Homotopy coherent adjunctions

Emily Riehl

Harvard University http://www.math.harvard.edu/~eriehl

Thursday, January 16th AMS Special Session on Homotopy Theory 2014 Joint Mathematics Meetings, Baltimore Adjunctions 000

Monads and algebras

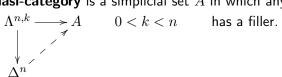
Plan

Adjunctions

- Quasi-categories and adjunctions
- 2 Homotopy coherent adjunctions
- 3 Homotopy coherent monads and the quasi-category of algebras
- 4 The monadicity theorem

Quasi-categories

A quasi-category is a simplicial set A in which any inner horn



The **homotopy category** hA has

- objects = vertices
- morphisms = homotopy classes of 1-simplices

Via the adjunction

$$\underbrace{\operatorname{Cat}}^{h} \underbrace{\operatorname{qCat}}$$

quasi-category theory extends category theory.

Adjunctions of quasi-categories

$$\begin{array}{l} \underline{\operatorname{qCat}}_{\infty} := \text{the simplicial category of quasi-categories} \\ \text{ with hom-spaces } B^A \\ \underline{\operatorname{qCat}}_2 := \text{the 2-category of quasi-categories} \\ \text{ with hom-categories } h(B^A) \end{array}$$

An **adjunction** of quasi-categories is an adjunction in \underline{qCat}_2 .

$$A \underbrace{\perp}_{u} B \qquad \eta : \mathrm{id}_{B} \Rightarrow uf \qquad \epsilon : fu \Rightarrow \mathrm{id}_{A}$$

Some theorems and examples

Theorems.

- $f \dashv u$ induces adjunctions $f^X \dashv u^X$ and $C^u \dashv C^f$ for any simplicial set X and quasi-category C.
- Any equivalence can be promoted to an adjoint equivalence.
- Right adjoints preserve limits.
- $f \colon B \to A$ has a left adjoint iff $f \downarrow a$ has a terminal object for each $a \in A$.

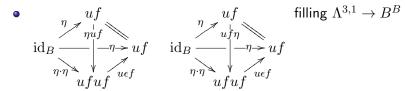
Examples.

- ordinary adjunctions, topological adjunctions
- simplicial Quillen adjunctions
- colim ⊢ const ⊢ lim
- loops—suspension

A coherence question

Given $A \xrightarrow{f} B$ in \underline{qCat}_2 , what adjunction data exists in $\underline{qCat}_{\infty}$?

•
$$\operatorname{id}_B \xrightarrow{\eta} uf \text{ in } B^B \qquad fu \xrightarrow{\epsilon} \operatorname{id}_A \text{ in } A^A$$



But do there exist fillers with the same bottom face?

The free adjunction

 $\underline{\mathrm{Adj}} := \mathsf{the} \ \mathsf{free} \ \mathsf{adjunction}, \ \mathsf{a} \ \mathsf{2}\mathsf{-category} \ \mathsf{with}$

- objects + and -
- $\underline{\mathrm{Adj}}(+,+) = \underline{\mathrm{Adj}}(-,-)^{\mathrm{op}} := \mathbb{\Delta}_+$
- $\underline{\mathrm{Adj}}(-,+) = \underline{\mathrm{Adj}}(+,-)^{\mathrm{op}} := \mathbb{\Delta}_{\infty}$

Theorem (Schanuel-Street). 2-functors $\underline{Adj} \to \underline{qCat}_2$ correspond to adjunctions in \underline{qCat}_2 .

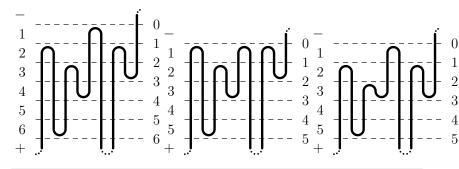
$$id \longrightarrow uf \xrightarrow{\eta \longrightarrow u \epsilon} ufuf \xrightarrow{u \epsilon \longrightarrow u \epsilon} ufufuf \longrightarrow ufufuf \cdots$$

$$uf\eta \longrightarrow ufuf \longrightarrow$$

The free homotopy coherent adjunction

Conjecture.Definition. The free homotopy coherent adjunction is \underline{Adj} , regarded as a simplicial category under $2-\underline{Cat} \hookrightarrow \underline{sSet}-\underline{Cat}$.

n-arrows are strictly undulating squiggles on n+1 lines



Proposition. Adj is a simplicial computad (i.e., cofibrant).

Homotopy coherent adjunctions



Homotopy coherent monads

 $\underline{\mathrm{Mnd}} := \mathrm{full} \ \mathrm{subcategory} \ \mathrm{of} \ \underline{\mathrm{Adj}} \ \mathrm{on} \ +.$

Definition. A **homotopy coherent monad** is a simplicial functor $T \colon \operatorname{Mnd} \to \operatorname{qCat}_{\infty}$, i.e.,

- \bullet + \mapsto $B \in \underline{\mathrm{qCat}}_{\infty}$
- $\mathbb{A}_+ \xrightarrow{t} B^B =:$ the monad resolution

$$id_{B} \xrightarrow{\eta \longrightarrow t} t \xrightarrow{\eta \longrightarrow t^{2}} t^{2} \xrightarrow{\mu \longrightarrow t^{2}} t^{3} \cdots$$

$$\xrightarrow{-t\eta \longrightarrow t} t^{2} \xrightarrow{-t\eta \longrightarrow t^{3}} t^{3} \cdots$$

and higher data, e.g., t^2

The quasi-category of algebras

Fix a homotopy coherent monad $T \colon \underline{\mathrm{Mnd}} \to \underline{\mathrm{qCat}}_{\infty}$ and define the **quasi-category of algebras** by:

$$B[t] = \operatorname{eq} \left(B^{\triangle_{\infty}} \rightrightarrows B^{\triangle_{+} \times \triangle_{\infty}} \right).$$

A vertex in B[t] is a map $\mathbb{A}_{\infty} \to B$ of the form:

$$b \xrightarrow{\eta \longrightarrow} tb \xrightarrow{\stackrel{\eta \longrightarrow}{\longleftarrow} t\eta \longrightarrow} t^2b \xrightarrow{\stackrel{t\eta \longrightarrow}{\longleftarrow} t\eta \longrightarrow} t^3b \cdots$$

$$\xrightarrow{t} t\eta \longrightarrow tt\eta \longrightarrow$$

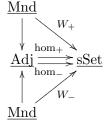
$$\xrightarrow{t} tt\eta \longrightarrow$$

and higher data, e.g., $b \stackrel{\eta}{ / \sim} b$

The quasi-category of algebras, continued

More formally, the quasi-category of algebras is defined to be the **weighted limit**

$$B[t] := \{W_-, T\} \qquad \qquad B := \{W_+, T\}.$$



The monadic homotopy coherent adjunction

... is all in the weights!

$$\underbrace{\operatorname{Adj}^{\operatorname{op}} \xrightarrow{\operatorname{hom}}} \underbrace{\operatorname{sSet}^{\operatorname{Adj}} \xrightarrow{\operatorname{res}}} \underbrace{\operatorname{sSet}^{\operatorname{Mnd}}} \underbrace{\{-,T\}} \underbrace{\operatorname{qCat}^{\operatorname{op}}_{\infty}} \underbrace{\operatorname{qCat}^{\operatorname{op}}_{\infty}} \underbrace{\operatorname{qCat}^{\operatorname{op}}_{\infty}} \underbrace{\operatorname{qCat}^{\operatorname{op}}_{\infty}} \underbrace{\operatorname{dCat}^{\operatorname{op}}_{\infty}} \underbrace$$

Theorem. Given a homotopy coherent adjunction $f \dashv u$ with homotopy coherent monad t, there is a comparison functor

$$A \stackrel{L}{=} - - \stackrel{L}{=} \stackrel{L}{=} - - > B[t]$$
 that is an adjoint equivalence under the

expected conditions.

Further reading

"The 2-category theory of quasi-categories" arXiv:1306.5144

"Homotopy coherent adjunctions and the formal theory of monads" arXiv:1310.8279

"A weighted limits proof of monadicity" on the n-Category Café