> Y, ...

In the syntactic category for some programming language the

® objects are types X, Y, ...

® arrows are programs X L) Y, ...

Note that the same notation describes the data in any category. The
precise ontology of the objects and arrows won't matter much.

0

Categories for computational effects
(monads)

Computational effects

Let us introduce some constructions

Set ——+ Set

each encoding a computational effect:

1ist(X) := finite lists of elements of X

maybe(X) := X+ {1}
exceptionsg(X):=X+E
side-effectss(X) :={S— Sx X}
non-det(X) := {finite non-empty subsets of X}
prob-dist(X) = {X % [0,1] | ¥, cx p(x) = 1}
continuationsg(X):={(X = R) = R}

T-programs

For any notion of computation T

1ist(X) := finite lists of elements of X

maybe(X) := X + {L}
exceptionsg(X):=X+E
side-effectss(X) :={S— Sx X}
non-det(X) := {finite non-empty subsets of X}
prob-dist(X) = {X % [0,1] | ¥,exp(x) = 1}
continuationsg(X):={(X = R) = R}

a T-program from A to B is a function A iR T(B), from the set of values
of type A to the set of T-computations of type B.

. f f
Write A~B tomean A — T(B).

Programs should form a category '

A T-program from A to B is a function A iR T(B), from the set of values
of type A to the set of T-computations of type B.

The notion of monad arises from the following categorical imperative:

programs should form a category J

Slogan: A computational effect T defines a monad just when the

f
T-programs A ~* B define the arrows in a category of T-programs.

The category of T-programs ‘

To define the category of T-programs Klp we need:
id
® identity arrows A ~% A a monad has pure functions A 225 T(A)

® a composition rule for T-computations:

}Jﬁ B R‘\i Problem: A 1 T(B) and B £ T(C) are
not composable!

With a monad, any function B £+ T(C) can be extended to a function
T(B) £ T(C) via the bind operation. Then

f g
defines the Kleisli composite of A~* B and B ~* C.

The category Klpayne of maybe-computations ‘
Formaybe(X) := X+ {1}

;
® A maybe-program A ~* B is a function A Ly {Ll} ie, a partial
function from A to B.
incl

id
® The identity A 2 A is the function A — A+ {L}.
e Any function B £ C + { L} extends to a function

B+{L}§>C+{L}

by the rule g*(L) = L.

® The Kleisli composite

}HJB% . B+{Ll} o
- Jc f — , C4 (L)

is the largest partial function from A to C.

The category Kly; <+ of 1ist-computations ‘
For 1ist(X)

.
® A list-program A ~* B is a function A iR list(B),ie,a
function from A to lists in B.

singleton

d
® The identity A s 1ist(A) is the function A ——— 1ist(A).
* Any function B £ 11 st(C) extends to a function

1ist(8) &5 1ist(C)

by applying g to each term in a list of elements of B and
concatenating the result.

® The Kleisli composite

}ﬂ B . 1ist(B) -
f \
A Wm C A / aof llSt(C)

is defined by application of f and g followed by concatenation.

@

Categories of operations and
equations (Lawvere theories)

Kleisli arrows define operations
Let n := {x1,...,x,} denote the set with n elements.

An arrow 1~ n in the category of 1ist-programs Kly;st is
e afunctionl — list(n) (by definition) or equivalently
® anelementof 1ist(n) (the image of the previous function).

Eg.
X3X5X2X5
1~ g o X3X5X2X5 € liSt(ﬁ)

which encodes a 6-ary operation “A.xgx5x2x5."

Arrows 1~ n define n-ary operations.

Kleisli composites define equations between operations ‘

Arrows 1 ~* n in the category of 1ist-programs Klyist
define n-ary operations.

n
Compositions 2~ define equations between operations.

Eg

2
leiﬂ - (x1,%2x3) corresponds to X1 (x2x3) = X1x2X3.
1 Ty

X1X2X3

2
XW - (x3,x1x2) corresponds to (x1x2)x3 = X1X2X3.

X1X2X3

Together these operations and equations define the 1ist-theory L1;<¢.

Lawvere theories fromm monads G

A model for the 1ist-theory Lijst is
® asetA
® together with a function A" — A for each n-ary operation 1 ~7 n

® satisfying the equations determined by the compositions in the
category of 1ist-programs.

Eg

2

2
lefr"'ﬁ = ____(:;17><2><3) Axixa A \)\,(xl,xzxg)
X1x2x3 are modeled by 4 <A~X1X2X3 A3

(x3,x1x2) A.XQXI\ 22 /)\.(X3,x1><2)

,

X2X1

N

For any monadic computational effect T, let Ly denote the category of
T-programs between finite sets. The opposite category L+°F, obtained
by formally reversing the arrows, defines a Lawvere theory.

)

Lawvere theories = (finitary) monads

monads vs Lawvere theories y

A monad is

® 2 ‘“computational effect” Set 2 Set

f
® so that T-programs A 1 T(B) define the arrows A ~* B ina
category Klz.

The opposite of the category of T-programs between finite sets defines
a Lawvere theory L“". Conversely, any Lawvere theory L defines a
monad T, on Set.

Theorem: The category of Lawvere theories is equivalent to the
category of finitary monads* on Set.

Finitary monads and Lawvere theories describe equivalent cate-
gorical encodings of universal algebra.

Advantages of Lawvere theories “

Why bother with Lawvere theories if they are equivalent to monads?

® Fach monad acts on just one category, whereas models of Lawvere
theories can be defined in any category with finite products — and
the construction of the category of models is functorial in both
arguments.

® [awvere theory operations can be added: any two Lawvere
theories | and |/ have a sum | + |'— indeed the category of
Lawvere theories is locally finitely presentable.

® Lawvere theory operations can be intertwined: any two Lawvere
theories | and |/ have a tensor product | @ [/,

® |n practice, Lawvere theories are generated by computationally
natural operations satisfying computationally meaningful equations
— e.g, exceptions, side-effects, interactive input-output,
binary non-determinism, probabilistic non-determinism ...

Continuations 0

All of computational effects mentioned thusfar fit into this framework for
categorical universal algebra with one exception:

Even for 2 = {T, L}, the continuations monad
continuationsy(X) :={(X —2) = 2} = P(P(X))

is not finitary. It does define a large Lawvere theory, but this is specified
with a proper class of operations.

“It appears that the continuations monad transformer
should be seen as something sui generis.”
— Martin Hyland and John Power

Review “

Let T denote a computational effect.

® A T-program is a function A iR T(B) from the set of values of type
A to the set of T-computations of type B.

® T is a monad just when it has the structure needed to tum
T-programs into a category.

® The T-programs between finite types define a Lawvere theory.

® The Lawvere theory presents the operations and equations for the
computational effect T.*

#If T is not finitary, these operations and equations define a different monad.

References ‘

® Fugenio Moggi, “Computational lambda-calculus and monads”

— describes monads and the category of programs

® Gordon Plotkin and John Power, "Computational Effects and
Operations: An Overview”

— describes the connection between
Moggi's monads and Lawvere theories

® Martin Hyland and John Power, “The Category Theoretic
Understanding of Universal Algebra: Lawvere Theories and
Monads”

— inspired this talk

Gracias!

	Functions, composition, and categories
	Categories for computational effects (monads)
	Categories of operations and equations (Lawvere theories)
	Lawvere theories = (finitary) monads

