
HOMOTOPY (LIMITS AND) COLIMITS

EMILY RIEHL

Abstract. These notes were written to accompany two talks given in the

Algebraic Topology and Category Theory Proseminar at the University of

Chicago in Winter 2009. When a category has some notion of limits and
colimits associated to it, its ordinary limits and colimits are not necessarily

homotopically meaningful. We describe a notion of a “homotopy colimit” for

two sorts of categories with a homotopy theory: categories enriched in simpli-
cial sets and model categories. For simplicial categories, we define an object

with a “homotopical universal property” using the well-known bar construc-

tion. For model categories, we define a homotopy colimit functor to be a
derived functor of the usual colimit functor. Finally, we note that in the set-

ting of a simplicial model category, these two approaches coincide and refer
the reader to appropriate sources.

1. Introduction

Motivated by topological spaces, we call a category homotopical if it is equipped
with some specified notion of weak equivalence, a class of morphisms with the prop-
erty that if any two of a composable pair and their composite is a weak equivalence
then so is the third. In such a setting, one is often interested in how objects behave
in the homotopy category, formed by formally inverting this class of arrows. But
because this localization process can be a bit unwieldy, it it preferable to work
at the “point-set level,” i.e., in the original category, and ask whether particular
constructions are invariant under weak equivalence.

Frequently, limits and colimits do not have this property: so-called homotopy
limits and colimits do. There are two approaches to the definition. A mathemati-
cian blessed with sufficient intuition might define a particular homotopy colimit
directly by “fattening up” the ordinary colimit to produce a new object with room
to “hang a homotopy.” This process can be formalized using functor tensor prod-
ucts (secretly weighted colimits) or the bar construction. We give these formulas in
§3 below, though regrettably do not fully explain the intuition. Instead, we hope
the reader will compute a few examples and see that the results are familiar.

The second approach defines all homotopy colimits for diagrams of shape D

simultaneously by taking the left derived functor of the colimit functor. There are
several settings in which this derived functor is guaranteed to exist. In §4 below,
we employ the theory of model categories, though weaker settings suffice.

Finally, in §5, we note that these two approaches are consistent in the most
common setting in which both make sense. A proof is given in [9], which is a much
better source for this material than these hastily written notes.

Date: Original February 2009. (Lightly) revised September 2011.
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2. Kan Extensions and Coends

Before discussing homotopy colimits, we begin with some categorical prelimi-
naries – Kan extensions and coends – that will appear frequently in what follows.
Derived functors are examples of Kan extensions and the bar construction is defined
using a coend.

2.1. Kan Extensions. Given functors T : M → A and K : M → C, the left Kan
extension of T along K, when it exists, will consist of a functor LanKT : C → A

and a natural transformation η : T ⇒ LanKT ◦ K that is universal from T to
functors U ◦ K. Dually, the right Kan extension, when it exists, consists of a
functor RanKT : C → A and a natural transformation ε : RanKT ◦K ⇒ T with a
dual universal property.
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When the left and right Kan extensions exist for all T ∈ AM, they will form left
and right adjoints, respectively, to the functor − ◦ K : AC → AM, i.e., we have
natural bijections

AC(LanKT, S) ∼= AM(T, S ◦K) and AM(S ◦K,T ) ∼= AC(S,RanKT ).

The natural transformations η and ε above are components of the unit and counit
for these respective adjunctions.

Example 2.1. Let F : M → K be a functor between two model categories with
localizations γ : M→ HoM and δ : K→ HoK, respectively. Immediately from the
definitions, a right derived functor RF : HoM→ HoK is a left Kan extension of δF
along γ. Dually, a left derived functor LF : HoM→ HoK is a right Kan extension
of δF along γ.

By the universal properties, left and right Kan extensions are unique up to unique
isomorphism. Left Kan extensions will arise more frequently in what follows, so
we will focus on them in particular, but all of the results hold dually for right Kan
extensions.

Given K and T as above and assuming the colimits that appear below exist, we
can define LanKTc for any c ∈ C to be

(2.2) (LanKT )c : = colim(K/c
U−→M

T−→ A),

where U denotes the forgetful functor and K/c is the slice category, whose objects
consists of an object m ∈ M together with an arrow Km → c in C. The universal
property of these colimits is used to define LanKT on arrows. The component ηm
of the universal map is defined to be the component of the colimiting cone defining
(LanKT )Km over the identity arrow at Km in C. Unraveling this definition, one
can check that LanKT and η satisfy the required universal property of a left Kan
extension.

Two consequences of this explicit construction are the following:

Corollary 2.3. If M is small and A is cocomplete, any functor T : M→ A has a
left Kan extension along any K : M→ C, and K∗ : AC → AM has a left adjoint.
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Corollary 2.4. If K is full and faithful, then the universal arrow η : T → LanKT ◦
K is a natural isomorphism.

Proof. For each m ∈ M, id : Km → Km is terminal in the comma category
K/(Km) because K is full and faithful. So the colimit in (2.2) can be found by
evaluating TU on this terminal object. Hence, (LanKT )Km = Tm and ηm = 1. �

Example 2.5. The usual geometric realization functor | − | : sSet → Top is a
left Kan extension of the functor ∆: ∆ → Top that takes the object [n] to the
standard topological n-simplex ∆n along the Yoneda embedding y : ∆ ↪→ sSet. As
y is full and faithful, we get that |∆n| ∼= ∆n,1 i.e., the geometric realization of the
simplicial set represented by [n] ∈∆ is the standard topological n-simplex.

2.2. Coends. A more elegant formula for left Kan extensions is given using a
coend, which is a special type of colimit.

Definition 2.6. A coend of a functor S : Cop × C → A is a universal dinatural
transformation from S to a constant a ∈ A. Equivalently, a coend is defined to be
a coequalizer

∐
f : c→d∈morC

S(d, c)
S(f,1) //
S(1,f)

//
∐
c∈C

S(c, c) //___ a

Explicitly, the coend consists of an object a and arrows ωc : S(c, c)→ a for all c ∈ C

such that for each f : c→ d in C, the square

S(d, c)
S(f,1) //

S(1,f)

��

S(c, c)

ωc

��
S(d, d)

ωd

// a

commutes, and such that the pair (a, ω) is universal with this property.

Notation. The object a in the coned is often denoted by∫ c∈C
S(c, c).

Example 2.7. Let R be a commutative ring. A right R-module A is an additive
functor A : Rop → Ab and a left R-module B is an additive functor B : R → Ab.
Using the usual tensor product ⊗Z in Ab, A and B form a bifunctor R 7→ A ⊗Z
B : Rop ×R→ Ab. The coend∫ R

A⊗Z B = A⊗R B

is the usual tensor product over R of a right and left R-module.

1As this example illustrates, the symbol “∆” will be severely overloaded in this paper. The
author hopes that each meaning is clear from context, and the fact that all the notations used

here are reasonably standard.
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Example 2.8. The above example extends to the functor tensor product. Given a
monoidal category A and functors F : Cop → A and G : C→ A, the external tensor
product defines a bifunctor F ⊗G : Cop × C→ A. Again, the coend∫ C

F ⊗G = F ⊗C G

gives the usual functor tensor product.
For example, the geometric realization of a simplicial set X : ∆op → Set ↪→ Top

considered as a simplicial space with the discrete topology, is the functor tensor
product

|X| : = X ⊗∆ ∆,

where ∆: ∆→ Top is as in Example 2.5.

2.3. Left Kan extensions as Coends. A tensor or copower in a category A of
an object a ∈ A with a set S, denoted S ·a or S�a is simply the coproduct, indexed
by S, of a with itself, i.e.,

∐
S a.

Theorem 2.9. Given functors K : M→ C and T : M→ A such that the following
tensors and coends exist, T has a left Kan extension along K defined on objects by

(LanKT )c =

∫ m∈M
C(Km, c) · Tm.

Proof. See [6, §X.4]. �

As above, we use ω for the colimiting wedge of the tensor. We may then define
ηn for n ∈M to be the composite

Tn
inclidKn−→ C(Kn,Kn) · Tn ωn−→

∫ m∈M
C(Km,Kn) · Tm = LanKT (Kn).

3. Local Homotopy Colimits

For the idea of a “homotopical universal property” to be meaningful, we want M
to be in some sense topological. So for this section, let M be a cocomplete category
enriched in simplicial sets. We will define the homotopy colimit of an ordinary
functor F : C→M, where C is an arbitrary small category.

First, we need a slight generalization of the functor tensor product introduced
in Example 2.8. If U is a category enriched in sSet such that U is tensored over
sSet, we can define the functor tensor product of F : Cop → sSet and G : C → U

as follows

F ⊗C G : =

∫ c∈C
Fc�Gc,

whenever the desired coends exist. So, for example, the functor tensor product of
a simplicial set X : ∆op → Set and ∆: ∆ → Top makes sense without regarding
the X as a discrete simplicial space.

Now we are prepared for the following definition.

Definition 3.1. Given an ordinary functor F : C→M, with M enriched in simpli-
cial sets, define

hocolimF = N(−/C)⊗C F =

∫ C

N(d/C)� Fd.
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holimF = homC(N(C/−), F ) =

∫
C

FdN(C/d).

Assuming these limits and colimits exist, these define functors

hocolim,holim: MC →M.

Example 3.2. Familiar examples of homotopy colimits in Top include the map-
ping cylinder (the colimit of an arrow • // • ), the double mapping cylinder
(the colimit of • • //oo • ), and the mapping telescrope (the colimit of
• // • // • // · · · ). This will be more readily seen after we redefine the

homotopy colimit in terms of the familiar bar construction.

3.1. The Bar Construction. In practice, it is easier to compute these colimits by
means of the bar construction. In this section, we will introduce the bar construc-
tion. In the next, we will connect it to the notion of homotopy colimit introduced
above.

The bar construction can be done in a great deal of generality (e.g., see [8]).
Here we’ll let V be a symmetric monoidal category and let U be enriched in V. Let
Z : Cop × C→ U be a functor. We will consider two cases simultaneously — where
C is an ordinary category and where C is a V-category. For the latter, we want Z
to be a V-functor as well. We also want some form of geometric realization, so we
fix an ordinary functor ∆: ∆ → U. Geometric realization will then be defined for
a simplicial object X in U as the functor tensor product

|X| : = X ⊗∆ ∆.

If enriched categories are confusing, just take U = Top and C an ordinary category
and forget about this added generality.

Before defining the bar construction, we must define the simplicial bar construc-
tion.

Definition 3.3. The simplicial bar construction B∗(C, Z) is a simplicial object in
U. The n-simplices are

Bn(C, Z) =
∐

(obC)n

(C(cn−1, cn)⊗ · · · ⊗ C(c0, c1))� Z(cn, c0).

The tensors here are from the monoidal structure on V if C is simplicially enriched or
from the cartesian monoidal structure on Set if C is ordinary. When C is unenriched,
it is more convenient describe the n-simplices as the following coproduct

(3.4) Bn(C, Z) =
∐

γ : [n]→C

Z(γ(n), γ(0)),

where we’re using the fact that tensors involving sets are just coproducts indexed
by that set.

It remains to define the maps that make B∗(C, Z) a simplicial object in U. In
the case where C is ordinary, we regard the Bn as an object of the form (3.4) and
note that the coproduct is over the set NCn of n-simplices of the nerve of C. The
simplicial maps di and si are simply induced by the corresponding maps of the
nerve NC.

The enriched case is slightly trickier to describe. For 0 < i < n, the map
di : Bn(C, Z)→ Bn−1(C, Z) is induced by the composition map

◦ : C(ci, ci+1)⊗ C(ci−1, ci)→ C(ci−1, ci+1),
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an arrow in V. For all i, the map si : Bn(C, Z) → Bn+1(C, Z) is induced by the
identity arrow 1→ C(ci, ci), where 1 is the unit of the monoidal structure on V. It
remains only to define d0 and dn, and these definitions are analogous. Explicitly,
d0 : Bn(C, Z)→ Bn−1(C, Z) is the map induced by

(C(cn−1, cn)⊗ · · · ⊗ C(c0, c1))� Z(cn, c0)
incl //

∼=
��

Bn(C, Z)

d0

���
�
�
�
�
�
�

(C(cn−1, cn)⊗ · · · ⊗ C(c1, c2))� (C(c0, c1)� Z(cn, c0))

id�φ0

��
(C(cn−1, cn)⊗ · · · ⊗ C(c1, c2))� Z(cn, c1)

incl // Bn−1(C, Z)

where φ0 : C(c0, c1) � Z(cn, c0) → Z(cn, c1) is adjunct, in the adjunction defining
the tensor, to the arrow C(c0, c1)→ U(Z(cn, c0), Z(cn, c1)) which is specified as part
of the data that makes Z(cn,−) is a V-functor. It is straightforward to check that
these di and si satisfy the desired relations to make B∗(C, Z) a simplicial object in
U.

For an easy example, when U = Set and Z is the constant functor that sends
everything to the terminal object, B∗(C, Z) is the familiar nerve NC of C.

Definition 3.5. The bar construction is the geometric realization of the simplicial
bar construction, i.e.,

B(C, Z) = |B∗(C, Z)| = B∗(C, Z)⊗∆ ∆.

An important special case occurs when U also has some sort of monoidal struc-
ture. In this case, the functor Z is often defined instead as the “external tensor
product” of two functors G : Cop → U and F : C→ U; explicitly

Z = G⊗F : (a, b) 7→ Ga⊗ Fb.
When Z has this form, we write B∗(G,C, F ) for the simplicial bar construction and
B(G,C, F ) for the bar construction. This notation is consistent with [7].

3.2. Relation to Homotopy Colimits. The relationship between the bar con-
struction and homotopy colimits is made apparent by the following theorem.

Theorem 3.6. Let F : C → M with M a simplicially enriched category with a
monoidal structure. Let ∗ denote the constant functor from C to the unit of the
monoidal structure. Suppose also, for convenience, that the simplicial enrichment
is given by a functor S that is left adjoint to geometric realization. Then

hocolimF ∼= B(∗,C, F ).

When M is a simplicially enriched category with a monoidal structure ⊗ such
that the simplicial enrichment is given by a functor that is left adjoint to geometric
realization, |X| ⊗m satisfies the defining universal property of the tensor X �m,
where m ∈M and X is a simplicial set. We will need this fact below.

Proof. Let y : Cop → [C,Set] denote the functor c 7→ C(c,−), which sends an object
of c to its covariant represented functor. Then

N(−/C) = B∗(∗,C, y) : Cop → sSet,
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so from the definition

hocolimF = N(−/C)⊗C F

= B∗(∗,C, y)⊗C F

=

∫ c∈C
B∗(∗,C,C(c,−))� Fc

=

∫ c∈C
|B∗(∗,C,C(c,−))| ⊗ Fc

=

∫ c∈C
(∫ n∈∆

Bn(∗,C,C(c,−))�∆(n)

)
⊗ Fc

=

∫ n∈∆
(∫ c∈C

Bn(∗,C,C(c,−))� Fc

)
⊗∆(n)(3.7)

by Fubini’s theorem for iterated coends. Similarly,

B(∗,C, F ) = |B∗(∗,C, F )|

=

∫ n∈∆

Bn(∗,C, F )⊗∆(n)

=

∫ n∈∆

 ∐
γ : [n]→C

Fγ(0)

⊗∆(n)(3.8)

So if we can show that∫ c∈C
Bn(∗,C,C(c,−))� Fc =

∐
γ : [n]→C

Fγ(0)

then we may conclude that (3.7)=(3.8). The tensor on the left is with a set, so we
may rewrite the left hand side as∫ c∈C ∐

N(c/C)n

Fc,

bearing in mind that B∗(∗,C,C(c,−)) = N(c/C). Elements of N(c/C)n are strings
γ : [n]→ C of n composable arrows in C together with an arrow c→ γ(0) in C. As
coproducts and coends commute,∫ c∈C ∐

N(c/C)n

Fc =

∫ c∈C ∐
γ : [n]→C

∐
c→γ(0)

Fc =
∐

γ : [n]→C

∫ c∈C ∐
c→γ(0)

Fc,

and by inspection the coend on the right is what we want, completing the proof. �

3.3. An Example. One of the most familiar homotopy colimits is the topological

mapping cylinder, which is the homotopy colimit of a single arrow X
f→ Y in Top.

Let us compute it using the bar construction.
Let C = 2 = (0→ 1) be the category with objects 0 and 1 and one non-identity

arrow. Let F : C→ Top be the ordinary functor with image X
f→ Y . The simplical

bar construction B∗(∗,C, F ) yields

B0 = X t Y and B1 = X tX t Y,
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where the first X in B0 corresponds to the domain of the image of the identity
at 0, the second X corresponds to the domain of f , and the Y corresponds to the
domain of the image of the identity at Y . We may write B1 = X0 t Xf t Y1 to
keep track of which object arises from which arrow.

The homotopy colimit of f is the geometric realization of B∗, which is a quotient
of a coproduct indexed only on the non-degenerate simplices of B∗. Since the nerve
of C is degenerate above level one (one might say 1-skeletal), all the n-simplices of
B∗(∗,C, F ) are degenerate when n > 1. So it suffices to stop at level zero in the
computation that follows.

By definition

hocolimF = |B∗(∗,C, F )| =
∫ n∈∆

Bn(∗,C, F )×∆n,

where ∆n is the standard topological n-simplex. Expanding this coend, we see that

hocolimF = colim


B0 ×∆1

s0 //

s0

&&NNNNNNNNNNNNN B1 ×∆1

B1 ×∆0

d0
88ppppppppppppp

d1

88ppppppppppppp d0 //
d1

// B0 ×∆0



= colim


X × I t Y × I s0 //

s0

**UUUUUUUUUUUUUUUUUUUUUUU (X × I)0 t (X × I)f t (Y × I)1

X0 tXf t Y1

d0
44iiiiiiiiiiiiiiiiiiiii

d1

44iiiiiiiiiiiiiiiiiiiii d0 //
d1

// X t Y


The colimit is computed by first taking the disjoint union

(X t Y ) t ((X × I) t (X × I) t (Y × I))

of the two objects on the right and then form the quotient that identifies any two
points that appear in the images of any pair of corresponding maps (s0 and s0

or di and di). In particular s0 includes X × I into the 0 component of the top
coproduct and s0 projects onto X in the bottom coproduct. So (X × I)0 gets
squashed down onto and identified with X. Similarly, (Y × I)1 gets squashed down
onto and identified with Y . The result so far is

(3.9) X t (X × I)f t Y,
but we haven’t quotiented by the di and di yet!

The images of X0 and Y1 under d0 and d0 and d1 and d1 have already been
identified when we quotiented using the degeneracies. The image of Xf under d1

is X and the map restricts to the identity. The image of Xf under d0 is X ×{0} ⊂
(X × I)f , so the 0-th face of this cylinder gets glued to the X in (3.9). The image
of Xf under d0 is f(X) ⊂ Y , while the image of Xf under d0 is X × {1} ⊂ X × I.
So the 1-th face of this cylinder gets identified with Y by gluing x× 1 to f(x). The
result is

Mf = X × I t Y/ ∼
where ∼ denotes this gluing. This is the usual mapping cylinder.
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3.4. The Cobar Construction. There is a dual to Theorem 3.6 that constructs
homotopy limits by means of the cobar construction. We give a few details about
this construction because it is slightly trickier than its dual version and also is
explicated less frequently.

There are two ways we could dualize the bar construction. Replacing C with Cop

yields the same construction defined previously, but when we replace U with Uop,
the result looks substantially different. The resulting dual construction is called
the cobar construction.

Let V, C, U, and Z be as in §3.1. As before, we start by defining the cosimplicial
cobar construction.

Definition 3.10. The cosimplicial cobar construction C∗(C, Z) is a cosimplicial
object in U, defined dually to the simplicial bar construction. The n-simplices are

Cn(C, Z) =
∏

(obC)n

(C(cn−1, cn)⊗ · · · ⊗ C(c0, c1)) t Z(c0, cn),

where v t u denotes the cotensor (aka power) of an object u ∈ U by an object
v ∈ V (see [10]).2 When C is an ordinary category, the repeated tensor product is
just a product of sets and the cotensor is just the product of the object Z(c0, cn)
of U with itself indexed by this set. When C is unenriched, it is more convenient
describe the n-simplices as the following product

(3.11) Cn(C, Z) =
∏

γ : [n]→C

Z(γ(0), γ(n)),

using the fact mentioned above that cotensors involving sets are just products
indexed by that set.

It remains to define the maps that make C∗(C, Z) a cosimplicial object in U.
Before, we do so, it is important to note that an arrow v → v′ in V induces an
arrow v′ t u → v t u in U by the defining universal property. A slogan to help
remember this is that cotensors are similar to homs; indeed if V = U = Set,
then v t u =

∏
v u = homSet(v, u). This is the essential reason why C∗(C, Z) is

cosimplicial, rather than simplicial.
In the case where C is ordinary, we regard the Cn as an object of the form (3.11)

and note that the product (or cotensor, if you prefer) is over (with) the set NCn of
n-simplices of the nerve of C. The cosimplicial maps di and si are simply induced
by the corresponding maps di and si of the nerve NC.

For the enriched case, we define one of the “harder” maps and leave the remaining
definitions as an exercise to the reader. The map d0 : Cn−1(C, Z) → Cn(C, Z) is

2We dislike the notation v t u. In other contexts, we prefer {v, u} but here we’ve decided it
looks more confusing.
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the map induced by the universal property of the product as shown below

Cn−1(C, Z)
proj //

d0

���
�
�
�
�
�
�

(C(cn−1, cn)⊗ · · · ⊗ C(c1, c2)) t Z(c1, cn)

idtφ0

��
(C(cn−1, cn)⊗ · · · ⊗ C(c1, c2)) t [C(c0, c1) t Z(c0, cn)]

∼=
��

Cn(C, Z)
proj

// (C(cn−1, cn)⊗ · · · ⊗ C(c0, c1)) t Z(c0, cn)

where φ0 : Z(c1, cn)→ C(c0, c1) t Z(c0, cn) is adjoint in the defining adjunction of
the cotensor to the arrow C(c0, c1) → U(Z(c1, cn), Z(c0, cn)) which is specified as
part of the data that makes Z(−, cn) is a V-functor.

The definitions of the other di and si that make C∗(C, Z) a cosimplicial object
in U are similar.

Definition 3.12. The cobar construction C(C, Z) is defined by taking the hom of
the cosimplicial cobar construction, i.e.,

C(C, Z) : = hom∆(∆, C∗(C, Z))

where ∆: ∆→ U is the functor we used above to define geometric realization.

4. Homotopy Colimit Functors

We now shift perspectives to consider categories M where the “homotopy theory”
comes in the form of a Quillen model structure (C,F,W) on M. (See [4] for an
introduction to model categories, including much of the material in this section.)
Rather than define an object with a homotopical universal property, as in the
previous section, we will seek to define a global homotopy colimit functor that is
“homotopically well-behaved.”

4.1. A concrete example. Let’s start with a few observations that may be fa-
miliar to the topologists: homotopy equivalences are not (in general) preserved by
pushouts. For example, consider a pushout in Top2, the category of arrows and
commutative squares, of the following diagram

Dn

∼

��

Sn−1 �
� //? _oo Dn

∼

��
∗ Sn−1oo // ∗

All of the vertical maps are homotopy equivalences. But the pushout of the top
row is Sn and the pushout of the bottom row is ∗ and the induced map Sn → ∗ is
certainly not a homotopy equivalence!

A slogan here is that we need to replace the maps we are pushing out along by
cofibrations to get a homotopically meaningful pushout. We formalize this below.
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4.2. Derived functors from Quillen adjunctions. If M has all colimits of shape
D, these define an adjoint pair of functors

(4.1) colim: MD //
⊥ M : ∆oo

Now suppose M is a model category. If MD has a model structure such that (4.1)
is a Quillen adjunction then a general theorem implies the existence of a derived
adjunction

Lcolim: HoMD //
⊥ HoM : R∆oo

between the homotopy categories. Here is the general theorem:

Theorem 4.2. Let M and K be model category and F : M
//

⊥ K : Goo be an
adjoint pair. If F a G is a Quillen adjunction, then the derived functors LF and
RG exist and form an adjoint pair

LF : HoM
//

⊥ HoK : RG.oo

Proof. Ken Brown’s lemma and a few technicalities. �

Furthermore, we can define LF and RG in a particularly simple manner in good
settings. Supposing that M has a functorial cofibrant replacement Q : M→M and
K has a functorial fibrant replacement R : K → K then we may define LF = FQ
and RG = GR.

We call the left derived functor Lcolim: Ho (MD)→ HoM of the colimit functor
the homotopy colimit functor. It is important to note that

Remark 4.3. The canonical map Ho (MD) → Ho (M)D induced by the universal
property of localization is not typically a categorical equivalence. Hence, Lcolim is
not usually left adjoint to ∆HoM : HoM→ Ho (M)D. Thus, “homotopy pushouts”
are not “pushouts in the homotopy category,” a potential source of confusion.

Let’s consider a specific example. Let D = { a b
g //foo c }. Then given

any functor X : D → M, the colimit of X is the pushout of Xf and Xg. We wish
to define a model structure on MD compatible with the adjunction (4.1). Weak
equivalences in the category MD should be the pointwise weak equivalences. As
we’ve seen in the example above, colim will not preserve these and so does not
induce a functor Ho (MD)→ Ho (M) directly.

Instead, we hope to apply the theorem above. Keeping in mind that our right
adjoint is the diagonal functor, we want a model structure on MD that has pointwise
fibrations as well as pointwise weak equivalences. It then follows immediately that ∆
preserves both fibrations and trivial fibrations, so colim a ∆ is a Quillen adjunction.
Since ∆ is furthermore a homotopical functor (i.e., preserves weak equivalences),
the universal property of localization tells us that Ho ∆ = R∆. So Lcolim a Ho ∆
is the desired “homotopy colimit functor.”

For this particular D, pointwise weak equivalences and pointwise fibrations do
indeed determine a model structure on MD with no additional hypotheses on M

called the Reedy model structure. We will define the cofibrations briefly and refer
the reader to [4, §10] for proof. Given a morphism α : X ⇒ Y in MD, we define
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arrows by the pushouts indicated below

Xa

��αa





Xb
Xg //Xfoo

αb

�� pq

Xc

�� αc

��

·
ia

||z
z

z
z

z Y b

Y g ,,Y frr

//oo ·
ic

!!C
C

C
C

Y a Y c

We declare α to be a cofibration if and only if ia, αb, and ic are cofibrations.
Unraveling this definition, the cofibrant replacement of X ∈MD substitutes the

cofibrant replacement of Xb for this object and replaces the maps Xf and Xg by
cofibrations. This accords with the topologist’s intuition for the example at the
beginning of this section.

4.3. Other Homotopy Limit and Colimit Functors. A dual model structure
can be used to define a homotopy pullback functor for any model category M. Un-
surprisingly, this model structure has pointwise cofibrations and weak equivalences,
with fibrations defined using a pullback condition.

Under very restrictive hypotheses on the category D, this construction can be
generalized. However, we can make much more progress by placing a few restrictions
on M.

Theorem 4.4. If M is cofibrantly generated, then MD has the projective model
structure, in which fibrations and weak equivalences are defined pointwise.

As we saw above, in this case the colimit functor is left Quillen in the projective
model structure, so Lcolim exists by Theorem 4.2.

Many model structures are cofibrantly generated, so we can define the projective
model structure on the corresponding diagram category and obtain the homotopy
colimit functor Lcolim. However, the hypotheses for the dual injective model struc-
ture are much more restrictive (for definitions, see [1]).

Theorem 4.5. When M is sheafifiable, then MD has the injective model structure,
in which cofibrations and weak equivalences are defined pointwise.

Again, in this case the limit functor is right Quillen, so Rcolim exists.

5. Comparison

It remains to compare the two approaches to defining homotopy colimits in the
case where both may be applied; namely, when M is a simplicial model category. To
get the local and global approaches to agree, we have to modify the local homotopy
colimits as follows:

hocolimF := hocolimQF

holimF := holimRF

where Q and R are cofibrant and fibrant replacement applied pointwise to F .3

The comparison theorem now states

3The functors defined in 3.1 are often called the uncorrected homotopy colimits and limits.
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Theorem 5.1. As defined above, hocolim is a left derived functor of colim and
holim is a right derived functor of lim.

The proof is too long for these notes. Fortunately, an excellent reference exists:
Mike Shulman’s [9], which was a source for much of this material.
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