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In this paper we re-develop the foundations of the category 
theory of quasi-categories (also called ∞-categories) using 
2-category theory. We show that Joyal’s strict 2-category of 
quasi-categories admits certain weak 2-limits, among them 
weak comma objects. We use these comma quasi-categories 
to encode universal properties relevant to limits, colimits, 
and adjunctions and prove the expected theorems relating 
these notions. These universal properties have an alternate 
form as absolute lifting diagrams in the 2-category, which 
we show are determined pointwise by the existence of certain 
initial or terminal vertices, allowing for the easy production 
of examples.
All the quasi-categorical notions introduced here are equiv-
alent to the established ones but our proofs are independent 
and more “formal”. In particular, these results generalise 
immediately to model categories enriched over quasi-cate-
gories.
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1. Introduction

Quasi-categories, also called ∞-categories, were introduced by J. Michael Boardman 
and Rainer Vogt under the name “weak Kan complexes” in their book [2]. Their aim was 
to describe the weak composition structure enjoyed by homotopy coherent natural trans-
formations between homotopy coherent diagrams. Other examples of quasi-categories 
include ordinary categories (via the nerve functor) and topological spaces (via the total 
singular complex functor), which are Kan complexes: quasi-categories in which every 
1-morphism is invertible. Topological and simplicial (model) categories also have asso-
ciated quasi-categories (via the homotopy coherent nerve). Quasi-categories provide a 
convenient model for (∞, 1)-categories: categories weakly enriched in ∞-groupoids or 
topological spaces. Following the program of Boardman and Vogt, many homotopy co-
herent structures naturally organise themselves into a quasi-category.

For this reason, it is desirable to extend the definitions and theorems of ordinary 
category theory into the (∞, 1)-categorical and specifically into the quasi-categorical 
context. As categories form a full subcategory of quasi-categories, a principle guiding the 
quasi-categorical definitions is that these should restrict to the classically understood 
categorical concepts on this full subcategory. In this way, we think of quasi-category 
theory as an extension of category theory—and indeed use the same notion for a category 
and the quasi-category formed by its nerve.
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There has been significant work (particularly if measured by page count) towards the 
development of the category theory of quasi-categories, the most well-known being the 
articles and unpublished manuscripts of André Joyal [9,11,10] and the books of Jacob 
Lurie [15,16]. Other early work includes the PhD thesis of Joshua Nichols-Barrer [19]. 
More recent foundational developments are contained in work of David Gepner and Rune 
Haugseng [6], partially joint with Thomas Nikolaus [7]. Applications of quasi-category 
theory, for instance to derived algebraic geometry, are already too numerous to mention 
individually.

Our project is to provide a second generation, formal category theory of quasi-
categories, developed from the ground up. Each definition given here is equivalent to 
the established one, but we find our development to be more intuitive and the proofs to 
be simpler. Our hope is that this self-contained account will be more approachable to 
the outsider hoping to better understand the foundations of the quasi-category theory 
he or she may wish to use.

In this paper, we use 2-category theory to develop the category theory of quasi-
categories. The starting point is a (strict) 2-category of quasi-categories qCat2 defined 
as a quotient of the simplicially enriched category of quasi-categories qCat∞. The under-
lying category of both enriched categories is the usual category of quasi-categories and 
simplicial maps, here called simply “functors”. We translate simplicial universal proper-
ties into 2-categorical ones: for instance, the simplicially enriched universal properties of 
finite products and the hom-spaces between quasi-categories imply that the 2-category 
qCat2 is cartesian closed. Importantly, equivalences in the 2-category qCat2 are precisely 
the (weak) equivalences of quasi-categories introduced by Joyal, which means that this 
2-category appropriately captures the homotopy theory of quasi-categories.

Aside from finite products, qCat2 admits few strict 2-limits. However, it admits several 
important weak 2-limits of a sufficiently strict variety with which to develop formal 
category theory. Weak 2-limits in qCat2 are not unique up to isomorphism; rather their 
universal properties characterise these objects up to equivalence, exactly as one would 
expect in the (∞, 1)-categorical context. We show that qCat2 admits weak cotensors 
by categories freely generated by a graph (including, in particular, the walking arrow) 
and weak comma objects, which we use to encode the universal properties associated to 
limits, colimits, adjunctions, and so forth.

A complementary paper [24] will showcase a corresponding “internal” approach to this 
theory. The basic observation is that the simplicial category of quasi-categories qCat∞
is closed under the formation of weighted limits whose weights are projectively cofibrant 
simplicial functors. Examples include Bousfield–Kan style homotopy limits and a variety 
of weighted limits relating to homotopy coherent adjunctions.

In [24], we show that any adjunction of quasi-categories can be extended to a ho-
motopy coherent adjunction, by which we mean a simplicial functor whose domain is a 
particular cofibrant simplicial category that we describe in great detail. Unlike previous 
renditions of coherent adjunction data, our formulation is symmetric: in particular, a ho-
motopy coherent adjunction restricts to a homotopy coherent monad and to a homotopy 
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coherent comonad on the two quasi-categories under consideration. As a consequence of 
its cofibrancy, various weights extracted from the free homotopy coherent adjunction are 
projectively cofibrant simplicial functors. We use these to define the quasi-category of 
algebras associated to a homotopy coherent monad and provide a formal proof of the 
monadicity theorem of Jon Beck. More details can be found there.

1.1. A generalisation

In hopes that our proofs would be more readily absorbed in familiar language, we 
have neglected to state our results in their most general setting, referencing only the 
simplicially enriched full subcategory of quasi-categories qCat∞. Nonetheless, a key mo-
tivation for our project is that our proofs apply to more general settings which are also 
of interest.

Consider a Quillen model category that is enriched as a model category relative to the 
Joyal model structure on simplicial sets and in which every fibrant object is also cofibrant. 
Then its full simplicial subcategory of fibrant objects is what we call an ∞-cosmos; a 
simple list of axioms, weaker than the model category axioms, will be described in a 
future paper. Weak equivalences and fibrations between fibrant objects will play the 
role of the equivalences and isofibrations here. Examples of Quillen model categories 
which satisfy these conditions include Joyal’s model category of quasi-categories and 
any model category of complete Segal spaces in a suitably well behaved model category. 
The canonical example [11,21] is certainly included under this heading but we have in 
mind more general “Rezk spaces” as well. Given a well-behaved model category M, the 
localisation of the Reedy model structure on the category MΔop whose fibrant objects are 
complete Segal objects is enriched as a model category over the Joyal model structure on 
simplicial sets. All of the definitions that are stated and theorems that are proven here 
apply representably to any ∞-cosmos, being a simplicial category whose hom-spaces are 
quasi-categories and whose quotient 2-category admits the same weak 2-limits utilised
here.

1.2. Outline

Our approach to the foundations of quasi-category theory is independent of the ex-
isting developments with one exception: we accept as previously proven the Joyal model 
structure for quasi-categories on simplicial sets and the model structure for naturally 
marked quasi-categories on marked simplicial sets. So that a reader can begin his or her 
acquaintance with the subject by reading this paper, we begin with a comprehensive 
background review in Section 2, where we also establish our notational conventions.

In Section 3, we introduce the 2-category of quasi-categories qCat2 and investigate 
its basic properties. Of primary importance is the particular notion of weak 2-limit 
introduced here. Following [12], a strict 2-limit can be defined representably: the hom-
categories mapping into the 2-limit are required to be naturally isomorphic to the 
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corresponding 2-limit of hom-categories formed in Cat. In our context, there is a canon-
ical functor from the former category to the latter but it is not an isomorphism. Rather 
it is what we term a smothering functor : surjective on objects, full, and conservative. 
We develop the basic theory of these weak 2-limits and prove that qCat2 admits certain 
weak cotensors, weak 2-pullbacks, and weak comma objects.

In Section 4, we begin to develop the formal category theory of quasi-categories by 
introducing adjunctions between quasi-categories, which are defined simply to be ad-
junctions in the 2-category qCat2; this definition was first considered by Joyal. It follows 
immediately that adjunctions are preserved by pre- and post-composition, since these 
define 2-functors on qCat2. Any equivalence of quasi-categories extends to an adjoint 
equivalence, and that any adjunction between Kan complexes is automatically an adjoint 
equivalence. We describe an alternate form of the universal property of an adjunction 
which will be a key ingredient in the proof of the main existence theorem of [24]. Finally, 
we show that many of our adjunctions are in fact fibred, meaning that they are also 
adjunctions in the 2-category obtained as a quotient of the simplicial category of isofi-
brations over a fixed quasi-category. Any map between the base quasi-categories defines 
a pullback 2-functor, which then preserves fibred equivalences, fibred adjunctions, and 
so forth.

In Section 5, we define limits and colimits in a quasi-category in terms of absolute 
right and left lifting diagrams in qCat2. A key technical theorem provides an equivalent 
definition as a fibred equivalence of comma quasi-categories. We prove the expected 
results relating limits and colimits to adjunctions: that right adjoints preserve limits, 
that limits of a fixed shape can be encoded as adjoints to constant diagram functors 
provided these exist, that limits and limit cones assemble into right Kan extensions 
along the join functor, and so on. As an application of these general results, we give a 
quick proof that any quasi-category admitting pullbacks, pushouts, and a zero object 
has a “loops–suspension” adjunction. This forms the basis for the notion of a stable
quasi-category.

We conclude Section 5 with an example particularly well suited to our 2-categorical 
approach that will reappear in the proof of the monadicity theorem in [24]: generalising
a classical result from simplicial homotopy theory, we show that if a simplicial object in a 
quasi-category admits an augmentation and “extra degeneracies”, then the augmentation 
is its quasi-categorical colimit and also encodes the canonical colimit cone. Our proof is 
entirely 2-categorical. There exists an absolute left extension diagram in Cat involving Δ
and related categories and furthermore this 2-universal property is witnessed equationally 
by various adjunctions. Such universal properties are preserved by any 2-functor—for 
instance, homming into a quasi-category—and the result follows immediately.

Having established the importance of absolute lifting diagrams, which characterise 
limits, colimits, and adjunctions in the quasi-categorical context, it is important to de-
velop tools which can be used to show that such diagrams exist in qCat2. This is the 
aim of Section 6. In this section, we show that a cospan B f−→ A g←− C admits an abso-
lute right lifting of g along f if and only if for each object c ∈ C, the slice (or comma) 
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quasi-category from f down to gc has a terminal object. In practice, this “pointwise” 
universal property is much easier to check than the global one encoded by the absolute 
lifting diagram.

To illustrate, we use this theorem to show that any simplicial Quillen adjunction be-
tween simplicial model categories defines an adjunction of quasi-categories. The proof 
of this result is more subtle than one might suppose. The quasi-category associated to 
a simplicial model category is defined by applying the homotopy coherent nerve to the 
subcategory of fibrant–cofibrant objects—in general, the mapping spaces between arbi-
trary objects need not have the “correct” homotopy type. On account of this restriction, 
the point-set level left and right adjoints do not directly descend to functors between 
these quasi-categories so the quasi-categorical adjunction must be defined in some other 
way.

We conclude this paper with a technical appendix proving that the comma quasi-
categories used here are equivalent to the slice quasi-categories introduced by Joyal [9]. 
It follows that the categorical definitions introduced in this paper coincide with the 
definitions found in the existing literature.

2. Background on quasi-categories

We start by reviewing some basic concepts and notations.

2.0.1. Observation (Size). In this paper matters of size will not be of great importance. 
However, for definiteness we shall adopt the usual conceit of assuming that we have fixed 
an inaccessible cardinal which then determines a corresponding Grothendieck universe, 
members of which will be called sets; we refer to everything else as classes. A category 
is small if it has sets of objects and arrows; a category is locally small if each of its 
hom-sets is small. We shall write Set to denote the large and locally small category of 
all sets and functions between them.

When discussing the existence of limits and colimits we shall implicitly assume that 
these are indexed by small categories. Correspondingly, completeness and cocompletess 
properties will implicitly reference the existence of small limits and small colimits.

2.1. Some standard simplicial notation

2.1.1. Notation (Simplicial operators). As usual, we let Δ+ denote the algebraists’ (skele-
tal) category of all finite ordinals and order preserving maps between them and let Δ
denote the topologists’ full subcategory of non-zero ordinals. Following tradition, we 
write [n] for the ordinal n + 1 as an object of Δ+ and refer to arrows of Δ+ as simplicial 
operators. We will generally use lower case Greek letters α, β, γ: [m] → [n] to denote 
simplicial operators. We will also use the following standard notation and nomenclature 
throughout:
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• The injective maps in Δ+ are called face operators. For each j ∈ [n], δjn: [n − 1] → [n]
denotes the elementary face operator distinguished by the fact that its image does 
not contain the integer j.

• The surjective maps in Δ+ are called degeneracy operators. For each j ∈ [n], we write 
σj
n: [n + 1] → [n] to denote the elementary degeneracy operator determined by the 

property that two integers in its domain map to the integer j in its codomain.

Unless doing so would introduce an ambiguity, we tend to reduce notational clutter by 
dropping the subscripts of these elementary operators.

2.1.2. Notation ((Augmented) simplicial sets). Let sSet denote the functor category 
SetΔop , the category of all simplicial sets and simplicial maps between them.

If X is a simplicial set then Xn will denote its value at the object [n] ∈ Δ, called its 
set of n-simplices, and if f : X → Y is a simplicial map then fn: Xn → Yn denotes its 
component at [n] ∈ Δ.

It is common to think of simplicial sets as being right Δ-sets and use the (right) action 
notation x · α to denote the element of Xn obtained by applying the image under X of 
a simplicial operator α: [n] → [m] to an element x ∈ Xm. Exploiting this notation, the 
functoriality of a simplicial set X may be expressed in terms of the familiar action axioms 
(x · α) · β = x · (α ◦ β) and x · id = x and the naturality of a simplicial map f : X → Y

corresponds to the action preservation identity f(x · α) = f(x) · α.
A subset Y ⊆ X of a simplicial set X is said to be a simplicial subset of X if it is 

closed under right action by all simplicial operators. If S is a subset of X then there is a 
smallest simplicial subset of X containing S, the simplicial subset of X generated by S.

We adopt the same notational conventions for augmented simplicial sets, objects of 
the functor category SetΔ

op
+ , which we denote by sSet+.

2.1.3. Recall (Augmentation). There is a canonical forgetful functor sSet+ → sSet con-
structed by pre-composition with the inclusion functor Δ ↪→ Δ+. Rather than give this 
functor a name, we prefer instead to allow context to determine whether an augmented 
simplicial set should be regarded as being a simplicial set by forgetting its augmentation.

Left and right Kan extension along Δ ↪→ Δ+ provides left and right adjoints to this 
forgetful functor, both of which are fully faithful. The left adjoint gives a simplicial set X
the initial augmentation X → π0X by its set of path components. The right adjoint gives 
X the terminal augmentation X → ∗ by the singleton set. We say that an augmented 
simplicial set is initially (resp. terminally) augmented if the counit (resp. unit) of the 
appropriate adjunction is an isomorphism.

Each (−1)-simplex x in an augmented simplicial set X is associated with a terminally 
augmented sub-simplicial set consisting of those simplices whose (−1)-face is x. These 
components are mutually disjoint and their disjoint union is the whole of X, providing 
a canonical decomposition of X as a disjoint union of terminally augmented simplicial 
sets.
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2.1.4. Notation (Some important (augmented) simplicial sets). We fix notation for some 
important (augmented) simplicial sets.

• The standard n-simplex Δn is defined to be the contravariant representable on the 
ordinal [n] ∈ Δ+. In other words, Δn

m is the set of simplicial operators α: [m] → [n]
which are acted upon by pre-composition.

• The boundary of the standard n-simplex ∂Δn is defined to be the simplicial subset 
of Δn consisting of those simplicial operators which are not degeneracy operators. 
This is the simplicial subset of Δn generated by the set of its (n − 1)-dimensional 
faces.

• The (n, k)-horn Λn,k (for n ∈ N and 0 ≤ k ≤ n) is the simplicial subset of Δn

generated by the set {δin | 0 ≤ i ≤ n and i 
= k} of (n − 1)-dimensional faces. Alter-
natively, we can describe Λn,k as the simplicial subset of those simplicial operators 
α: [m] → [n] for which im(α) ∪ {k} 
= [n].

• We say that Λn,k is an inner horn if 0 < k < n; if k = 0 or k = n, it is an outer 
horn.

We have overloaded our notation above to refer interchangeably to objects of sSet or 
sSet+. There is no ambiguity since in each case the underlying simplicial set of one of 
these objects in sSet+ is the corresponding object in sSet. As an augmented simplicial 
set each of the objects above is terminally augmented.

When α: [n] → [m] is a simplicial operator we use the same symbol to denote the 
corresponding simplicial map α: Δn → Δm which acts by post-composing with α. In 
particular, δjn: Δn−1 → Δn, σj

n: Δn+1 → Δn, ςn: Δn → Δ0, and ιn : Δ−1 → Δn denote 
the simplicial maps corresponding to the simplicial operators introduced in Notation 2.1.1
above.

2.1.5. Notation (Faces of Δn). It is useful to identify a non-degenerate simplex 
in the standard n-simplex Δn simply by naming its vertices. We use the notation 
{v0, v1, v2, . . . , vm} to denote the simplicial operator [m] → [n] which maps i ∈ [m]
to vi ∈ [n]. Let Δ{v0,v1,...,vm} denote the smallest simplicial subset of Δn which contains 
the face {v0, v1, . . . , vm}.

2.1.6. Notation (Internal hom). Like any presheaf category, the category of simplicial 
sets is cartesian closed. We write Y X for the exponential, equivalently the internal hom
or simply hom-space, from X to Y . By the defining adjunction and the Yoneda lemma, 
an n-simplex in Y X is a simplicial map X × Δn → Y . Its faces and degeneracies are 
computed by pre-composing with the appropriate maps between the representables.

2.2. Quasi-categories

2.2.1. Definition (Quasi-categories). A quasi-category is a simplicial set A which possesses 
the right lifting property with respect to all inner horn inclusions Λn,k ↪→ Δn (n ≥ 2, 
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0 < k < n). A simplicial map between quasi-categories will be called a functor. We write 
qCat for the full subcategory of sSet consisting of the quasi-categories and functors.

2.2.2. Recall (The homotopy category). Let Cat denote the category of all small categories 
and functors between them. There is an adjunction

Cat
N

⊥ sSet
h

given by the nerve construction and its left adjoint. Since the nerve construction is fully 
faithful, we typically regard Cat as being a full subcategory of sSet and elide explicit 
mention of the functor N . The nerve of any category is a quasi-category, so we may 
equally well regard Cat as being a reflective full subcategory of qCat.

When A is a quasi-category, hA is sensibly called its homotopy category; it has:

• objects the 0-simplices of A,
• arrows equivalence classes of 1-simplices of A which share the same boundaries, and
• composition determined by the property that k = gf in hA if and only if there exists 

a 2-simplex a in A with a · δ0 = g, a · δ2 = f and a · δ1 = k.

See, e.g., [15, §1.2.3]. To emphasise the analogy with categories, we draw a 1-simplex 
f of A as an arrow with domain f · δ1 and codomain f · δ0. With these conventions, a 
2-simplex a of A witnessing the identity k = gf in hA takes the form:

·
g

a

·

f

k
·

Identity arrows in hA are represented by degenerate 1-simplices. Hence, the com-
position axiom defines what it means for a parallel pair of 1-simplices f, f ′: x → y to 
represent the same morphism in hA: this is the case if and only if there exist 2-simplices 
of each of (equivalently, any one of) the following forms

y
y·σ0

y
y·σ0

x
f

x
f ′

x

f

f ′
y x

f ′

f
y x

x·σ0

f ′
y x

x·σ0

f
y

(2.2.3)

In this case, we say that f and f ′ are homotopic relative to their boundary.
Both of the functors h and N are cartesian, preserving all finite products; see [10, 

B.0.15] or [23, 18.1.1].
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2.2.4. Notation. Let 1, 2, or 3 denote the one-point • , generic arrow • → • , and generic 
composed pair • → • → • categories respectively. Under our identification of categories 
with their nerves, these categories are identified with the standard simplices Δ0, Δ1, and 
Δ2 respectively.

The terms model category and model structure refer to closed model structures in the 
sense of Quillen [20].

2.2.5. Recall (The model category of quasi-categories). The quasi-categories are precisely 
the fibrant–cofibrant objects in a combinatorial model structure on simplicial sets due 
to Joyal, a proof of which can be found in [33, §6.5]. For our purposes here, it will be 
enough to recall that Joyal’s model structure is completely determined by the fact that 
it has:

• weak equivalences, which are those simplicial maps w: X → Y for which each functor 
h(Aw): h(AY ) → h(AX) is an equivalence of categories for all quasi-categories A,

• cofibrations, which are simply the injective simplicial maps. In particular all objects 
are cofibrant in this model structure, and

• fibrations between fibrant objects, which are those functors of quasi-categories which 
possess the right lifting property with respect to:
– all inner horn inclusions Λn,k ↪→ Δn (n ≥ 2, 0 < k < n), and
– (either one of) the monomorphisms Δ0 ↪→ I, where I denotes the generic isomor-

phism category • ∼= •.
To emphasise the analogy with 1-category theory, we call the fibrations between 
fibrant objects isofibrations.

The Joyal model structure for quasi-categories is cartesian, the meaning of which 
requires the following construction.

2.2.6. Recall (Leibniz constructions). If we are given a bifunctor ⊗: K × L → M whose 
codomain possesses all pushouts, then the Leibniz construction provides us with a bi-
functor ⊗̂: K2 × L2 → M2 between arrow categories, which carries a pair of objects 
f ∈ K2 and g ∈ L2 to an object f ⊗̂ g ∈ M2 defined to be the map induced by the 
universal property of the pushout in the following diagram:

K ⊗ L

K⊗g

f⊗L
K ′ ⊗ L

K′⊗g

K ⊗ L′

f⊗L′

(K ′ ⊗ L) ∪K⊗L (K ⊗ L′)

f⊗̂g

K ′ ⊗ L′

(2.2.7)



E. Riehl, D. Verity / Advances in Mathematics 280 (2015) 549–642 559
The action of this functor on the arrows of K2 and L2 is the canonical one induced by 
the functoriality of ⊗ and the universal property of the pushout in the diagram above. 
In the case where the bifunctor ⊗ defines a monoidal product, the Leibniz bifunctor ⊗̂ is 
frequently called the pushout product. In the context of a bifunctor hom: Kop ×L → M, 
the dual construction, defined using pullbacks in M, is preferred. We refer the reader to 
[26, §4] for a full account of this construction and its properties.

2.2.8. Recall (Cartesian model categories). The cartesianness of the Joyal model structure 
may be formulated in the following equivalent forms:

(1) If i: X ↪→ Y and j: U ↪→ V are both cofibrations (monomorphisms) then so is their 
Leibniz product i ×̂ j: (Y ×U) ∪X×U (X × V ) ↪→ (Y × V ). Furthermore, if i or j is a 
trivial cofibration then so is i ×̂ j.

(2) If i: X ↪→ Y is a cofibration (monomorphism) and p: A ↠ B is a fibration then their 
Leibniz hom ĥom(i, p): AY

↠ BY ×BX AX is also a fibration. Furthermore, if i is a 
trivial cofibration or p is a trivial fibration then ĥom(i, p) is also a trivial fibration.

In particular, if A is a quasi-category then we may apply the second of these formulations 
to the unique isofibration !: A → 1 and monomorphisms ∅ ↪→ X and i: X ↪→ Y to show 
that AX is again a quasi-category and that the pre-composition functor Ai: AY

↠ AX

is an isofibration.

2.2.9. Observation (Closure properties of isofibrations). As a consequence of Recalls 2.2.5
and 2.2.8, the isofibrations enjoy the following closure properties:

• The isofibrations are closed under products, pullbacks, retracts, and transfinite limits 
of towers (as fibrations between fibrant objects).

• The isofibrations are also closed under the Leibniz hom ĥom(i, −) for any monomor-
phism i and, in particular, under exponentiation (−)X for any simplicial set X (as 
fibrations between fibrant objects in a cartesian model category).

2.3. Isomorphisms and marked simplicial sets

2.3.1. Definition (Isomorphisms in quasi-categories). When A is a quasi-category, we say 
that a 1-simplex a ∈ A1 is an isomorphism if and only if the corresponding arrow of its 
homotopy category hA is an isomorphism in the usual sense.

Others use the term “equivalences” for the isomorphisms in a quasi-category, but we 
believe our terminology is less ambiguous: no stricter notion of isomorphism exists.

When working with isomorphisms in quasi-categories, it will sometimes be convenient 
to work in the category of marked simplicial sets as defined by Lurie [15].
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2.3.2. Definition (Marked simplicial sets). A marked simplicial set X is a simplicial 
set equipped with a specified subset of marked 1-simplices mX ⊆ X1 containing all the 
degenerate 1-simplices. A map of marked simplicial sets is a map of underlying simplicial 
sets that carries marked 1-simplices to marked 1-simplices. While the category msSet of 
marked simplicial sets is not quite as well behaved as sSet it is nevertheless a quasitopos, 
which implies that it is complete, cocomplete, and (locally) cartesian closed (see [33, 
Observation 11] and [31]).

The functor msSet → sSet which forgets markings has both a left and a right adjoint. 
This left adjoint, dubbed flat by Lurie, makes a simplicial set X into a marked simplicial 
set X� by giving it the minimal marking in which only the degenerate 1-simplices are 
marked. Conversely, this right adjoint, which Lurie calls sharp, makes X into a marked 
simplicial set X� by giving it the maximal marking in which all 1-simplices are marked. 
If X is already a marked simplicial set then we will use the notation X� and X� for the 
marked simplicial sets obtained by applying the flat or sharp construction (respectively) 
to the underlying simplicial set of X.

In general, we will identify simplicial sets with their minimally marked variants, al-
lowing us to extend the notation introduced above to the marked context. Any variation 
to this rule will be commented upon as we go along.

2.3.3. Remark (Stratified simplicial sets). Earlier authors, including Roberts [29], 
Street [30], and Verity [32,33], have studied a more general notion of stratification. 
A stratified simplicial set is again a simplicial set X equipped with a specified subset of 
simplices which, in that context, are said to be thin. A stratification may contain simplices 
of arbitrary dimension and it must again contain all degenerate simplices. Stratifications 
are used to build structures called complicial sets, which model homotopy coherent higher 
categories in much the way that quasi-categories model homotopy coherent categories.

2.3.4. Recall (Products and exponentiation). The product in msSet of marked simplicial 
sets X and Y is formed by taking the product of underlying simplicial sets and marking 
those 1-simplices (x, y) ∈ X × Y which have x marked in X and y marked in Y .

An exponential (internal hom) Y X in marked simplicial sets has n-simplices which 
correspond to maps k: X×Δn → Y of marked simplicial sets and has marked 1-simplices 
those k which extend along the canonical inclusion X × Δ1 ↪→ X × (Δ1)� to give a 
(uniquely determined) map k′

X × Δ1 k
Y

X × (Δ1)�
k′

That is, a marked 1-simplex in Y X is a map k′: X×(Δ1)� → Y of marked simplicial sets; 
see [15, §3.1.3]. The only 1-simplices which are not marked in X × Δ1 but are marked 
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in X × (Δ1)� are pairs of the form (x, id[1]) in which x is marked in X. It follows that a 
marked simplicial map k: X × Δ1 → Y extends along X × Δ1 ↪→ X × (Δ1)�, and thus 
represents a marked 1-simplex in Y X , if and only if for all marked 1-simplices x in X
the 1-simplex k(x, id[1]) is marked in Y .

2.3.5. Recall (Isomorphisms and markings). A quasi-category A becomes a marked sim-
plicial set A� with the natural marking, under which a 1-simplex is marked if and only if 
it is an isomorphism. When we regard an object as being a quasi-category in the marked 
setting we will always assume that it carries the natural marking without comment. 
A functor f : A → B between quasi-categories automatically preserves natural markings 
simply because the corresponding functor h(f): hA → hB preserves isomorphisms.

2.3.6. Notation. In this context it is useful to adopt the special marking convention for 
horns (n ≥ 1, 0 ≤ k ≤ n) under which we

• write Δn:k for the marked simplicial set obtained from the standard minimally 
marked simplex Δn by also marking the edge {0, 1} in the case k = 0 and marking 
the edge {n− 1, n} in the case k = n,

• inherit the marking of the horn Λn,k from that of Δn:k, and
• use Λn,k ↪→ Δn:k to denote the marked inclusion of this horn into its corresponding 

specially marked simplex.

Using these conventions we may recast Joyal’s “special horn filler” result [9, 1.3] simply 
as follows.

2.3.7. Proposition (Joyal). A naturally marked quasi-category has the right lifting prop-
erty with respect to all marked horn inclusions Λn,k ↪→ Δn:k, for n ≥ 1 and 0 ≤ k ≤ n.

An important corollary is that a Kan complex is precisely a quasi-category in which 
every 1-simplex is an isomorphism [9, 1.4].

2.3.8. Recall (The model structure of naturally marked quasi-categories). There is a model 
structure on the category of marked simplicial sets whose fibrant–cofibrant objects are 
precisely the naturally marked quasi-categories (see Lurie [15, §3.1] or Verity [33, §6.5]). 
This model category is combinatorial and cartesian and is completely characterised by 
the fact that it has:

• weak equivalences which are those maps w: X → Y of marked simplicial sets for which 
h(Aw): h(AY ) → h(AX) is an equivalence of categories for all (naturally marked) 
quasi-categories A,

• cofibrations which are simply the injective maps of marked simplicial sets, and
• fibrations between fibrant objects which are the isofibrations of naturally marked 

quasi-categories.
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Here, the exponential AX is the internal hom in the category of marked simplicial sets 
msSet. The functor h: msSet → Cat is the left adjoint to the nerve functor N : Cat →
msSet which carries a category C to the marked simplicial set whose underlying simplicial 
set is the usual nerve and in which a 1-simplex is marked if and only if it is an isomorphism 
in C ∼= hC. The left adjoint h sends a marked simplicial set X to the localisation
of its homotopy category hX at the set of marked edges. Note that in the case of a 
naturally marked quasi-category A�, h(A�) = hA, the usual homotopy category of the 
quasi-category.

By [11, 7.14], a cofibration is a weak equivalence if and only if it has the left lifting 
property with respect to the fibrations between fibrant objects. In particular, in this 
model structure all of the special marked horn inclusions Λn,k ↪→ Δn:k (n ≥ 1, 0 ≤
k ≤ n) and the inclusion (Δ1)� ↪→ I of the marked 1-simplex into the naturally marked 
isomorphism category are trivial cofibrations (see [5, B.10, B.15]). This proves that an 
isomorphism Δ1 → A in a quasi-category may always be extended to a functor I → A

[9, 1.6].

2.3.9. Observation (Natural markings, internal homs, and products). The product of 
two naturally marked quasi-categories is again a naturally marked quasi-category. By 
cartesianness of the marked model structure, if A is a naturally marked quasi-category 
and X is any marked simplicial set then the exponential AX is again a naturally marked 
quasi-category. In summary, the fully faithful natural marking functor �: qCat → msSet
is a cartesian closed functor, in the sense that it preserves products and internal homs.

The content of Observation 2.3.9 is more profound than one might initially suspect. It 
might be summarised by the slogan “a natural transformation of functors is an isomor-
phism if and only if it is a pointwise isomorphism”. The precise meaning of this slogan 
is encoded in the following result.

2.3.10. Lemma (Pointwise isomorphisms are isomorphisms). Let X be a marked simpli-
cial set and let A be a naturally marked quasi-category. A 1-simplex k: X × Δ1 → A is 
marked in AX if and only if for all 0-simplices x in X the 1-simplex k(x · σ0, id[1]) is 
marked in A.

Here is the intuition for this result. The component of a map k: X × Δ1 → A at a 
1-simplex f : a → b in X is a diagram Δ1 × Δ1 → A

·

k(f,δ1)

k(a,id[1])

k(f,id[1])

·

k(f,δ0)

·
k(b,id[1])

·

(2.3.11)
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If f is marked and k is a marked map, then the verticals are marked in A. If A is 
a naturally marked quasi-category, then if the horizontals, the “components” of k, are 
marked, then so is the diagonal edge, simply because isomorphisms compose. If this is 
the case for all marked 1-simplices f , then k is marked in AX by the definition of the 
internal hom in msSet.

Proof. As recalled in Recall 2.3.4, k is a marked 1-simplex in AX if and only if k(f, id[1])
is marked in A for all marked edges f of X. In particular, the edges k(x · σ0, id[1]) are 
necessarily marked in A if k is marked in AX . We show that this condition is sufficient 
to detect the marked edges k ∈ (AX)1.

The 2-simplex (f · σ0, σ1) of X × Δ1 can be drawn as follows:

⎛
⎜⎜⎜⎝

·
f

f ·σ0

·

(f ·δ1)·σ0

f
·

,

·
σ0

σ1

·

id[1]

id[1]
·

⎞
⎟⎟⎟⎠

Applying k, the 2-simplex k(f · σ0, σ1) of A witnesses the fact that k(f, id[1]) is a com-
posite of k(f, σ0) and k((f · δ1) · σ0, id[1]).

Now when f is marked in X, the edge (f, σ0) is marked in X × Δ1, so it follows 
that k(f, σ0) is marked in A. By assumption the 1-simplex k((f · δ1) · σ0, id[1]) is also 
marked in A. The isomorphisms, that is to say naturally marked 1-simplices, compose in 
A simply because isomorphisms compose in the category hA, so it follows that k(f, id[1])
is marked in A. �

Recall that the marked edges in a naturally marked quasi-category are precisely the 
isomorphisms. Reinterpetting Lemma 2.3.10 in the unmarked context, we have proven:

2.3.12. Corollary. For any quasi-category A and simplicial set X, an edge k ∈ (AX)1 is 
an isomorphism if and only if each of its components k(x) ∈ A1, defined by evaluating 
at each vertex x ∈ X0, are isomorphisms.

2.3.13. Observation. If A is a naturally marked quasi-category then pre-composition by 
the inclusion Δ1 ↪→ (Δ1)� gives rise to an inclusion A(Δ1)� ↪→ AΔ1 of naturally marked 
quasi-categories. Taking transposes, we see that Lemma 2.3.10 may be recast as saying 
that a marked simplicial map k: X → AΔ1 has a (necessarily unique) lift as the dotted 
arrow in

A(Δ1)�

X
k

AΔ1
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if and only if k maps each 0-simplex x ∈ X to an object k(x) ∈ AΔ1 which corresponds to 
a marked arrow of A. In other words, the map A(Δ1)� ↪→ AΔ1 is a fully faithful inclusion 
which identifies A(Δ1)� with the full sub-quasi-category of AΔ1 whose objects are the 
isomorphisms in A.

2.4. Join and slice

Particularly to facilitate comparisons between our development of the theory of quasi-
categories, using the enriched category theories of 2-categories and simplicial categories, 
and the more traditional accounts following Joyal and Lurie, we review Joyal’s slice and 
join constructions, introduced in [9]. Unlike in the classical treatments, these technical 
combinatorial details will be of secondary importance for us, and for that reason, we 
encourage the reader to skip this section upon first reading, referring back only as nec-
essary. A more leisurely account of the combinatorial work reviewed here can be found 
in an earlier version of this paper [27, §A].

2.4.1. Definition (Joins and décalage). The algebraists’ skeletal category Δ+ of all finite 
ordinals and order preserving maps supports a canonical strict (non-symmetric) monoidal 
structure (Δ+, ⊕, [−1]) in which ⊕ denotes the ordinal sum given

• for objects [n], [m] ∈ Δ+ by [n] ⊕ [m] := [n + m + 1],
• for arrows α: [n] → [n′], β: [m] → [m′] by α⊕ β: [n + m + 1] → [n′ + m′ + 1] defined 

by

α⊕ β(i) =
{
α(i) if i ≤ n,

β(i− n− 1) + n′ + 1 otherwise.

By Day convolution, this bifunctor extends to a (non-symmetric) monoidal closed struc-
ture (sSet+, 
, Δ−1, decl, decr) on the category of augmented simplicial sets. Here the 
monoidal operation 
 is known as the simplicial join and its closures decl and decr are 
known as the left and right décalage constructions, respectively. To fix handedness, we de-
clare that for each augmented simplicial set X the functor decl(X, −) (resp. decr(X, −)) 
is right adjoint to X 
− (resp. − 
 X).

The join X 
 Y of augmented simplicial sets X and Y may be described explicitly as 
follows:

• it has simplices pairs (x, y) ∈ (X 
 Y )r+s+1 with x ∈ Xr, y ∈ Ys,
• if (x, y) is a simplex of X 
 Y with x ∈ Xr and y ∈ Ys and α: [n] → [r + s + 1] is a 

simplicial operator in Δ+, then α may be uniquely decomposed as α = α1 
 α2 with 
α1: [n1] → [r] and α2: [n2] → [s], and we define (x, y) · α := (x · α1, y · α2).

If f : X → X ′ and g: Y → Y ′ are simplicial maps then the simplicial map f 
 g: X 
 Y →
X ′ 
 Y ′ carries the simplex (x, y) ∈ X 
 Y to the simplex (f(x), g(y)) ∈ X ′ 
 Y ′.
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2.4.2. Definition (Décalage and slices). The décalage functors can be used to define 
Joyal’s slice construction for a map f : X → A of simplicial. Fixing a simplicial set X
and identifying the category sSet of simplicial sets with the full subcategory of terminally 
augmented simplicial sets in sSet+, we define a functor

− 
̄ X: sSet −→ X/sSet (resp. X 
̄−: sSet −→ X/sSet)

which carries a simplicial set Y ∈ sSet to the object ∗ 
X: X ∼= Δ−1 
X → Y 
X (resp. 
X 
 ∗: X ∼= X 
 Δ−1 → X 
 Y ) induced by the map ∗: Δ−1 → Y corresponding to the 
unique (−1)-simplex of Y . This functor preserves all colimits, and thus admits a right 
adjoint that we now describe explicitly.

Observe that the (−1)-dimensional simplices of decr(X, A) (resp. decl(X, A)) are in 
bijective correspondence with simplicial maps f : X → A. So if we are given such a sim-
plicial map we may, by recollection 2.1.3, extract the component of decr(X, A) (resp. 
decl(X, A)) consisting of those simplices whose (−1)-face is f , which we denote by A/f

(resp. f/A) and call the slice of A over (resp. under) f . Now it is a matter of an easy cal-
culation to demonstrate directly that A/f (resp. f/A) has the universal property required 
of the right adjoint to −
̄X (resp. X
̄−) at the object f : X → A of X/sSet.

In other words, these décalages admit the following canonical decompositions as dis-
joint unions of (terminally augmented) slices:

decr(X,A) = �
f :X→A

(A/f ) decl(X,A) = �
f :X→A

(f/A)

We think of the slice f/A as being the simplicial set of cones under the diagram f and 
we think of the dual slice A/f as being the simplicial set of cones over the diagram f .

2.4.3. Observation (Slices of quasi-categories). A direct computation from the explicit 
description of the join construction given above demonstrates that the Leibniz join (see 
recollection 2.2.6) of a horn and a boundary (Λn,k ↪→ Δn) 
̂ (∂Δm ↪→ Δm) is again 
isomorphic to a single horn Λn+m+1,k ↪→ Δn+m+1. Dually the Leibniz join (∂Δn ↪→ Δn) ̂

(Λm,k ↪→ Δm) is isomorphic to the single horn Λn+m+1,n+k+1 ↪→ Δn+m+1.

Combining these computations with the properties of the Leibniz construction devel-
oped in [26, §4], we may show that an augmented simplicial set A has the right lifting 
property with respect to all (inner) horn inclusions then so do the left and right décalages 
decl(X, A) and decr(X, A) for any augmented simplicial set X. In particular, this tells 
us that if f : X → A is any map of simplicial sets and A is a quasi-category then the 
slices f/A and A/f are also quasi-categories.

Working in the marked context, we may extend this result to Leibniz joins with spe-
cially marked outer horns. That then allows us to prove that if p: A → B is an isofibration 
of quasi-categories and f : X → A is any simplicial map then the induced simplicial maps 
p: A/f → B/pf and p: f/A → pf/B are also isofibrations of quasi-categories.
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A variant of the join and slice constructions, also due to Joyal, is more closely related 
to the enriched categorical comma constructions that we will use here.

2.4.4. Definition (Fat join). We define the fat join of two simplicial sets X and Y to be 
the simplicial set X � Y constructed by means of the following pushout:

(X × Y ) � (X × Y )
πX�πY

〈X×δ1×Y,X×δ0×Y 〉

X � Y

X × Δ1 × Y X � Y

(2.4.5)

We may extend this construction to simplicial maps in the obvious way to give us a 
bifunctor �: sSet × sSet → sSet, and it is clear that this preserves connected colimits in 
each variable. It does not preserve all colimits because the coproduct bifunctor � (as used 
in the top right hand corner of the defining pushout above) fails to preserve coproducts 
in each variable (while it does preserve connected colimits). In particular, a fat join of 
a simplicial set X with the empty simplicial set, rather than being empty, is isomorphic 
to X itself.

The fat join of two non-empty simplicial sets X and Y may be described more con-
cretely as the simplicial set obtained by taking the quotient of X × Δ1 × Y under the 
simplicial congruence relating the pairs of r-simplices

(x, 0, y) ∼ (x, 0, y′) and (x, 1, y) ∼ (x′, 1, y) (2.4.6)

where 0 and 1 denote the constant operators [r] → [1]. We use square bracketed triples 
[x, β, y]∼ to denote equivalence classes under ∼.

2.4.7. Definition (Fat slice). Replaying Joyal’s slice construction of Definition 2.4.2, if X
is a simplicial set, we may use the fat join to construct a functor

− �̄X: sSet −→ X/sSet (resp. X �̄ −: sSet −→ X/sSet)

which carries a simplicial set Y ∈ sSet to the object ∗ �X: X ∼= Δ−1 �X → Y �X (resp. 
X � ∗: X ∼= X � Δ−1 → X � Y ). These functors admit right adjoints whose value at an 
object f : X → A of X/sSet is denoted A//f (resp. f//A) and is called the fat slice of A
over (resp. under) f .

2.4.8. Observation (Comparing join constructions). When β: [n] → [1] is a simplicial 
operator let n̂β denote the largest integer in the set {−1} ∪ {i ∈ [n] | β(i) = 0} and let 
ňβ = n − 1 − n̂β . Define an associated pair β̂: [n̂β ] → [n] and β̌: [ňβ ] → [n] of simplicial 
face operators in Δ+ by β̂(i) = i for all i ∈ [n̂β ] and β̌(j) = j + n̂β + 1 for all j ∈ [ňβ ].

Now if X and Y are (terminally augmented) simplicial sets we may define a map s̄X,Y

which carries an n-simplex (x, β, y) of X×Δ1×Y to the n-simplex (x · β̂, y · β̌) of X 
Y . 
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A straightforward calculation demonstrates that this map commutes with the simplicial 
actions on these sets and is thus a simplicial map. Furthermore, the family of simplicial 
maps s̄X,Y : X × Δ1 × Y → X 
 Y is natural in X and Y .

Of course, since X and Y are terminally augmented, we also have canonical maps 
lX,Y : X ∼= X 
Δ−1 → X 
 Y and rX,Y : Y ∼= Δ−1 
 Y → X 
 Y and we may assemble all 
these maps together into a commutative square

(X × Y ) � (X × Y )
πX�πY

〈X×δ1×Y,X×δ0×Y 〉

X � Y

〈lX,Y ,rX,Y 〉

X × Δ1 × Y
s̄X,Y

X 
 Y

(2.4.9)

whose maps are all natural in X and Y . Using the defining universal property of fat join, 
as given in (2.4.5), these squares induce maps sX,Y : X � Y → X 
 Y which are again 
natural in X and Y . Should we so wish, we may now take suitable coproducts of these 
maps to canonically extend this family of simplicial maps to a natural transformation 
between the extended fat join and join bifunctors on augmented simplicial sets.

More explicitly, if n, m ≥ 0, then s̄n,m: Δn × Δ1 × Δm → Δn+m+1 is the unique 
simplicial map determined by the (order preserving) action on vertices given by:

s̄n,m(i, j, k) =
{
i if j = 0, and
k + n + 1 if j = 1. (2.4.10)

This takes simplices related under the congruence defined in (2.4.5) of Definition 2.4.4
to the same simplex and thus induces a unique map sn,m: Δn � Δm → Δn 
 Δm on the 
quotient simplicial set.

2.4.11. Proposition. For all simplicial sets X and Y , the map sX,Y : X � Y → X 
 Y is a 
weak equivalence in the Joyal model structure.

Proof. For proof see [15, 4.2.1.2] or [27, A.4.11]. �
2.4.12. Lemma. For any simplicial set X, the slice and fat slice adjunctions

X/sSet ⊥ sSet
X
̄−

X/sSet ⊥ sSet
−
̄X

X/sSet ⊥ sSet
X �̄−

X/sSet ⊥ sSet
−�̄X

of Definitions 2.4.2 and 2.4.7 are Quillen adjunctions with respect to the Joyal model 
structure on sSet and the corresponding sliced model structure on X/sSet.
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Proof. By [11, 7.15] it is enough to check that in each of these adjunctions the left adjoint 
preserves cofibrations and the right adjoint preserves fibrations between fibrant objects. 
From the explicit descriptions of the join and fat join, it is not difficult to see that the left 
adjoints preserve monomorphisms of simplicial sets. Observations 2.4.3 tells us that if 
p: A → B is an isofibration of quasi-categories and f : X → A is any simplicial map, then 
the induced simplicial maps p: A/f → B/pf and p: f/A → pf/B are also isofibrations of 
quasi-categories. The corresponding result for fat slices is a special case of Lemma 3.3.17
below. �

Finally, we arrive at the advertised comparison result relating the slice and fat slice 
constructions.

2.4.13. Proposition (Slices and fat slices of a quasi-category are equivalent). Suppose that 
X is any simplicial set, that sSet carries the Joyal model structure, and that X/sSet car-
ries the associated sliced model structure. Then the comparison maps sX,Y : X�Y → X
Y

furnish us with natural transformations sX,−: X �̄− → X
̄− and s−,X : −�̄X → −
̄X

which are pointwise weak equivalences. Furthermore, these induce natural transforma-
tions on corresponding right adjoints, whose components efl : f/A → f//A and efr : A/f →
A//f at an object f : X → A of X/sSet are equivalences of quasi-categories whenever A
is a quasi-category.

Proof. The assertions involving left adjoints were proven in Proposition 2.4.11. The 
Quillen adjunctions established in Lemma 2.4.12 allow us to apply the standard result 
in model category theory [8, 1.4.4] that a natural transformation between left Quillen 
functors has components which are weak equivalences at each cofibrant object (which fact 
we have already established) if and only if the induced natural transformation between 
the corresponding right Quillen functors has components which are weak equivalences 
at each fibrant object. Now simply observe that an object f : X → A is fibrant in X/sSet
if and only if A is a quasi-category. �
2.4.14. Remark. Suppose that f : B → A and g: C → A are two simplicial maps. We 
generalise our slice and fat slice notation by using g/f , g//f , f/g and f//g to denote the 
objects constructed in the following pullback diagrams

g/f A/f

π

C
g

A

g//f A//f

π

C
g

A

f/g f/A

π

C
g

A

f//g f//A

π

C
g

A

(2.4.15)

in which the maps labelled π denote the various canonical projection maps. We call 
these the slices and fat slices of g over and under f respectively. We have isomorphisms 
gop

op
∼= (f/g)op and gop

op
∼= (f//g)op.
/f //f
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When A is a quasi-category the projection maps π are all isofibrations that commute 
with the comparison equivalences efl : f/A → f//A and efr : A/f → A//f of Proposi-
tion 2.4.11. These maps are equivalences of fibrant objects in the sliced Joyal model 
structure on sSet/A. Pullback along any map in a model category is always a right 
Quillen functor of sliced model structures, so Ken Brown’s lemma tells us that the pull-
backs are again equivalences.

3. The 2-category of quasi-categories

The full subcategory qCat of quasi-categories and functors is closed in sSet under 
products and internal homs. It follows that qCat is cartesian closed and that it be-
comes a full simplicial sub-category of sSet under its usual self enrichment. We denote 
this self-enriched category of quasi-categories, whose simplicial hom-spaces are given by 
exponentiation, by qCat∞.

In this section, we study a corresponding (strict) 2-category of quasi-categories qCat2
first introduced by Joyal [10]. This should be thought of as being a kind of quotient of 
qCat∞ whose 2-cells (1-arrows in the hom-spaces) are replaced by homotopy classes of 
such and in which higher dimensional information in the hom-spaces is discarded. At 
first blush, it might seem that such a process would destroy far too much information 
to be of any great use. However, much of this paper is devoted to showing, perhaps 
quite surprisingly, that we may develop a great deal of the elementary category theory of 
quasi-categories within the 2-category qCat2 alone. Our first step in this direction will be 
to recognise that much of this category theory may be encoded in the weak 2-universal 
properties of certain constructions in this 2-category.

In this section, we introduce the 2-category qCat2 of quasi-categories and establish a 
few of its basic properties. In particular, we define a particular notion of weak 2-limit ap-
propriate to this context and show that qCat2 admits certain weak 2-limit constructions. 
In later sections, we use the structures introduced here to transport classical categorical 
proofs into the quasi-categorical context.

3.1. Relating 2-categories and simplicially enriched categories

3.1.1. Notation (Simplicial categories and 2-categories). The category of simplicial sets 
sSet is complete, cocomplete, and cartesian closed, so in particular it supports a well 
developed enriched category theory. We refer to sSet-enriched categories simply as sim-
plicial categories and the enriched functors between them as simplicial functors.

In a simplicial category C, we call the n-simplices of one of its simplicial hom-spaces 
C(A, B) its n-arrows from A to B. The composition operation of C restricts to make 
the graph of the objects and n-arrows of C into a category which we shall call Cn, for 
which Cn(A, B) = C(A, B)n. Furthermore, if α: [n] → [m] is a simplicial operator then 
its action on arrows gives rise to an identity-on-objects functor Cm → Cn.
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The category of all (small) categories Cat is also complete, cocomplete, and cartesian 
closed, so it too supports an enriched category theory. We refer to Cat-enriched categories 
as 2-categories and the enriched functors between then as 2-functors. In a 2-category C, 
we follow convention and refer to its objects as 0-cells, the objects in its hom-categories 
as 1-cells, and the arrows in its hom-categories as 2-cells.

We refer the reader to Kelly’s canonical tome [13] for the standard exposition of the 
yoga of enriched category theory. We also strongly recommend Kelly and Street [14]
and Kelly [12] as elementary introductions to 2-categories and their attendant 2-limit 
notions. In particular, we encourage the reader to familiarise him- or herself with the 
rubric of pasting composition discussed in [14].

Recollection 2.2.2 reminds us that Cat may be regarded as a reflective subcategory 
of sSet, or indeed qCat, via the adjunction h � N : the natural map X → hX is an 
isomorphism if and only if X is (the nerve of) a category. The fact that h: sSet → Cat
preserves binary products implies, and in fact is equivalent to, the observation that if 
C is a category and X is a simplicial set then their internal hom CX in sSet is again a 
category. The proof in [10, B.0.16] is as follows: there is a canonical map of simplicial 
sets ChX → CX . Fixing X and varying C these maps define the components of a natural 
transformation between two right adjoints Cat → sSet. This map is invertible because 
the transposed natural transformation h(X × Y ) → hX × hY is an isomorphism.

Recollection 2.2.8 tells us the corresponding result for quasi-categories, this being that 
internal homs whose target objects are quasi-categories are themselves quasi-categories. 
In particular, it follows that each of the categories Cat, qCat, and sSet is cartesian closed 
and that the various inclusions of one into another preserve finite products and internal 
homs. In particular, we may regard the self-enriched categories Cat and qCat as being 
full simplicial subcategories of sSet under its self enrichment. We write Cat2 for this 
2-category of categories, regarded as a full subcategory of qCat∞.

3.1.2. Observation. Using the fact that h and N both preserve finite products, we may 
construct an induced adjunction

2-Cat
N∗

⊥ sSet–Cat
h∗

between the categories of 2-categories and simplicial categories respectively. The functors 
in this adjunction are obtained by applying N and h to the hom-objects of an enriched 
category on one side of this adjunction to obtain a corresponding enriched category 
on the other side. Here again N∗ is fully faithful, so it is natural to regard 2-Cat as 
being a reflective full subcategory both of sSet–Cat and of its full subcategory qCat–Cat
of categories enriched in quasi-categories. Indeed, for our purposes here it suffices to 
consider the restricted adjunction
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2-Cat
N∗

⊥ qCat-Cat
h∗

Given a quasi-categorically enriched category C, the 2-category h∗C is a quotient of 
sorts. The underlying unenriched categories of C and h∗C coincide, but 2-cells in h∗C are 
homotopy classes of 1-arrows in C. These homotopy classes are defined using relations 
witnessed by the 2-arrows. All higher dimensional cells are discarded. On regarding h∗C
as a simplicially enriched category we see that the unit of the adjunction h∗ � N∗ provides 
us with a canonical simplicial quotient functor C → h∗C.

Our identification of categories with their nerves also leads us to regard 2-categories 
as certain special kinds of simplicial categories. Under this identification, a 1-cell (resp. 
2-cell) in a 2-category can equally well be regarded as being a 0-arrow (resp. 1-arrow) in 
the corresponding simplicial category.

3.2. The 2-category of quasi-categories

3.2.1. Definition (The 2-category of quasi-categories). In particular, applying the func-
tor h∗ to the quasi-categorically enriched category qCat∞, we obtain an associated 
2-category qCat2 := h∗qCat∞ whose hom-categories are given by

hom′(A,B) := h(BA). (3.2.2)

Using the description of h given in Recall 2.2.2, we find that the objects of qCat2 are 
quasi-categories; the 1-cells are maps of quasi-categories, which we have agreed to call 
functors; and the 2-cells, which we shall call natural transformations, are certain homo-
topy classes of 1-simplices in the internal hom BA.

More explicitly, a 2-cell f ⇒ g between parallel functors f, g: A ⇒ B is an equivalence 
class represented by a simplicial map α: A × Δ1 → B making the following diagram

A× Δ0 ∼= A

f
A×δ1

A× Δ1 α
B

A× Δ0 ∼= A

g
A×δ0

commute. The displayed map α is a 1-simplex in BA from the vertex f to the vertex g. 
Two such 1-simplices represent the same 2-cell if and only if they are connected by a 
homotopy (in the sense of (2.2.3)) which fixes their common domain f and codomain g.
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We adopt common 2-categorical notation, writing α: f ⇒ g to denote a 2-cell of 
qCat2 which is represented by a simplicial map α: A × Δ1 → B. So if α, β: f ⇒ g are 
two such represented 2-cells then when we write α = β we will not mean that any two 
particular representing maps α, β: A ×Δ1 → B are literally equal but instead that they 
are appropriately homotopic.

The 2-category qCat2 and the simplicial category qCat∞ both have the same under-
lying ordinary category qCat. Furthermore, we know that if A and B are both categories 
regarded as quasi-categories (via the nerve functor) then BA ∈ qCat is also a category 
and so BA ∼= h(BA). This in turn implies that the full sub-2-category of qCat2 spanned 
by the categories is itself equivalent to Cat2; we shall identify these from here on.

The fact that the homotopy category functor h preserves finite products allows us to 
canonically enrich it to a simplicial functor h: qCat∞ → Cat2. Specifically we take its 
action on the hom-space BA to be the map obtained as the adjoint transpose of the 

composite h(BA) × h(A) ∼= h(BA ×A) h(ev)−→ h(B).

3.2.3. Observation (Pointwise isomorphisms are isomorphisms (reprise)). We say that 
a 2-cell α: f ⇒ g: A → B of qCat2 is a pointwise isomorphism if and only if for all 
functors a: Δ0 → A (objects of A) the whiskered composite 2-cell αa: fa ⇒ ga: Δ0 → B

is an isomorphism in hom′(Δ0, B) = hB. Using this notion, Corollary 2.3.12 may be 
recast to posit that α is a pointwise isomorphism in qCat2 if and only if it is a genuine 
isomorphism in hom′(A, B) = h(BA).

Since qCat∞ is the self enrichment of qCat under its cartesian product, it is cartesian 
closed as a quasi-categorically enriched category. We now show that the 2-category qCat2
inherits the corresponding property:

3.2.4. Proposition. qCat2 is cartesian closed as a 2-category.

Proof. We show that the terminal object, binary products, and internal hom of the quasi-
categorically enriched category qCat∞ possess the corresponding 2-categorical universal 
properties. Specifically, we need to demonstrate the existence of canonical isomorphisms

hom′(A,Δ0) ∼= 1

hom′(A,B × C) ∼= hom′(A,B) × hom′(A,C)

hom′(A,CB) ∼= hom′(A×B,C)

of categories which are natural in all variables.
To establish each of these we simply apply the homotopy category functor h to 

translate the corresponding qCat-enriched universal properties to Cat-enriched ones, 
as expressed in terms of the hom-categories defined in (3.2.2).
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Because Δ0 is a terminal object in the simplicially enriched sense, i.e., because 
(Δ0)A ∼= Δ0, it is also terminal in the 2-categorical sense: applying h, the canonical 
isomorphism

hom′(A,Δ0) = h((Δ0)A) ∼= h(Δ0) ∼= 1

asserts that the hom-category from A to Δ0 is the terminal category.
In a similar fashion, since qCat∞ is cartesian closed we know that B ×C is a simpli-

cially enriched product, as expressed by the canonical isomorphisms (B×C)A ∼= BA×CA. 
Applying h we get:

hom′(A,B × C) = h((B × C)A) ∼= h(BA × CA)
∼= h(BA) × h(CA) = hom′(A,B) × hom′(A,C).

Finally, the cartesian closure of qCat∞ gives rise to isomorphisms (CB)A ∼= CA×B , 
to which we may apply the homotopy category functor h to obtain the isomorphism

hom′(A×B,C) = h(CA×B) ∼= h((CB)A) = hom′(A,CB)

which says that CB defines an internal hom for the 2-category qCat2. �
As for any cartesian closed 2-category, the exponential defines a 2-functor qCatop2 ×

qCat2 → qCat2.

3.2.5. Definition (The 2-category of all simplicial sets). The category sSet of all simpli-
cial sets is cartesian closed, so we can apply the functor h∗: sSet–Cat → 2-Cat to its 
self-enrichment. This provides us with a 2-category sSet2 := h∗sSet of all simplicial sets, 
which has qCat2 as a full sub-2-category. On occasion, we make slightly implicit use of 
this larger 2-category. However, we generally choose not to distinguish it notationally 
from qCat2, leaving whatever disambiguation is required to the context.

3.2.6. Remark. Exponentiation in the cartesian closed simplicial category sSet restricts 
to a simplicial cotensor functor sSetop × qCat∞ → qCat∞.

Proposition 3.2.4 extends immediately to show that the 2-category of all simplicial sets 
is again cartesian closed as a 2-category. Applying h∗, we obtain a 2-functor sSetop2 ×
qCat2 → qCat2. In particular, it follows that exponentiation by any simplicial set X
defines a 2-functor (−)X : qCat2 → qCat2.

3.2.7. Definition (Equivalences in 2-categories). A 1-cell u: A → B in a 2-category C is 
an equivalence if and only if there exists a 1-cell v: B → A, called its equivalence inverse, 
and a pair of 2-isomorphisms uv ∼= idB and vu ∼= idA.
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The equivalences of a 2-category C are preserved by all 2-functors since they are 
defined by 2-equational conditions. Consequently, if u: A → B is an equivalence in C then, 
applying the representable 2-functor C(X, −), the functor C(X, u): C(X, A) → C(X, B) is 
an equivalence of hom-categories. A basic 2-categorical fact, whose proof is left to the 
reader, is that these representably-defined equivalences are necessarily equivalences in C.

3.2.8. Lemma. A 1-cell u: A → B in a 2-category C is an equivalence if and only if 
C(X, u): C(X, A) → C(X, B) is an equivalence of hom-categories for all objects X ∈ C.

Our central thesis is that the category theory of quasi-categories developed by Joyal, 
Lurie, and others is captured by qCat2. For this, it is essential that the standard notion 
of equivalence of quasi-categories—weak equivalence in the Joyal model structure—is 
encoded in the 2-category.

To that end, observe that the description of the weak equivalences given in Recall 2.2.5
may be recast in our 2-categorical framework: by definition, a simplicial map u: X → Y

is a weak equivalence in Joyal’s model structure if and only if for all quasi-categories A
the functor hom′(u, A): hom′(Y, A) → hom′(X, A) is an equivalence of hom-categories.

Combining this description with Proposition 3.2.4 and Lemma 3.2.8 we obtain the 
following straightforward results:

3.2.9. Proposition. A functor between quasi-categories is a weak equivalence in the Joyal 
model structure if and only if it is an equivalence in the 2-category qCat2.

Proof. The weak equivalences between quasi-categories are the representably defined 
equivalences in the dual 2-category qCatop2 . Equivalence in a 2-category is a self dual 
notion, so these coincide with the equivalences in qCat2. �
3.2.10. Proposition. A simplicial map u: X → Y is a weak equivalence in the Joyal 
model structure if and only if for all quasi-categories A the pre-composition functor 
Au: AY → AX is an equivalence in the 2-category qCat2.

Proof. By Lemma 3.2.8, Au: AY → AX is an equivalence in qCat2 if and only 
if for all quasi-categories B the functor hom′(B, Au): hom′(B, AY ) → hom′(B, AX)
is an equivalence of hom-categories. Taking duals, hom′(B, Au) is isomorphic to 
hom′(u, AB): hom′(Y, AB) → hom′(X, AB). Hence, it suffices to show that u: X → Y

is a weak equivalence in Joyal’s model structure if and only if hom′(u, AB) is an equiva-
lence of hom-categories for all quasi-categories A and B, which is the case because BA

is again a quasi-category. �
3.3. Weak 2-limits

Finite products aside, the 2-category qCat2 has few 2-limits. However, we shall soon 
discover that it has a number of important weak 2-limits whose universal properties will 
be repeatedly exploited in the remainder of this paper.
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3.3.1. Definition (Smothering functors). A functor between categories is smothering if 
and only if it is surjective on objects, full, and conservative (reflects isomorphisms). 
Equivalently, a functor is smothering if and only if it possesses the right lifting property 
with respect to the set of functors⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∅

•
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• •

• •
,

• •

• •
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅

1

,

1 � 1

2

,

2

I

⎫⎪⎪⎪⎬
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Consequently, the class of smothering functors contains all surjective equivalences and is 
closed under composition, retract, and pullback along arbitrary functors. By composing 
lifting problems, we see that all smothering functors are isofibrations, in the sense that 
they have the right lifting property with respect to either inclusion 1 ↪→ I. It is easily 
checked that if f is a functor which is surjective on objects and arrows, as is true for a 
smothering functor, and a composite gf is smothering, then so is the functor g.

The following very simple lemma will be of significant utility later on.

3.3.2. Lemma (Fibres of smothering functors). Each fibre of a smothering functor is a 
non-empty connected groupoid.

Proof. Suppose that f : A → B is a smothering functor. The fact that it is surjective on 
objects implies immediately that its fibres are non-empty. Furthermore, if a and a′ are 
both objects of A in the fibre of f over some object b in B, then the fullness of f implies 
that we may find an arrow τ : a → a′ in A with f(τ) = idb, thus demonstrating that the 
fibres are connected. Finally, if τ : a → a′ is an arrow of A which lies in the fibre of f
over b, in other words if f(τ) = idb, then by conservativity of f we know that τ is an 
isomorphism. Hence, these fibres are groupoids. �

We have chosen the term smothering here to evoke the image that these are surjective 
covering functors in quite a strong sense. Of course, we have placed our tongues firmly 
in our cheeks while introducing this nomenclature. Smothering functors can fruitfully be 
thought of as being a certain variety of weak surjective equivalences.

We weaken the standard theory of weighted 2-limits (see e.g., [12]) as follows.

3.3.3. Definition (Weak 2-limits in a 2-category). Suppose that A is a small 2-category, 
that D: A → C is a diagram in a 2-category C, and that W : A → Cat2 is a 2-functor, 
which we shall refer to as a weight. If P is an object in C then a cone with summit P
over D weighted by W is a 2-natural transformation c: W ⇒ C(P, D(−)).

For each object K of C, composition with such a cone induces a functor

cK : C(K,P ) −→ lim(W, C(K,D(−))) ∼=
∫

C(K,D(a))W (a) (3.3.4)

a∈A
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where the expression on the right denotes the usual category of 2-natural transformations 
from W to the 2-functor C(K, D(−)), the 2-limit of C(K, D(−)) weighted by W . The 
family of maps (3.3.4) is 2-natural in K.

We say that the cone c displays P as a weak 2-limit of D weighted by W if and only 
if the map in (3.3.4) is a smothering functor for all objects K ∈ C.

While we feel obliged to give the last definition in its full, slightly unsightly, generality. 
However, the reader need not become an expert in the technology of weighted 2-limits 
in order to read the rest of the paper. We shall only work with certain simple varieties 
of weak 2-limits in qCat2, whose weak 2-universal properties we shall describe explicitly.

The fact that the fibres of a smothering functor are connected groupoids is the key 
ingredient in the proof of the following lemma.

3.3.5. Lemma. Weak 2-limits are unique up to equivalence: the summits of any two weak 
2-limit over a common diagram with a fixed weight are equivalent via an equivalence that 
commutes with the legs of the limit cones.

Proof. Given a pair of cones c: W ⇒ C(P, D(−)) and c′: W ⇒ C(P ′, D(−)) that display 
P and P ′ as weak 2-limits of D weighted by W , then for each K ∈ C we have a pair of 
smothering functors:

C(K,P ) cK−→ lim(W, C(K,D(−))) c′K←− C(K,P ′)

Taking K = P , consider the identity 1-cell idP , an object in the hom-category C(P, P ). 
Since c′P is surjective on objects, there is a 1-cell u: P → P ′, an object in C(P, P ′), such 
that c′P (u) = cP (idP ). Exchanging the role of P and P ′, we also find a 1-cell u′: P ′ → P

such that cP ′(u′) = c′P ′(idP ′). These definitions ensure that u and u′ commute with the 
legs of the limit cones.

Now we can apply the 2-naturality properties of the functors cK and c′K to show that

cP (u′u) = lim(W, C(u,D(−)))(cP ′(u′)) naturality of family cK

= lim(W, C(u,D(−)))(c′P ′(idP ′)) definition of u′

= c′P (u) naturality of family c′K
= cP (idP ) definition of u.

In other words, u′u and idP are both in the same fibre of cP , and so they are isomorphic 
in that fibre since cP is a smothering functor. Dually, uu′ and idP ′ are both in the same 
fibre of c′P ′ from which it follows that they too are isomorphic in that fibre. It follows 
that u: P → P ′ and u′: P ′ → P are equivalence inverses. �

The only diagrams we will consider are indexed by small 1-categories A. Because 
qCat2 and qCat∞ have the same underlying category, a diagram D: A → qCat is equally 
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a 2-functor D: A → qCat2 and a simplicial functor D: A → qCat∞. A weight W : A →
Cat for a 2-limit can be regarded as a weight for a simplicial limit by composing with 
the subcategory inclusion Cat ↪→ sSet. Our general strategy will be to show that the 
simplicial weighted limit lim(W, D) exists in qCat∞ and that it has the weak 2-universal 
property expected of the weak 2-limit of D in qCat2. The following lemma allows us to 
considerably simplify the class of functors (3.3.4) that we will need to consider.

3.3.6. Lemma. Fix a small 1-category A and a weight W : A → Cat. Suppose D is a class 
of diagrams D: A → qCat that is closed under exponentiation by quasi-categories, in the 
sense that if D is in the class D then so is D(−)X for any quasi-category X. Then qCat2
admits weak W -weighted 2-limits of this class of diagrams if and only if, for all D ∈ D, 
the canonical functor

h(lim(W,D)) → lim(W,h(D(−)))

is smothering.

Proof. By Definition 3.3.3, to show that the simplicial weighted limit lim(W, D) defines 
a weak 2-limit of a diagram D: A → qCat in the class D, we must show that for each 
quasi-category X the canonical comparison map

hom′(X, lim(W,D)) −→ lim(W,hom′(X,D(−))) (3.3.7)

is a smothering functor. Recall that hom′(X, −) = h((−)X). The right adjoint simplicial 
functor (−)X : qCat∞ → qCat∞ preserves all simplicial weighted limits; in other words, 
the canonical comparison map lim(W, D)X → lim(W, D(−)X) is an isomorphism. Thus, 
the comparison functor (3.3.7) is isomorphic to the functor:

h(lim(W,D(−)X)) −→ lim(W,h(D(−)X)).

By hypothesis, the diagram D(−)X is in D. Thus, to prove that qCat2 admits weak 
2-limits of the diagrams in D, it suffices to show that for all diagrams D ∈ D the 
comparison map

h(lim(W,D)) −→ lim(W,h(D(−)))

is smothering. �
3.3.8. Observation (Cones whose summits are not quasi-categories). The classes of dia-
grams D we will consider are in fact closed under exponentiation by all simplicial sets. 
The proof of Lemma 3.3.6 can then be used to extend the 2-universal properties of the 
weak 2-limits of qCat2 constructed here to cones whose summits are arbitrary simpli-
cial sets. Abstractly speaking, this tells us that the inclusion 2-functor qCat2 ↪→ sSet2



578 E. Riehl, D. Verity / Advances in Mathematics 280 (2015) 549–642
preserves the weak 2-limits of diagrams in D. In order to avoid repeated remarks of this 
kind throughout the remainder of this paper, our notation will tacitly signal when this 
is so by use of the letter “X” for the object of qCat2 or qCat∞ that could equally be 
replaced by any simplicial set. By contrast, the letters “A”, “B”, and “C” refer only to 
quasi-categories.

As our first example of a weak 2-limit in qCat2 we examine cotensors with the generic 
arrow 2. Recall we write A2 for the quasi-category AΔ1 using our convention that cat-
egories are identified with their nerves. We invite the reader to verify that the natural 
functor h(A2) → (hA)2 is not an isomorphism: it is neither injective on objects nor 
faithful. However, it is a smothering functor. In other words:

3.3.9. Proposition. The exponential A2 is a weak cotensor of A by 2 in qCat2.

Proof. By Lemma 3.3.6, it suffices to prove that for any quasi-category A, the canonical 
functor

h(A2) −→ (hA)2

is a smothering functor. Certainly this map is surjective on objects, simply because every 
arrow in hA is represented by a 1-simplex in the quasi-category A.

To prove fullness, suppose given a commutative square in hA and choose arbitrary 
1-simplices representing each morphism and their common composite

·
f

a

k

·
g

·
b

·
(3.3.10)

Because A is a quasi-category, any relation between morphisms in hA is witnessed by a 
2-simplex with any choice of representative 1-simplices as its boundary. Hence, we may 
choose 2-simplices witnessing the fact that k is a composite of a with g and of f with b
as displayed.

·
f

a

k

∼

∼

·
g

·
b

·
(3.3.11)

These two 2-simplices define a map Δ1 → AΔ1 = A2, which represents an arrow in the 
category h(A2) whose image is the specified commutative square.
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To prove conservativity, suppose given a map in h(A2) represented by a diagram 
(3.3.11) whose image (3.3.10) is an isomorphism in (hA)2, meaning that a and b are 
isomorphisms in hA, in which case a and b are isomorphisms in the quasi-category A. 
Lemma 2.3.10 tells us immediately that this diagram is an isomorphism in A2; compare 
with (2.3.11). �
3.3.12. Remark. A generalisation of this argument shows that if C is a free category 
and A is a quasi-category then the exponential AC is the weak cotensor of A by C
in qCat2. Conservativity of the canonical comparison h(AC) → (hA)C follows from 
Lemma 2.3.10. Its surjectivity on objects makes use of the fact that the inclusion of the 
spine of an n-simplex, the simplicial subset spanned by the edges {i, i + 1} in Δn, is a 
trivial cofibration for all n ≥ 1. Fullness is similar.

One should note, however, that this result does not hold for exponentiation by ar-
bitrary categories C. For example, A2×2 is not the weak cotensor of A by the product 
category 2 × 2 in qCat2.

3.3.13. Proposition. The exponential AI is a weak cotensor of A by the generic isomor-
phism I in qCat2.

Proof. By Lemma 3.3.6, it suffices to show that

h(AI) −→ h(A)I

is a smothering functor. This is easiest to do by arguing in the marked context.
By Observation 2.3.9, AI may equally well be regarded as an internal hom of naturally 

marked quasi-categories in msSet. Recollection 2.3.8 tells us that the inclusion 2� ↪→ I is 
a trivial cofibration in the marked model structure. Because the marked model structure 
is cartesian closed, the restriction functor AI → A2� is a trivial fibration. Immediately 
from their defining lifting properties, trivial fibrations of quasi-categories are carried by 
h to functors which are surjective on objects and fully faithful, the so-called surjective 
equivalences, so it follows that h(AI) → h(A2�) is a surjective equivalence. Furthermore, 
in the case where A is an actual category, the functor AI → A2� is an isomorphism. So 
we obtain a commutative square

h(AI) h(A)I

∼=

h(A2�) h(A)2�

of functors between categories in which the left hand vertical is a surjective equivalence. 
By the composition and cancellation results described in Definition 3.3.1, the upper 
horizontal map in this square is a smothering functor if and only if the lower horizontal 
map is smothering.
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The smothering functors are stable under pullback, so to complete our proof, we will 
show that for any naturally marked quasi-category A the square

h(A2�) h(A)2�

h(A2) h(A)2

is a pullback; we know from Proposition 3.3.9 that the lower horizontal map is a smoth-
ering functor. This follows from the definition of the natural marking: a 1-simplex in A
is marked if and only if it is an isomorphism, which is the case if and only if it represents 
an isomorphism in hA. �
3.3.14. Proposition. The 2-category qCat2 admits weak 2-pullbacks along isofibrations: if 
the square

B ×A C
π2

π1

C

g

B
f

A

is a pullback in simplicial sets for which B, A, and C are quasi-categories and g is an 
isofibration, then B ×A C is a quasi-category and it is a weak 2-pullback of g along f in 
the 2-category qCat2.

Proof. The statement only applies to pullbacks of those diagrams of shape B f−→ A g←− C

for which the map g is an isofibration. However, Observation 2.2.9 tells us that any 
exponentiated isofibration gX : CX → AX is again an isofibration, and so we are in a 
position to apply Lemma 3.3.6.

It remains to show that the canonical comparison functor

h(B ×A C) −→ hB ×hA hC

is smothering. This functor is actually bijective on objects, since in both categories an 
object consists simply of a pair (b, c) of 0-simplices b ∈ B and c ∈ C with f(b) = g(c).

For fullness, suppose we are given two such pairs (b, c) and (b′, c′). An arrow between 
these objects in hB ×hA hC consists of a pair of equivalence classes represented by 
1-simplices β: b → b′ and γ: c → c′ which both map to the same equivalence class in 
hA under f and g respectively. This latter condition simply posits that f(β) and g(γ)
are homotopic relative to their endpoints in A; such a homotopy is represented by a 
2-simplex with 2nd face g(γ), 1st face f(β), and 0th face degenerate. This information 
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provides us with a lifting problem between Λ2,1 → Δ2 and g, which we may solve because 
g is an isofibration. The resulting filler supplies us with a 1-simplex γ′: c → c′ for which 
g(γ′) = f(β) and a homotopy of γ′ and γ (relative to their endpoints) which shows 
these represent the same arrow in hC. In other words, (β, γ′) is a 1-simplex in B ×A C

that represents an arrow of h(B ×A C) from (b, c) to (b′, c′) and this arrow maps to the 
originally chosen arrow in hB ×hA hC.

The proof of conservativity is simplified by arguing in the marked model structure. 
Giving our quasi-categories A, B, and C the natural marking, the isofibration g becomes 
a fibration in the marked model structure. It follows that the pullback is a fibrant object 
and hence naturally marked. Consequently, a 1-simplex (β, γ) of B ×A C represents an 
isomorphism in h(B ×A C) if and only if it is marked, and this is the case if and only if 
β is marked in B and γ is marked in C. Now, this latter condition holds if and only if β
is invertible in hB and γ is invertible in hC and these conditions together are equivalent 
to the pair (β, γ) being invertible as an arrow in the category hB ×hA hC. �
3.3.15. Definition (Comma objects). Given a pair of functors B f−→ A g←− C between 
quasi-categories, we define the comma object f ↓ g to be the simplicial set constructed 
by forming the following pullback:

f ↓ g

p

A2

C ×B
g×f

A×A

The right-hand vertical is defined by restricting along the boundary inclusion Δ0 �
Δ0 ∼= ∂Δ1 ↪→ Δ1 and then composing with the symmetry isomorphism A ×A ∼= A ×A. 
In a subsequent paper, we will think of the comma object f ↓ g as a module, with C
acting on the left and with B acting on the right, which is the reason for our conven-
tion.

3.3.16. Lemma. The simplicial set f ↓ g is a quasi-category and the projection functors 
p0 := πB ◦ p: f ↓ g ↠ B and p1 := πC ◦ p: f ↓ g ↠ C are isofibrations.

Proof. The right hand vertical in the pullback square above is isomorphic to the sim-
plicial map AΔ1 → A∂Δ1 and is thus, by Recall 2.2.8, an isofibration whenever A
is a quasi-category. Consequently, since the product C × B is again a quasi-category, 
p: f ↓ g → C × B is an isofibration and f ↓ g is a quasi-category. The projection func-
tors πC : C × B ↠ C and πB: C × B ↠ B are both isofibrations because B and C are 
fibrant, so it follows that the domain and codomain projection maps p0: f ↓ g ↠ B and 
p1: f ↓ g ↠ C are also isofibrations. �
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3.3.17. Lemma (Maps induced between comma objects). A commutative diagram

B
f

r

A

q

C
g

s

B̄
f̄

Ā C̄
ḡ

in qCat in which the vertical maps are (trivial) fibrations in the Joyal model structure, 
induces a (trivial) fibration r ↓q s: f ↓ g ↠ f̄ ↓ ḡ between comma quasi-categories.

Proof. Consider the commutative diagram

C ×B
g×f

s×r

A×A

q×q

A2
(p1,p0)

q2P l

C̄ × B̄
ḡ×f̄

Ā× Ā Ā2

(p1,p0)

in which P denotes the pullback of the maps q × q and (p1, p0) and l is the unique map 
induced into it by the right hand square. The pullbacks of the two horizontal lines are 
the comma objects f ↓ g and f̄ ↓ ḡ respectively. So this diagram induces a unique map 
r ↓q s: f ↓ g → f̄ ↓ ḡ of comma objects which makes the manifest cube commute.

The (trivial) fibrations of any model category are closed under product, so the map 
s ×r is a (trivial) fibration in the Joyal model structure. The induced map l is isomorphic 
to the Leibniz hom ĥom(∂Δ1 ↪→ Δ1, q: A ↠ Ā); a recalled in Recall 2.2.8, cartesianness 
of the Joyal model structure implies that l is a (trivial) fibration. The induced map 
r ↓q s: f ↓ g ↠ f̄ ↓ ḡ is again a (trivial) fibration because it factors as a composite of 
pullbacks of the (trivial) fibrations s × r and l. �
3.3.18. Proposition. For any functors B f−→ A g←− C of quasi-categories, the comma 
quasi-category f ↓ g is a weak comma object in qCat2.

Proof. Again, Lemma 3.3.6 applies, so it suffices to show that the canonical comparison

h(f ↓ g) −→ h(f) ↓ h(g) (3.3.19)

is a smothering functor. Here the target category is just the usual comma category 
constructed in Cat. By definition, f ↓ g ∼= (C ×B) ×(A×A) A

2 and consequently we find 
that we may express the functor in (3.3.19) as a composite:

h((C ×B) ×(A×A) A
2) −→ h(C ×B) ×h(A×A) h(A2) −→ h(C ×B) ×h(A×A) h(A)2

The first of these maps is the canonical comparison functor studied in Proposition 3.3.14, 
so we know that it is smothering. The second of these maps is a pullback of the canonical 
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comparison functor discussed in Proposition 3.3.9; since smothering functors are stable 
under pullback, it too is a smothering functor. We obtain the required result from the 
fact that smothering functors compose. �
3.3.20. Observation (Unpacking the universal property of weak comma objects). The 
smothering functors

hom′(X, f ↓ g) −→ hom′(X, f) ↓ hom′(X, g) (3.3.21)

which express the weak 2-universal property of the quasi-category f ↓ g are induced by 
composition with a cone:

f ↓ g
p1 p0

ψ⇐C

g

B

f
A

(3.3.22)

The data displayed in (3.3.22) is the image of the identity 1-cell under (3.3.21) in the 
case X = f ↓ g. The weak universal property of this comma cone has three aspects, 
corresponding to the surjectivity on objects, fullness, and conservativity of the smoth-
ering functor (3.3.21), which we refer to as 1-cell induction, 2-cell induction, and 2-cell 
conservativity.

Surjectivity on objects of the functor (3.3.21) simply says that for any comma cone

X
c b

α⇐C

g

B

f
A

(3.3.23)

over our diagram there exists a map a: X → f ↓ g which factors b: X → B and c: X → C

through p0: f ↓ g → B and p1: f ↓ g → C respectively and which whiskers with the 2-cell 
ψ: fp0 ⇒ gp1 to give the 2-cell α: fb ⇒ gc; diagrammatically speaking, 1-cell induction
produces a functor a: X → f ↓ g from a 2-cell α: fb ⇒ gc so that:

X
c b

α⇐C

g

B

f
A

= f ↓ g
p1 p0

ψ⇐C

g

B

f
A

X

a

(3.3.24)
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Fullness of (3.3.21) tells us that if we are given a pair of functors a, a′: X → f ↓ g and 
a pair of 2-cells

X
a′ a

τ0⇐f ↓ g
p0

f ↓ g
p0

B

and

X
a′ a

τ1⇐f ↓ g
p1

f ↓ g
p1

C

(3.3.25)

with the property that

X
a′ a

τ1⇐ =

X
a′ a

τ0⇐f ↓ g

p1

f ↓ g
p1

p0

ψ⇐

f ↓ g
p1

p0
ψ⇐

f ↓ g

p0
C

g

B

f

C

g

B

f
A A

(3.3.26)

then there exists a 2-cell τ : a ⇒ a′, defined by 2-cell induction, satisfying the equalities

X
a′ a

τ0⇐f ↓ g
p0

f ↓ g
p0

B

=

X

aa′ τ⇐

f ↓ g

p0

B

and

X
a′ a

τ1⇐f ↓ g
p1

f ↓ g
p1

C

=

X

aa′ τ⇐

f ↓ g

p1

C

.

Finally, conservativity of (3.3.21) tells us that if we are given a 2-cell τ : a ⇒ a′: X →
f ↓g then if the whiskered composites p0τ and p1τ , as shown in the previous diagram, are 
isomorphisms in hom′(X, B) and hom′(X, C) respectively, then τ is also an isomorphism 
in hom′(X, f ↓ g); this is 2-cell conservativity.

3.3.27. Lemma (1-cell induction is unique up to isomorphism). Any two 1-cells a, a′: X →
f ↓ g over a weak comma object (3.3.22) that are induced by the same comma cone 
α: fb ⇒ gc are isomorphic over C ×B.

Proof. This follows from Lemma 3.3.2, which demonstrates that fibres of smothering 
functors are connected groupoids, or can be proven directly. From the defining property 
of induced 1-cells displayed in (3.3.24) it follows that p0a = p0a

′, p1a = p1a
′, and 

ψa = ψa′. We can regard the first two of these equalities as being identity 2-cells of 
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the form displayed in (3.3.25). Then the third of these equalities may be re-interpreted 
as positing the compatibility property displayed in (3.3.26) for those identity 2-cells. 
So we may apply the 2-cell induction property of f ↓ g to obtain a 2-cell τ : a ⇒ a′

whose whiskered composites with p0 and p1 are the identity 2-cells corresponding to 
the equalities p0a = p0a

′ and p1a = p1a
′ respectively. This then allows us to apply the 

2-cell conservativity property of our weak comma object to show that τ : a ⇒ a′ is an 
isomorphism. �
3.4. Slices of the category of quasi-categories

3.4.1. Definition (Enriching the slices of qCat). For a quasi-category A, we will write 
qCat/A for the full subcategory of the usual slice category whose objects are isofibrations 
E ↠ A. Where not otherwise stated, we shall restrict our attention to these subcate-
gories of isofibrations: these are the subcategories of fibrant objects in slices of Joyal’s 
model structure and so are better behaved when viewed from the perspective of formal 
quasi-category theory than the slice categories of all maps with fixed codomain.

The category qCat/A has two enrichments of interest to us here. Let qCat2/A and 
qCat∞/A denote the 2-category and simplicial category (respectively) whose objects are 
the isofibrations with codomain A and whose hom-category and simplicial hom-space 
(respectively) between p: E ↠ A and q: F ↠ A are defined by the pullbacks

hom′
A(p, q) hom′(E,F )

hom′(E,q)

homA(p, q) FE

qE

1
p

hom′(E,A) Δ0
p

AE

(3.4.2)

The objects of hom′
A(p, q) and the vertices of homA(p, q) are exactly the morphisms from 

p to q in qCat/A. The morphisms in hom′
A(p, q), 2-cells in the 2-category qCat2/A, are 

natural transformations between functors E → F in qCat2 whose whiskered composite 
with q is the identity 2-cell on p. Since q: F ↠ A is an isofibration we know that qE: FE

↠

AE is also an isofibration as is its pullback homA(p, q) ↠ Δ0; hence, homA(p, q) is a 
quasi-category. In other words, qCat∞/A is enriched in quasi-categories.

3.4.3. Observation (Pushforward). If f : B ↠ A is an isofibration of quasi-categories then 
post-composition defines a simplicial functor f∗: qCat∞/B → qCat∞/A and a 2-functor 
f∗: qCat2/B → qCat2/A.

One reason for our particular interest in the simplicial categories qCat∞/A has to do 
with the following observation. Simplicially enriched limits are defined up to isomorphism 
and thus assemble into a simplicial functor. The universal property defining weak 2-limits, 
however, lacks a uniqueness statement of sufficient strength to make them assemble into 
a (strict) 2-functor. In particular:
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3.4.4. Observation (Pullback). Consider any functor f : B → A between quasi-categories. 
Pullback along f defines a functor f∗: qCat/A → qCat/B, but it cannot be extended 
to a 2-functor between slice 2-categories qCat2/A and qCat2/B in any canonical way. 
On the other hand, pullback is a genuine simplicial limit in qCat∞ and so it does define 
a simplicial functor f∗: qCat∞/A → qCat∞/B, which in turn gives rise to a 2-functor 
f∗: h∗(qCat∞/A) → h∗(qCat∞/B) on application of h∗: sSet-Cat → 2-Cat. The remarks 
apply equally to the larger slice categories of all maps with fixed codomain.

3.4.5. Observation (Comparing the 2-categories qCat2/A and h∗(qCat∞/A)). The 
2-categories qCat2/A to h∗(qCat∞/A) have the same 0-cells and 1-cells; however it 
is not the case that their 2-cells coincide. If we are given a parallel pair of 1-cells

E

p

f

g

F

q

A

a 2-cell from f to g in

qCat2/A: is a homotopy class of 1-simplices f → g in FE that whisker with q to the 
homotopy class of the degenerate 1-simplex on p.

h∗(qCat∞/A): is a homotopy class represented by a 1-simplex f → g in the fibre of 
qE : FE

↠ AE over the vertex p ∈ AE under homotopies which are also con-
strained to that fibre.

Note here that the notion of homotopy involved in the description of 2-cells in 
h∗(qCat∞/A) is more refined (identifies fewer simplices) than that given for 2-cells in 
qCat2/A. Each homotopy class representing a 2-cell in qCat2/A may actually split into 
a number of distinct homotopy classes representing 2-cells in h∗(qCat∞/A).

Consequently, it is not the case that these two enrichments of qCat/A to a 2-category 
are identical. However, they are related by a 2-functor whose properties we now enumer-
ate.

3.4.6. Definition (Smothering 2-functor). A 2-functor F : C → D is said to be a smothering 
2-functor if it is surjective on 0-cells and locally smothering, i.e., if for all 0-cells K and 
K ′ in C the action F : C(K, K ′) → D(FK, FK ′) of F on the hom-category from K to K ′

is a smothering functor.
Note that smothering 2-functors are also conservative at the level of 1-cells in the 

sense appropriate to 2-category theory; that is to say if k: K → K ′ is a 1-cell in C for 
which Fk is an equivalence in D then k is an equivalence in C.
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3.4.7. Proposition. There exists a canonical 2-functor h∗(qCat∞/A) → qCat2/A which 
acts identically on 0-cells and 1-cells and is a smothering 2-functor.

Proof. To construct the required 2-functor, apply the homotopy category functor h to 
the defining pullback square for homA(p, q) in (3.4.2) to obtain a square which then 
induces a functor h(homA(p, q)) → hom′

A(p, q) by the pullback property of the defining 
square for hom′

A(p, q). It is a routine matter now to check that we may assemble these 
actions on hom-categories together to give a 2-functor which acts as the identity on the 
common underlying category qCat/A of these 2-categories.

To show that this 2-functor is smothering, we already know that it acts bijectively 
on 0-cells, so all that remains is to show that each h(homA(p, q)) → hom′

A(p, q) is a 
smothering functor. This fact follows by direct application of Proposition 3.3.14 to the 
defining pullbacks (3.4.2). �

Our next aim is to develop a useful principle by which to recognise those 1-cells of 
h∗(qCat∞/A) which are equivalences in there. To achieve this, we must first explore the 
2-categorical properties of the isofibrations between quasi-categories.

3.4.8. Definition (Representably defined isofibrations in 2-categories). A 1-cell p: B → A

in a 2-category C is said to be a representably defined isofibration (or just an isofibration) 
if and only if for each object X ∈ C the functor C(X, p): C(X, B) → C(X, A) is an 
isofibration of categories (has the right lifting property with respect to the inclusion 
1 ↪→ I). In more explicit terms, this means that for any diagram

α∼=

B

p � β∼=

B

p

X

b

a
A X

b

x

a
A

consisting of 1-cells a and b and a 2-isomorphism α: pb ∼= a, there exists a 1-cell x and 
2-isomorphism β: b ∼= x so that pβ = α and px = a.

3.4.9. Lemma. If p: B ↠ A is an isofibration between quasi-categories, then p is a repre-
sentably defined isofibration in qCat2.

Proof. For any simplicial set X, pX : BX
↠ AX is also an isofibration and in particu-

lar has the right lifting property with respect to 1 ↪→ I. Using the standard homotopy 
coherence result, recalled in Recall 2.3.8, that an isomorphism in the homotopy cate-
gory of a quasi-category can be extended to a functor with domain I, it follows that 
hom′(X, p): hom′(X, B) → hom′(X, A) also has the right lifting property with respect to 
1 ↪→ I. Thus hom′(X, p) is an isofibration of categories, which shows that the isofibrations 
of quasi-categories are representably defined in the 2-category qCat2. �
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The following lemma, stated here in the special case of qCat2, applies equally to any 
slice 2-category whose objects are isofibrations.

3.4.10. Lemma. The canonical projection 2-functor qCat2/A → qCat2 is conservative on 
1-cells in the appropriate 2-categorical sense: if

E
w

p

F

q

A

(3.4.11)

is a 1-cell in qCat2/A for which w: E → F admits an equivalence inverse w′: F → E in 
qCat2, then w is an equivalence in the slice 2-category qCat2/A.

Proof. By a standard 2-categorical argument, we may choose 2-isomorphisms α: w′w ∼=
idE and β: idF

∼= ww′ which display w′ as a left adjoint equivalence inverse to w in 
qCat2. As p is an isofibration in qCat2, the isomorphism qβ: q ∼= qww′ = pw′ can be 
lifted along p to give a 1-cell w̄: F → E with pw̄ = q and a 2-isomorphism γ: w̄ ∼= w′

with pγ = qβ. The first of these equations tells us that w̄ is a 1-cell in qCat2/A. Using 
the second of these equations and the triangle identities relating α and β, we see that 
the isomorphisms α · γw: w̄w ∼= idE and wγ−1 · β: idF

∼= ww̄ are 2-cells in qCat2/A:

p(α · γw) = pα · pγw = qwα · qβw = q idw

q(wγ−1 · β) = qwγ−1 · qβ = pγ−1 · qβ = idp .

These isomorphisms display w̄ as an equivalence inverse to w in qCat2/A. �
3.4.12. Corollary. The 1-cell depicted in (3.4.11) is an equivalence in h∗(qCat∞/A) if 
and only if w: E → F is an equivalence in qCat2.

Proof. By Proposition 3.4.7 and Lemma 3.4.10, the canonical 2-functors h∗(qCat∞/A) →
qCat2/A and qCat2/A → qCat2 are both conservative on 1-cells, so their composite is 
also conservative on 1-cells. The result follows immediately. �
3.4.13. Definition (Fibred equivalence). A functor w: E → F between quasi-categories 
equipped with specified isofibrations p: E ↠ A and q: F ↠ A is an equivalence fibred 
over A, or just a fibred equivalence, if it is an equivalence in h∗(qCat∞/A). By Corol-
lary 3.4.12, any equivalence in qCat2 which commutes with the maps down to A is 
a fibred equivalence. Unpacking the definition, a fibred equivalence admits an equiva-
lence inverse w′: F → E over A together with isomorphisms α: w′w ∼= idE ∈ EE and 
β: idF

∼= ww′ ∈ FF represented by 1-simplices that compose with p and q to degenerate 
1-simplices.
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Corollary 3.4.12 allows us to lift equivalences in qCat2/A to fibred equivalences, which 
can be pulled back along a functor f : B → A as described in Observation 3.4.4. The lifting 
arguments developed here relied upon the assumption that the simplicial categories in 
which we work have hom-spaces which are quasi-categories, which is why our default is to 
assume that the objects of our slice categories qCat2/A and qCat∞/A are isofibrations.

3.5. A strongly universal characterisation of weak comma objects

We may use properties of the 2-categorical slice qCat2/(C × B) to characterise the 
weak comma objects of qCat2 in terms of a strict 1-categorical universal property. We 
present this technical result here and then use it to good effect in Section 5, where we 
demonstrate how to characterise limits and colimits that exist in a quasi-category in 
purely 2-categorical terms.

For this subsection we shall assume, contrary to our notational convention elsewhere, 
that qCat2/(C×B) denotes the unrestricted slice 2-category whose objects are all func-
tors with codomain C ×B.

3.5.1. Observation (Uniqueness of 1-cell induction revisited). Any 1-cell a: X → f ↓ g

induced by the comma cone (3.3.23) may be regarded as a 1-cell

X

(c,b)

a
f ↓ g

(p1,p0)
C ×B

in qCat2/(C ×B). If we are given a second 1-cell a′: X → f ↓ g which is also induced by 
the same comma cone then the argument of Lemma 3.3.27 delivers us a 2-cell

X

(c,b)

a

a′

τ f ↓ g
(p1,p0)

C ×B

(3.5.2)

in qCat2/(C × B), which is moreover an isomorphism; this is what we meant by the 
assertion that any pair of functors defined by 1-cell induction over the same comma 
cone are isomorphic over C × B. Conversely, by 2-cell conservativity of the comma 
quasi-category f ↓ g, any 2-cell of qCat2/(C × B) of the form depicted in (3.5.2) is 
an isomorphism. Thus, the hom-category hom′

C×B((c, b), (p1, p0)) is a groupoid, whose 
connected components comprise those 1-cells induced by a common cone (3.3.23).

3.5.3. Observation. For each object (c, b): X → C × B of qCat/(C × B) we have a set 
sqg,f (c, b) of 2-cells as depicted in (3.3.23). This construction may be extended immedi-
ately to a contravariant functor sqg,f : (qCat/(C×B))op → Set, which carries a morphism
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X

(c,b)

u
Y

(c̄,b̄)
C ×B

of qCat/(C × B) to the function sqg,f (u) which maps a 2-cell β of sqg,f (c̄, ̄b) to the 
whiskered 2-cell βu in sqg,f (c, b).

3.5.4. Observation. There is a product-preserving functor πg
0 : Cat → Set that sends a 

category to the set of connected components of its sub-groupoid of isomorphisms. We 
may apply πg

0 to the hom-categories of a 2-category C to construct a category (πg
0)∗C. Any 

isomorphism K ∼= L in the category (πg
0)∗C can be lifted to a corresponding equivalence 

in C by picking representatives w: K → L and w′: L → K in C for the isomorphism and 
its inverse. The 2-isomorphisms α: w′w ∼= idK and β: ww′ ∼= idL which witness these 
as equivalence inverses in C arise by choosing 2-cells which witness the mutual inverse 
identities w′w = idK and ww′ = idL in (πg

0)∗C.

3.5.5. Lemma. The functor sqg,f factorises through the quotient functor qCat/(C×B) →
(πg

0)∗(qCat2/(C ×B)) to define a functor

sqg,f : (πg
0)∗(qCat2/(C ×B))op −→ Set. (3.5.6)

Proof. If we are given a 2-cell

X

(c,b)

u

u′

τ Y

(c̄,b̄)

C ×B

in qCat2/(C × B) and a 2-cell β ∈ sqg,f (c̄, ̄b) then the middle four interchange rule for 
the horizontal composite of the 2-cells β and τ provides us with a commutative square

f b̄u
βu

fb̄τ

gc̄u

gc̄τ

f b̄u′
βu′

gc̄u′

whose vertical arrows are the identities on fb and gc respectively. Hence, βu = βu′, and 
we conclude that if u and u′ are 1-cells in the same connected component of the category 
hom′

C×B((c, b), (c̄, ̄b)) then the functions sqg,f (u) and sqg,f (u′) are identical. �
This functor allows us to expose another aspect of the weak 2-universal prop-

erty of weak comma objects: namely that the comma cone formed from the cospan 
B

f−→ A
g←− C represents the functor (3.5.6).
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3.5.7. Lemma. The weakly universal comma cone

f ↓ g
p1 p0

ψ⇐C

g

B

f
A

(3.5.8)

provides us with an element ψ ∈ sqg,f (p1, p0) which is universal, in the usual sense, for 
the functor sqg,f : (πg

0)∗(qCat2/(C ×B))op → Set. Furthermore, any comma cone

Q
q1 q0

φ⇐C

g

B

f
A

(3.5.9)

for which the 2-cell φ ∈ sqg,f (q1, q0) is a universal element of the functor sqg,f displays 
Q as a weak comma object in qCat2.

Proof. For each object (c, b): X → C×B of qCat2/(C×B) the element ψ ∈ sqg,f (p1, p0)
induces a function

πg
0(hom′

C×B((c, b), (p1, p0))) −→ sqg,f (c, b)

which carries a functor a: X → f ↓ g representing an element of the set on the left to 
the whiskered composite ψa on the right. The element ψ ∈ sqg,f (p1, p0) is universal for 
sqg,f if and only if each of those functions is a bijection. Surjectivity follows directly 
from the 1-cell induction property of f ↓g, and injectivity follows from the reformulation 
of Lemma 3.3.2 discussed in Observation 3.5.1.

If φ ∈ sqg,f (q1, q0) is another element which is universal for sqg,f , then by Yoneda’s 
lemma the objects (p1, p0): f ↓ g → C × B and (q1, q0): Q → C × B are isomorphic in 
the category (πg

0)∗(qCat2/(C×B)) via an isomorphism whose action under sqg,f carries 
ψ ∈ sqg,f (p1, p0) to φ ∈ sqg,f (q1, q0). Proceeding as in Observation 3.5.4, we may pick 
representatives of this isomorphism and its inverse to provide a pair of 1-cells

Q
w

(q1,q0)

f ↓ g
w′

(p1,p0)
C ×B

which are related by a pair of 2-isomorphisms α: w′w ∼= idQ and β: ww′ ∼= idf↓g in the 
slice 2-category qCat2/(C×B). The fact that this isomorphism carries φ to ψ under the 
action of sqg,f provides the 2-cellular equations ψw = φ and φw′ = ψ.
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To prove the 1-cell induction property for the comma cone (3.5.9) suppose that we 
are given a comma cone (3.3.23). The 1-cell induction property of f ↓ g provides us with 
a 1-cell a: X → f ↓ g with the defining property that p0a = b, p1a = c, and ψa = α. The 
functor w′: f ↓ g → Q satisfies the equations q0w′ = p0, q1w′ = p1, and φw′ = ψ, so we 
have q0w′a = p0a = b, q1w′a = p1a = c, and φw′a = ψa = α. This demonstrates that 
w′a: X → Q is a 1-cell induced by the comma cone (3.3.23) with respect to the comma 
cone (3.5.9).

To prove the 2-cell induction property for the comma cone (3.5.9) suppose that we 
are given a pair of 1-cells a, a′: X → Q and a pair of 2-cells τ0: q0a ⇒ q0a

′ and τ1: q1a ⇒
q1a

′ satisfying the condition given in (3.3.26) with respect to the comma cone (3.5.9). 
The 1-cells wa, wa′: X → f ↓ g and the 2-cells τ0: p0wa = q0a ⇒ q0a

′ = p0wa
′ and 

τ1: p1wa = q1a ⇒ q1a
′ = p1wa

′ also satisfy the condition given in (3.3.26) with respect 
to the comma cone (3.5.8). Hence, the 2-cell induction property of f ↓ g ensures that 
we have a 2-cell μ: wa ⇒ wa′ with the defining properties that p0μ = τ0 and p1μ = τ1. 
Combining this with the invertible 2-cell α: w′w ∼= idQ, we may construct a 2-cell

τ := a ∼=

α−1a
w′wa

w′μ
w′wa′ ∼=

αa′

a′

Because α is a 2-cell in the endo-hom-category in qCat2/(C × B) on the object 
(q1, q0): Q → C ×B, q0α = idq0 and q1α = idq1 . It follows that q0τ = q0w

′μ = p0μ = τ0
and q1τ = q1w

′μ = p1μ = τ1, which demonstrates that τ : a ⇒ a′ satisfies the defining 
properties required of a 2-cell induced by the pair of 2-cells τ0 and τ1.

The proof of 2-cell conservativity is of a similar ilk and is left to the reader. �
4. Adjunctions of quasi-categories

We begin our 2-categorical development of quasi-category theory by introducing the 
appropriate notion of adjunction, following Joyal. As observed in [14] and elsewhere, 
adjunctions can be defined internally to any 2-category and the proofs of many of their 
familiar properties can be internalised similarly.

4.0.1. Definition (Adjunction). An adjunction

A
u

⊥ B

f

in a 2-category consists of objects A, B; 1-cells f : B → A, u: A → B; and unit and counit
2-cells η: idB ⇒ uf , ε: fu ⇒ idA satisfying the triangle identities.
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B
f

⇓ε
⇓η

B

=
B B

f

⇓η
B

f

⇓ε =
B

ff idf
=

A

u

A
u

A

u u=
idu

A
u

A A

In particular, an adjunction between quasi-categories is an adjunction in the 2-category 
qCat2. As always we identify the unit and counit 2-cells with the simplicial maps

B

i0

A
u

i0

B

f

B × Δ1
η

B and A× Δ1 ε
A

B

i1

f
A

u

A

i1

(1-simplices in BB and AA respectively) representing the unit and counit respectively. 
Because BA and AB are quasi-categories we know, from the description of the homotopy 
category of a quasi-category given in Recollection 2.2.2, that for any choice of represen-
tatives of the unit and counit there exist maps

α:A× Δ2 → B and β:B × Δ2 → A

(2-simplices in BA and AB respectively) which witness the triangle identities in the sense 
that their boundaries have the form

ufu

α
uε

fuf

β

εf

u

ηu

idu

u f

fη

idf

f

4.0.2. Example. On account of the fully-faithful inclusion Cat2 ↪→ qCat2, any adjunction 
of categories gives rise to an adjunction of quasi-categories with canonical representatives 
for the unit and counit. Conversely, the 2-functor h: qCat2 → Cat2 carries any adjunction 
of quasi-categories to an adjunction between their respective homotopy categories.

4.0.3. Example. The homotopy coherent nerve, introduced in [3] and studied in [4], de-
fines a 2-functor from the 2-category of topologically enriched categories, continuous 
functors, and enriched natural transformations to qCat2. This 2-functor factors through 
the 2-category of locally Kan simplicial categories, simplicial functors, and simplicial 
natural transformations; the locally Kan simplicial categories are the cofibrant objects 
in Berger’s model structure [1]. Hence, any enriched adjunction between topological or 
fibrant simplicial categories gives rise to an adjunction of quasi-categories by passing to 
homotopy coherent nerves. As in the unenriched case, there exist canonical representa-
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tives for the unit and counit defined by applying the homotopy coherent nerve to the 
corresponding enriched natural transformations.

4.0.4. Example. Any simplicially enriched Quillen adjunction between simplicial model 
categories descends to an adjunction between the associated quasi-categories, constructed 
by restricting to the fibrant–cofibrant objects and then applying the homotopy coherent 
nerve. This restriction is necessary to define the quasi-category associated to a simpli-
cial model category; the homotopy coherent nerve of a simplicial category might not 
be a quasi-category if the simplicial category is not locally Kan. The subcategory of 
fibrant–cofibrant objects of a simplicial model category is locally Kan, and furthermore 
the hom-space bifunctor preserves weak equivalences in both variables; it is common to 
say that only between fibrant–cofibrant objects are the simplicial hom-spaces guaranteed 
to have the “correct” homotopy type.

In contrast with the topological case, some care is required to define the functors con-
stituting the adjunction; the point-set level functors will not do because neither adjoint 
need land directly in the fibrant–cofibrant objects. We prove that a simplicial Quillen 
adjunction descends to an adjunction of quasi-categories in Theorem 6.2.1.

Adjunctions can also be constructed internally to qCat2 using its weak 2-limits, as 
we shall see in the next section. Later, we will also meet adjunctions constructions using 
limits or colimits defined internally to a quasi-category.

4.1. Right adjoint right inverse adjunctions

We begin by studying an important class of adjunctions whose counit 2-cells are 
isomorphisms.

4.1.1. Definition. A 1-cell f : B → A in a 2-category admits a right adjoint right inverse
(abbreviated RARI ) if it admits a right adjoint u: A → B so that the counit of the 
adjunction f � u is an isomorphism.

In the situation of Definition 4.1.1, f defines a left adjoint left inverse (abbreviated 
LALI ) to u. When the counit of f � u is an isomorphism, the whiskered composites fη
and ηu of the unit must also be isomorphisms. Indeed, to construct an adjunction of this 
form it suffices to give 2-cells with these properties, as demonstrated by the following 
2-categorical lemma.

4.1.2. Lemma. Suppose we are given a pair of 1-cells u: A → B and f : B → A and a 
2-isomorphism fu ∼= idA in a 2-category. If there exists a 2-cell η′: idB ⇒ uf with the 
property that fη′ and η′u are 2-isomorphisms, then f is left adjoint to u. Furthermore, 
in the special case where u is a section of f , then f is left adjoint to u with the counit 
of the adjunction an identity.
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Proof. Let ε: fu ⇒ idA be the isomorphism, taken to be the identity in the case where u
is a section of f . We will define an adjunction f � u with counit ε by modifying η′: idB ⇒
uf . The “triangle identity composite” θ := uε · η′u: u ⇒ u defines an automorphism of u. 
Define

η := idB

η′

uf
θ−1f

uf.

Immediately, uε · ηu = idu, as is verified by the calculation:

u

θ

η′u
ufu

θ−1fu

uε

ufu
uε

u
θ−1

u

(4.1.3)

The other triangle identity composite φ := εf · fη is an isomorphism, as a composite 
of isomorphisms, and also an idempotent:

f

fη

fη
fuf

fηuf

fuf

εf
fufη

fufuf

εf
fuεf

fuf

εf

f
fη

fuf
εf

f

(4.1.4)

But any idempotent isomorphism is an identity: the isomorphism φ can be cancelled 
from both sides of the idempotent equation φ · φ = φ. Hence, εf · fη = idf , proving the 
second triangle identity. �
4.1.5. Remark (Idempotent isomorphisms). Because qCat2 has many weak but few strict 
2-limits, it is frequently easier to show that a 2-cell is an isomorphism than to show that 
it is an identity. When we desire an identity and not merely an isomorphism, we will 
make frequent use of the trick that any idempotent isomorphism is an identity.

We now show that for any functor �: C → B, the codomain projection functor π1: B ↓
� → C admits a right adjoint right inverse, the “identity functor” i: C → B ↓ � defined 
below. Here the right adjoint i defines a section to the left adjoint pi. Taking the counit 
of i � π1 to be an identity, as permitted by Lemma 4.1.2, the adjunction lifts to the slice 
2-category qCat2/C.

4.1.6. Lemma. Suppose that �: C → B is a functor of quasi-categories and let i: C → B ↓�
be any functor induced by the identity comma cone:
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C
�

C
�

B
= =

C
i

�
B ↓ �

p1 p0

C
�

B
⇐φ

(4.1.7)

Then i: C → B ↓ � is right adjoint to the codomain projection functor p1: B ↓ � → C in 
the slice 2-category qCat2/C

C

i

B ↓ �

p1

p1

C

⊥

and the counit may be chosen to be an identity 2-cell.

Proof. By construction, i is a section to the isofibration p1 and, accordingly, we may 
take the counit of the postulated adjunction to be the identity p1i = idC . Now a 2-cell 
ν: idB↓� ⇒ ip1 provides us with a 2-cell in qCat2/C which satisfies the triangle identities 
with respect to that counit if and only if p1ν and νi are identity 2-cells.

We construct a suitable 2-cell ν: idB↓� ⇒ ip1 by applying the 2-cell induction property 
of B ↓ � to the pair of 2-cells φ: p0 ⇒ �p1 = p0ip1 and idp1 : p1 = p1ip1; here, the 
compatibility condition of (3.3.26) reduces to the trivial pasting identity

B ↓ �
p0

p1

p1

=
⇐φ

C
�

B

=

B ↓ �
p0

�p1
⇐φ

p1

=

C
�

B

By construction, ν: idB↓� ⇒ ip1 is a 2-cell satisfying p0ν = φ and p1ν = idp1 .
To show that νi is an isomorphism, observe that p0νi = φi = id� and p1νi = idp1 i =

idp1i = ididC
, so using the 2-cell conservativity property of B ↓ � we conclude that νi is 

an isomorphism. By Lemma 4.1.2 this suffices; indeed, applying middle-four interchange 
to νi · νi and the equation p1ν = idp1 , νi can be seen to be an idempotent isomorphism 
and thus an identity. �

In general, if a (representable) isofibration f : B ↠ A admits a right adjoint right 
inverse u, then the counit of the RARI adjunction may be chosen to be an identity. 
Lemma 3.4.9, which shows that an isofibration between quasi-categories defines a repre-
sentable isofibration in qCat2, will allow us to make frequent use of this “strictification” 
result.
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4.1.8. Lemma. If f : B ↠ A is a representable isofibration in a 2-category C admitting a 
right adjoint right inverse u′: A → B, then there exists a 1-cell u: A → B that is right 
adjoint right inverse to f with identity counit.

Proof. We construct the functor u: A → B and an isomorphism β: u′ ∼= u by applying 
the universal property of the isofibration f : B ↠ A to the counit ε′: fu′ ∼= idA.

ε′∼=

B

f � β∼=

B

f

A

u′

A A

u′

u

A

By construction fu = idA. The composite η := idB

η′

u′f
βf

uf of the original 
unit η′ with the lifted isomorphism β defines a 2-cell that whiskers with f and u to 
isomorphisms, permitting the application of Lemma 4.1.2 to conclude. �
4.2. Terminal objects as adjoint functors

A quasi-category A has a terminal object if and only if the projection functor !: A → Δ0

admits a right adjoint right inverse:

4.2.1. Definition (Terminal objects). An object t in a quasi-category A is terminal if there 
is an adjunction

Δ0

t

⊥ A

!

Dually, of course, an object in A is initial just when it defines a left adjoint left inverse 
to !: A → Δ0.

4.2.2. Example (Slices have terminal objects). For any object a of a quasi-category A, 
there is an adjunction

Δ0

i

⊥ A ↓ a
!

whose right adjoint, defining the terminal object of A ↓ a, is any vertex of A ↓ a that 
is isomorphic to the degenerate 1-simplex a · σ0: a → a. This functor whiskers with the 
comma cone to an identity 2-cell:
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Δ0
a

Δ0
a

A
= =

Δ0

i
a

A ↓ a
p1 p0

Δ0
a

A
⇐φ

Thus, the adjunction ! � i is a special case of Lemma 4.1.6.

Lemma 4.1.2 allows us to describe the minimal information required to display a 
terminal object.

4.2.3. Lemma (Minimal information required to display a terminal object). To demon-
strate that an object t is terminal in A it is enough to provide a unit 2-cell η: idA ⇒ t!
for which the whiskered composite ηt is an isomorphism.

When A is a category this presentation is neither more nor less than the well known 
observation that an object t is terminal in A if and only if there exists a cocone on the 
identity diagram with vertex t whose component at t is an isomorphism. The proof of 
this lemma applies in any 2-category which possesses a 2-terminal object.

Proof. The categories hom′(Δ0, Δ0) and hom′(A, Δ0) are both isomorphic to the ter-
minal category 1, so the counit is necessarily taken to be the identity and one of the 
triangle identities arises trivially. By Lemma 4.1.2 it remains only to provide a unit 
η: idA ⇒ t! for which the whiskered composition ηt is an isomorphism. Specialising the 
proof of Lemma 4.1.2, it follows formally that ηt: t ⇒ t is an idempotent isomorphism 
and hence an identity, as required. �

The following straightforward 2-categorical lemma provides us with a useful “external” 
characterisation of terminal objects in quasi-categories.

4.2.4. Lemma. Suppose we are given a pair of 1-cells u: A → B and f : B → A and a 
2-cell ε: fu ⇒ idA in a 2-category C. Then f is left adjoint to u with counit ε in C if 
and only if for all 0-cells X ∈ C the functor C(X, f): C(X, B) → C(X, A) is left adjoint 
to C(X, u): C(X, A) → C(X, B), in the usual sense, with counit C(X, ε).

Proof. The only if direction is immediate on observing that C(X, −) is a 2-functor and 
thus preserves adjunctions. For the converse, we observe that the family of units of the 
adjunctions C(X, f) � C(X, u) is 2-natural in X and so the 2-categorical Yoneda lemma 
provides us with a 2-cell η: idB ⇒ uf with the property that C(X, η) and C(X, ε) are unit 
and counit of the adjunction C(X, f) � C(X, u). A further application of the 2-categorical 
Yoneda lemma demonstrates that the triangle identities for η and ε follow immediately 
from those for C(X, η) and C(X, ε). �
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4.2.5. Proposition. A vertex t in a quasi-category A is terminal if and only if for all X
the constant functor X !−→ Δ0 t−→ A is terminal, in the usual sense, in the hom-category 
hom′(X, A).

Proof. Apply Lemma 4.2.4 to the functors t: Δ0 → A and !: A → Δ0 and the identity 
natural transformation !t = idΔ0 . �

We conclude by comparing our definition of terminal object with its antecedent.

4.2.6. Example. Joyal defines a vertex t in a quasi-category A to be terminal if and only 
if any sphere ∂Δn → A whose final vertex is t has a filler [9, 4.1]. In Proposition 4.4.7, we 
will show that Joyal’s definition is equivalent to ours. For the moment, however, we shall 
at least take some satisfaction in convincing ourselves directly that his notion implies 
ours.

Supposing that t ∈ A is terminal in Joyal’s sense, then to define an adjunction ! �
t : Δ0 → A we wish to define a unit η: idA ⇒ t! for which ηt is an identity. This unit is 
represented by a map

A

i0

A× Δ1
η

A

A

i1

!
Δ0

t

which we define as follows. For each a ∈ A0, use the universal property of t to choose a 
1-simplex ηa: Δ1 → A from a to t. We take care to pick ηt to be the degenerate 1-simplex 
at t, thus ensuring that the 2-cell ηt will be the identity at t as required by Lemma 4.2.3.

To define η: A → AΔ1 it suffices to inductively specify maps Δn σ−→ A η−→ AΔ1

for each non-degenerate σ ∈ An compatibly with taking faces of σ. The map η(σ ×
idΔ1): Δn × Δ1 → A should be thought of as the component of η at σ. The chosen 
1-simplices ηa define the components at the vertices a ∈ A0.

For each non-degerate α: a → a′ ∈ A1, define a cylinder Δ1 ×Δ1 → A as follows. The 
1-skeleton consists of the displayed 1-simplices.

a

α

ηa

ηa

t

t·σ0

a′
ηa′

t

One shuffle is defined by degenerating ηa. The other is chosen by applying the universal 
property of t to the sphere formed by α, ηa, and ηa′.



600 E. Riehl, D. Verity / Advances in Mathematics 280 (2015) 549–642
Continuing inductively, suppose we have chosen, for each σ ∈ An, a cylinder Δn ×
Δ1 → A from σ to the degenerate n-simplex at t in such a way that these choices are 
compatible with the face and degeneracy maps from the n-truncation skn Δ of Δ. Given 
a non-degenerate simplex τ ∈ An+1, this simplex together with the (n + 1)-simplices 
chosen for each of its n-dimensional faces τδi form an (n + 2)-sphere with final vertex t, 
and we may choose a filler τ̂ ∈ An+2. Define the requisite cylinder, the component of η
at τ , to be the composite

Δn+1 × Δ1 q−→ Δn+2 τ̂−→ A

of τ̂ with the map induced by the functor q: [n + 1] × [1] → [n + 2] defined by q(i, 0) = i

and q(i, 1) = n +2. By construction, τ̂ δi = ˆτδi for each 0 ≤ i ≤ n +1, that is, the ith face 
of the sphere whose filler defines τ̂ is the (n +1)-simplex chosen to fill the corresponding 
sphere for τδi; thus the cylinder for τ is chosen compatibly with its faces.

This example will be generalised in Proposition 5.2.12 to limits of arbitrary shape.

4.3. Basic theory

A key advantage to our 2-categorical definition of adjunctions is that formal category 
theory supplies easy proofs of a number of desired results.

4.3.1. Proposition. A pair of adjunctions f � u : A → B and f ′ � u′ : B → C in a 
2-category compose to give an adjunction ff ′ � u′u : A → C. In particular, we may 
compose adjunctions of quasi-categories.

Proof. The unit and counit of the composite adjunction are

C

f ′
⇓η′

C C
f ′

⇓ε′

B

f

⇓η
B

u′
B

u′

⇓ε

B
f

A
u

A

u

A

�

Recall Proposition 3.2.9, which demonstrates that equivalences in qCat2 are exactly 
the weak equivalences between quasi-categories in the Joyal model structure. The fol-
lowing classical 2-categorical result allows us to promote any equivalence to an adjoint 
equivalence (cf. [17, IV.4.1]):

4.3.2. Proposition. Any equivalence w: A → B in a 2-category may be promoted to an 
adjoint equivalence in which w may be taken to be either the left or right adjoint. In 
particular, we may promote equivalences of quasi-categories to adjoint equivalences.
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Proof. This is an immediate corollary of Lemma 4.1.2. �
4.3.3. Proposition. Suppose f � u : A → B is an adjunction of quasi-categories. For any 
simplicial set X and any quasi-category C,

AX

uX

⊥ BX

fX

and CA

Cf

⊥ CB

Cu

are adjunctions of quasi-categories.

Proof. By Proposition 3.2.4 and Remark 3.2.6, exponentiation defines 2-functors 
(−)X : qCat2 → qCat2 and C(−): qCatop2 → qCat2, which preserve adjunctions. �

As an easy corollary of the last few results, terminal objects are preserved by right 
adjoints, initial objects are preserved by left adjoints, and they are both preserved by 
equivalences.

4.3.4. Proposition. If u: A → B is a right adjoint or an equivalence of quasi-categories 
and t is a terminal object of A, then ut is a terminal object in B.

Proof. By Proposition 4.3.2, if u is an equivalence then it may be promoted to a right 
adjoint, which reduces preservation by equivalences to preservation by right adjoints. 
Now Proposition 4.3.1 tells us that we may compose the adjunction in which u features 
with that which displays t as a terminal object in A to obtain an adjunction which 
displays ut as a terminal object in B. �
4.4. The universal property of adjunctions

An essential point in the proof of the main existence theorem of [24] is that adjunc-
tions between quasi-categories, while defined equationally, satisfy a universal property. 
In the terminology introduced there, any adjunction between quasi-categories extends 
to a homotopy coherent adjunction. By contrast, a monad in qCat2 need not underlie a 
homotopy coherent monad. In this subsection, we provide several forms of the universal 
property held by an adjunction.

Given an adjunction, we form the comma quasi-categories

f ↓A
(p1,p0)

A2 B ↓ u
(q1,q0)

B2

A×B
idA ×f

A×A A×B
u×idB

B ×B

(4.4.1)
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as in Definition 3.3.15. These quasi-categories are equipped with 2-cells

f ↓A
p1 p0

⇐α

B ↓ u
q1 q0

⇐β

A B
f

B
u

A

satisfying the weak 2-universal properties detailed in Observation 3.3.20. Mimicking the 
standard argument, we derive a fibred equivalence f ↓A � B ↓u from the unit and counit 
of our adjunction.

4.4.2. Proposition. If f � u : A → B is an adjunction of quasi-categories, then there is 
a fibred equivalence between the objects (p1, p0): f ↓ A ↠ A × B and (q1, q0): B ↓ u ↠
A×B.

Proof. The composite 2-cells displayed on the left of the equalities below give rise to 
functors w: B ↓ u → f ↓A and w′: f ↓A → B ↓ u by 1-cell induction:

B ↓ u
q1 q0

⇐β

B ↓ u

w

f ↓A
p1 p0

⇐α

f ↓A

w′

A
u

⇐ε

B

f

= f ↓A
p1 p0

⇐α

A

u
⇐η

B
f

= B ↓ u
q1 q0

⇐β

A A B
f

B A
u

B

By these defining pasting identities, the induced functors provide us with 1-cells

f ↓A

(p1,p0)

w′

B ↓ u

(q1,q0)

w

A×B

in the slice 2-category qCat2/(A × B) commuting with the canonical isofibrations to 
A ×B. These identities give rise to the following sequence of pasting identities
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f ↓A

w′

f ↓A

w′

f ↓A
p1 p0

⇐α
=

f ↓A
p1 p0

⇐α

B ↓ u

w =

B ↓ u
q1 q0

⇐β

= A

u
⇐η

B
f

A B
f

f ↓A
p1 p0

⇐α

A
u

⇐ε

B

f

⇐ε B

f

A B
f

A A

in which the last step is an application of one of the triangle identities of the adjunction 
f � u. This tells us that the endo-1-cells ww′ and idf↓A on the object (p1, p0): f ↓ A ↠
A ×B in qCat2/(A ×B) both map to the same 2-cell α under the whiskering operation. 
Applying Lemma 3.3.27 (or Observation 3.5.1), we find that ww′ and idf↓A are connected 
by a 2-isomorphism in qCat2/(A ×B). A dual argument provides us with a 2-isomorphism 
between the 1-cells w′w and idB↓u in the groupoid of endo-cells on (q1, q0): B↓u ↠ A ×B. 
This data provides us with an equivalence in the slice 2-category qCat2/(A ×B), which we 
may lift along the smothering 2-functor of Proposition 3.4.7 to give a fibred equivalence 
over A ×B. �

Just as in ordinary category theory, Proposition 4.4.2 has a converse:

4.4.3. Proposition. Suppose we are given functors u: A → B and f : B → A between 
quasi-categories. If there is a fibred equivalence between (p1, p0): f ↓ A ↠ A × B and 
(q1, q0): B ↓ u ↠ A ×B, then f is left adjoint to u.

Schematically the proof of this result proceeds by observing that the image of the 
identity morphism at f under the equivalence f ↓ A � B ↓ u defines a candidate unit 
for the desired adjunction. This can then be shown to have the appropriate universal 
property; the proof, however is slightly subtle. We delay it to the next section, where it 
will appear as a special case of a more general result needed there.

4.4.4. Observation (The hom-spaces of a quasi-category). One model for the hom-space 
between a pair of objects a and a′ in a quasi-category A is the comma quasi-category 
a ↓ a′, denoted by HomA(a, a′) in [15]. Proposition 3.3.18 tells us that the canonical 
comparison h(a ↓ a′) → h(a) ↓ h(a′) from the homotopy category of this hom-space is a 
smothering functor. Its codomain h(a) ↓ h(a′) is a comma category of arrows between 
a fixed pair of objects in the category hA, so it is simply the discrete category whose 
objects are the arrows from a to a′ in hA. It follows from conservativity of the smothering 
functor that all arrows in h(a ↓ a′) and thus also a ↓ a′ are isomorphisms; hence, a ↓ a′ is 
a Kan complex by Joyal’s result [9, 1.4].
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By Observation 3.4.4, the fibred equivalence of Proposition 4.4.2 may be pulled back 
along the functor (a, b): Δ0 → A × B associated with any pair of vertices a ∈ A and 
b ∈ B to give an equivalence fb ↓ a � b ↓ ua of hom-spaces. This should be thought 
of as a quasi-categorical analog of the usual adjoint correspondence defined for arrows 
between a fixed pair of objects b ∈ B and a ∈ A.

4.4.5. Remark. Observation 4.4.4 demonstrates that the 2-categorical definition of an 
adjunction implies the definition of adjunction given by Lurie in [15, 5.2.2.8]. As his 
definition has a more complicated form, we prefer not to recall it here. It is in fact 
precisely equivalent to Joyal’s 2-categorical Definition 4.0.1. Our preferred proof that 
Lurie’s definition implies Joyal’s makes use of the fact that the domain and codomain 
projections from comma quasi-categories are, respectively, cartesian and cocartesian fi-
brations. A proof will appear in [28], which gives new 2-categorical definitions of these 
notions, which, when interpreted in qCat2, recapture precisely the (co)cartesian fibra-
tions of [15].

We may apply Proposition 4.4.2 to give a converse to Example 4.2.6, proving that 
our notion of terminal objects is equivalent to Joyal’s. The proof requires one combina-
torial lemma, which relates certain comma quasi-categories with Joyal’s slices, which are 
recalled in Definition 2.4.2 and Remark 2.4.14.

4.4.6. Lemma. For any vertex a in a quasi-category A, there is an equivalence

A/a
∼

A ↓ a

A

over A, which pulls back along any f : B → A to define an equivalence f/a � f ↓a over B.

Proof. The result follows from an isomorphism A ↓a ∼= A//a between the comma and the 
fat slice construction reviewed in Definition 2.4.7. The map A/a → A ↓a and the equiva-
lence over A are then special cases of Proposition 2.4.13. To establish the isomorphism, 
it suffices to show that A ↓a has the universal property that defines A//a. By adjunction, 
a map X → A//a corresponds to a commutative square, as displayed on the left:

X
∐

X
πX

∐
!
X

∐
Δ0

(f,a)

X × Δ1
k

A

�

X
k

(!,f)

AΔ1

Δ0 ×A
a×idA

A×A
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which transposes to the commutative square displayed on the right. The data of the 
right-hand square is precisely that of a map X → A ↓ a by the universal property of the 
pullback Definition 3.3.15 defining the comma quasi-category.

The isomorphism A ↓ a ∼= A//a pulls back to define an isomorphism f ↓ a ∼= f//a. The 
map f/a → f ↓ a is then an equivalence over B by Remark 2.4.14. �
4.4.7. Proposition. A vertex t ∈ A is terminal in the sense of Joyal’s [9, 4.1] if and only 
if

Δ0

t

⊥ A

!

is an adjunction of quasi-categories.

Proof. The “if” direction is Example 4.2.6. For the converse implication, an adjunction 
! � t gives rise to an equivalence between ! ↓Δ0 ∼= A and A ↓t over A by Proposition 4.4.2. 
Hence, by the 2-of-3 property of equivalences, the isofibration A ↓ t ↠ A is a trivial 
fibration. Lemma 4.4.6 supplies an equivalence

A/t

∼

∼
A ↓ t

A

between our comma quasi-category and Joyal’s slice quasi-category; see Definition 2.4.2
for a definition. Applying the 2-of-3 property again, it follows that the isofibration 
A/t ↠ A is a trivial fibration; the right lifting property against the boundary inclusions 
∂Δn → Δn says precisely that t ∈ A is terminal in Joyal’s sense. �

One reason for our particular interest in terminal objects is to show that the units and 
counits of adjunctions have universal properties which may be expressed “pointwise” in 
terms of certain outer horn filler conditions.

4.4.8. Proposition (The pointwise universal property of an adjunction). Suppose that we 
are given an adjunction

A
u

⊥ B

f

of quasi-categories with unit η: idB ⇒ uf and counit ε: fu ⇒ idA. Then for each a ∈ A

the (fat) slice quasi-category f ↓ a � f/a has terminal object εa: fua → a, namely the 
component of the counit ε at a.
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Proof. From Proposition 4.4.2, the adjunction f � u gives rise to the equivalence f ↓A �
B ↓ u fibred over A × B. By Observation 3.4.4, for each a ∈ A, the fibred equivalence 
pulls back along the functor (a, idB): B → A ×B to give a fibred equivalence

f ↓ a

p0

w′

B ↓ ua

q0

w

B

(4.4.9)

over B.
By Example 4.2.2, we know that B ↓ ua has the identity map ua · σ0: ua → ua as 

its terminal object, and by Proposition 4.3.4 we know that terminal objects transport 
along equivalences, so it follows that f ↓ a also has terminal object w′(ua · σ0). It is 
now easily checked, from the definition of w′ given in Proposition 4.4.2, that w′(ua · σ0)
is isomorphic to εa: fua → a. The desired result follows on transporting this terminal 
object along the equivalence between f ↓ a and f/a provided by the geometry result of 
Lemma 4.4.6. �

Of course, the unit of an adjunction of quasi-categories satisfies a dual universal 
property.

4.4.10. Observation (Unpacking this pointwise universal property of an adjunction). 
Unpacking the definitions in Remark 2.4.14 and Definition 2.4.2 we see that a map 
X → f/a corresponds to a pair of maps b: X → B and α: X 
 Δ0 → A which make the 
diagram

X
f

B

b

X 
 Δ0 α
A

Δ0
a

commute.
By Proposition 4.4.7, we know that εa: fua → a is terminal in f/a is terminal if and 

only if every sphere ∂Δn−1 → f/a whose last vertex is εa may be filled to a simplex. 
Applying our description of maps into f/a and observing that Δn−1 
 Δ0 ∼= Δn and 
∂Δn−1 
 Δ0 ∼= Λn,n, we see that εa being terminal means that if we are given

• a horn Λn,n → A, with n ≥ 2 together with
• a sphere ∂Δn−1 → B whose composite with f is the boundary of the missing face of 

the horn, with the property that
• the final edge of the horn is εa
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then there is

• a simplex Δn → A filling the given horn and
• a simplex Δn−1 → B filling the given sphere, with the property that
• the nth face of the filling n-simplex in B is the simplex obtained by applying f to 

the filling (n − 1)-simplex in A.

For n = 2, this situation is summarised by the following schematic:

fua
ε

fb
α

a

b ∈ B0 �
fua

ε
σ

fb

fβ

α
a

σ ∈ A2, β: b → ua ∈ B1

4.4.11. Observation (The relative universal property of an adjunction). For any quasi-
category X the 2-functor hom′(X, −): qCat2 → Cat carries an adjunction f � u: A →
B of quasi-categories to an adjunction hom′(X, f) � hom′(X, u): hom′(X, A) →
hom′(X, B) of categories. Extending Lemma 4.2.4, a standard and easily established 
fact of 2-category theory is that f : B → A has a right adjoint in qCat2 if and only if for 
each quasi-category X the functor hom′(X, f): hom′(X, B) → hom′(X, A) has a right 
adjoint. We might call this observation the external universal property of an adjunction.

There is a closely related internal or relative universal property of adjunctions in 
qCat2, which arises instead from Remark 3.2.6 that the cotensor (−)X : qCat2 → qCat2
is also a 2-functor. Applying this cotensor 2-functor to the adjunction f � u we obtain its 
relative universal property simply as the pointwise universal property of the adjunction 
fX � uX : AX → BX as derived in Proposition 4.4.8 and expressed explicitly in Observa-
tion 4.4.10. The relative universal property of adjunctions will become a key tool in the 
proof that any adjoint functor between quasi-categories extends to a homotopy coherent 
adjunction; see [24].

Another application of Proposition 4.4.2 allows us to show that an isofibration between 
quasi-categories admits a right adjoint right inverse if and only if the following lifting 
property holds.

4.4.12. Lemma (Right adjoint right inverse as a lifting property). An isofibration 
f :B ↠ A of quasi-categories admits a right adjoint right inverse if and only if for all 
a ∈ A0 there exists ua ∈ B0 with fua = a and so that any lifting problem with n ≥ 1

Δ0
{n}

ua

∂Δn B

f

Δn A

(4.4.13)

has a solution.
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Proof. If u is the right adjoint right inverse, then fu = idA and there is a trivial fibration 
B ↓u 

∼−↠ f ↓fu ∼= f ↓A over A ×B defined by applying f (Lemma 3.3.17 proves that this 
map is an isofibration and Proposition 4.4.2 shows that it is an equivalence). This trivial 
fibration pulls back over any vertex a ∈ A0 to define a trivial fibration B↓ua 

∼−↠ f↓a. The 
domain and codomain are equivalent to Joyal’s slices by Lemma 4.4.6, so the isofibration 
B/ua ↠ f/a is also a trivial fibration:

∂Δn−1 B/ua

Δn f/a ∼= B ×A A/a

In adjoint form, this is the lifting property of (4.4.13).
Conversely, the lifting property (4.4.13) can be used to inductively define a section 

u: A → B of f extending the choices ua ∈ B0 for a ∈ A0. The inclusion sk0 A ↪→ A can 
be expressed as a countable composite of pushouts of coproducts of maps ∂Δn ↪→ Δn

with n ≥ 1, and each intermediate lifting problem required to define a lift

Δ0
a

ua

sk0 A B

f

A

u

A

will have the form of (4.4.13). To show that u is a right adjoint right inverse to f , it 
suffices, by Lemma 4.1.2 to define a 2-cell η: idB ⇒ uf that whiskers with u and with f
to isomorphisms. We construct a representative for η by solving the lifting problem

B
∐

B
idB

∐
uf

A

f

B × Δ1

η

πB
B

f
A

By construction fη = idf .
To show that ηu is an isomorphism it suffices, by Corollary 2.3.12, to check that its 

components ηu(a): ua → ufua = ua are isomorphisms in A. Inverse isomorphisms can 
be found by elementary applications of the lifting property (4.4.13), whose details we 
leave to the reader. �
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4.5. Fibred adjunctions

Fibred equivalences over A, i.e., equivalences in h∗(qCat∞/A), are preferable to equiv-
alences in the slice 2-category qCat2/A because the former can be pulled back along 
arbitrary maps f : B → A; see Observation 3.4.4. Precisely the same kind of reasoning 
applies to adjunctions in qCat2/A.

4.5.1. Definition (Fibred adjunctions). We refer to adjunctions in h∗(qCat∞/A) as ad-
junctions fibred over A or simply fibred adjunctions.

Our aim in this section is to show that any adjunction in qCat2/A can be lifted to an 
adjunction fibred over A, i.e., to an adjunction in h∗(qCat∞/A). In particular, such a 
result will allow us to prove that any adjunction in qCat2/A may be pulled back along 
any functor f : B → A. We shall use this result to define a loops–suspension adjunction 
on any quasi-category with appropriate finite limits and colimits (cf. Proposition 5.2.27).

Recall from Proposition 3.4.7 that the canonical 2-functor h∗(qCat∞/A) → qCat2/A
is a smothering 2-functor. Consequently, the following 2-categorical lemma is key:

4.5.2. Lemma. Suppose F : C → D is a smothering 2-functor. Then any adjunction in D
can be lifted to an adjunction in C. Furthermore, if we have previously specified a lift of 
the objects, 1-cells, and either the unit or counit of the adjunction in D, then there is a 
lift of the remaining 2-cell that combines with the previously specified data to define an 
adjunction in C.

Proof. We use surjectivity on objects and local surjectivity on arrows to define u: A → B

and f : B → A in C lifting the objects and 1-cells of the downstairs adjunction. Then we 
use local fullness to define lifts ε: fu ⇒ idA and η′: idB ⇒ uf of the downstairs counit 
and unit. If desired, we can regard A, B, f , u and ε as “previously specified”. We will 
show that f � u by modifying the 2-cell η′. The details are similar to the proof of 
Lemma 4.1.2.

We define a 2-cell θ: u ⇒ u as the “triangle identity composite” θ := uε · η′u and 
observe that Fθ = idFu. Applying the local conservativity of the action of F on 2-cells, 
we conclude that θ is an isomorphism. Define the 2-cell η: idB ⇒ uf to be the composite 
η := θ−1f · η′. Because Fθ is an identity, Fη and Fη′ lift the same downstairs 2-cell. We 
claim that this data forms an adjunction in C.

The diagram (4.1.3) demonstrates that uε · ηu = idu. The diagram (4.1.4) demon-
strates that the other triangle identity composite φ := εf · fη is an idempotent. Finally 
observe that the component parts we’ve composed to make φ all map by F to the corre-
sponding components of the original adjunction in L. It follows that Fφ is equal to the 
corresponding triangle identity composite in L and so is an identity. Consequently, ap-
plying the local conservativity of F on 2-cells we find that φ is an isomorphism. Because 
all idempotent isomorphisms are identities, it follows that εf · fη = idf as required. �
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4.5.3. Corollary. Every adjunction in qCat2/A lifts to an adjunction fibred over A.

Proof. Combine Proposition 3.4.7 and Lemma 4.5.2. �
4.5.4. Example. Corollary 4.5.3 allows us to lift the adjunction p1 � i : C → B ↓ � of 
Lemma 4.1.6 to a fibred adjunction over C whose counit is an identity.

4.5.5. Example (Fibred isofibration RARIs). Lemma 4.1.8 demonstrates that any right 
adjoint right inverse to an isofibration f : B ↠ A can be modified to produce a RARI 
f � u with an identity counit. This latter adjunction provides us with an adjunction in 
qCat2/A which we may lift into h∗(qCat∞/A) to give an adjunction

A
u

⊥ B

f

f
A

(4.5.6)

which is fibred over A. In essence, this latter fibred adjunction expresses the fact that 
each of the fibres of the isofibration f : B ↠ A has a terminal object.

4.5.7. Observation. Applying the 2-functor hom′
A(p, −) represented by an isofibration 

p: E ↠ A to the fibred adjunction in (4.5.6) we obtain an adjunction

hom′
A(p, idA)

u◦−
⊥ hom′

A(p, f)
f◦−

of hom-categories. Now the identity functor idA is the 2-terminal object of the 2-category 
qCat2/A, so it follows that hom′

A(p, idA) ∼= 1. Hence, the displayed adjunction amounts 
simply to the assertion that up is a terminal object of the category hom′

A(p, f). Conse-
quently, applying Lemma 4.2.4, we discover that there exists a fibred adjunction of the 
form displayed in (4.5.6) if and only if for all isofibrations p: E ↠ A the composite map 
up: E → B is a terminal object of the hom-category hom′

A(p, f).

A final example of a fibred adjunction describes the “composition” functor AΛ2,1 → A2

that fills a (2, 1)-horn and then restricts to the missing face as the right and left adjoint, 
respectively, to the pair of functors that extend a 1-simplex into a composable pair by 
using the identities at its domain and codomain.

4.5.8. Example. There exists a pair of adjunctions

Δ1
δ1 Δ2

σ0

σ1

⊥

⊥
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of ordered sets, whose units and counits arise as the equalities σ0δ1 = σ1δ1 = idΔ1

and the inequalities δ1σ0 < id[2] < δ1σ1. Now if A is a quasi-category, we may apply 
Proposition 4.3.3 to construct the associated pair of adjunctions

AΔ2
Aδ1 AΔ1

Aσ1

Aσ0

⊥

⊥

Here the upper adjunction has identity unit and the lower adjunction has identity counit. 
So it follows from Example 4.5.5 that this is a pair of adjunctions fibred over AΔ1 with 
respect to the projections Aδ1 : AΔ2

↠ AΔ1 and idAΔ1 : AΔ1
↠ AΔ1 .

Because the horn inclusion Λ2,1 ↪→ Δ2 is a trivial cofibration in Joyal’s model 
structure, the associated restriction isofibration p: AΔ2

↠ AΛ2,1 is an equivalence of 
quasi-categories fibred over AΛ2,1 . By Proposition 4.3.2 (applied to qCat2/AΛ2,1) and 
Corollary 4.5.3, the fibred equivalence formed by p and a chosen inverse p′ can be pro-
moted to a pair of adjoint equivalences p � p′ � p fibred over AΛ2,1 . On account of the 
pushout diagram defining the (2, 1)-horn, AΛ2,1 is isomorphic to the pullback:

Λ2,1 Δ1δ2

AΛ2,1 π0

π1

A2

p1

Δ1

δ0

Δ0

δ0

δ1
A2

p0
A

Now we may take the pushforward of the fibred adjunctions of the last two paragraphs 
along the isofibrations (A{1}, A{0}): AΔ1

↠ A × A and (A{2}, A{0}): AΛ2,1
↠ A × A

respectively to obtain adjunctions fibred over A ×A. Composing these we obtain a pair 
of adjunctions

AΛ2,1 ∼= A2 ×A A2 m A2

i1

i0

⊥

⊥
(4.5.9)

which are fibred over A × A with respect to the projections (p1, p0): A2
↠ A × A and 

(p1π1, p0π0): AΛ2,1
↠ A × A. Here the upper adjunction has isomorphic unit and the 

lower adjunction has isomorphic counit. The functors i0 and i1 degenerate the domain 
and codomain respectively of a given 1-simplex to form a (2, 1)-horn. The map m is a 
“composition” functor.
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5. Limits and colimits

In this section, we demonstrate that limits and colimits of individual diagrams in a 
quasi-category can be encoded as absolute right and left liftings in the 2-category qCat2. 
The proof that this definition is equivalent to the standard one makes use of the fact that 
absolute lifting diagrams in qCat2 can be detected by an equivalence of suitably defined 
comma quasi-categories. This observation, combined with Example 5.0.4, also supplies 
the proof of Proposition 4.4.3, completing the unfinished business from the previous 
section.

We begin with a general definition:

5.0.1. Definition. In a 2-category, an absolute right lifting diagram consists of the data

⇓λ

B

f

C
g

�

A

(5.0.2)

with the universal property that if we are given any 2-cell χ of the form depicted to the 
left of the following equality

X

c

b

⇓χ

B

f

C
g

A

=

X

c

b

∃!⇓

⇓λ

B

f

C

�

g
A

(5.0.3)

then it admits a unique factorisation of the form displayed to the right of that equality. 
When this condition holds for the diagram in (5.0.2) we say that it displays � as an 
absolute right lifting of g through f .

5.0.4. Example. The counit of an adjunction f � u : A → B defines an absolute right 
lifting diagram

⇓ε

B

f

A

u

idA

A

(5.0.5)

and, conversely, if this diagram displays u as an absolute right lifting of the identity on 
its domain through f then f is left adjoint to u with counit 2-cell ε.
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Proof. This is a standard 2-categorical result. The 2-functor represented by X carries 
an adjunction f � u to an adjunction whose counit has the universal property described 
in (5.0.3) for the 2-cell (5.0.5).

Conversely, given an absolute right lifting diagram (5.0.5), we take this 2-cell to be 
the counit and define the unit by applying the universal property of this absolute right 
lifting to the identity 2-cell:

B
idB

f ⇓idf

B

f

A
idA

A

=

B
idB

f
⇓η

⇓ε

B

f

A
idA

u

A

(5.0.6)

This defining equation establishes one of the triangle identities. The other is obtained 
by pasting ε on the left of both of the 2-cells of (5.0.6) and applying the uniqueness 
statement in the universal property of the absolute right lifting:

⇓ε

B
idB

f ⇓idf

B

f

A
idA

u

A
idA

A

=
⇓ε

B
idB

f
⇓η

⇓ε

B

f

A
idA

u

A
idA

u

A

�

B

⇓idu

A

u

u

=
⇓ε

B
idB

f
⇓η

B

A
idA

u

A

u

�
5.1. Absolute liftings and comma objects

We now specialise to the 2-category qCat2. Our aim is to use its weak comma objects 
to re-express the universal property of absolute lifting diagrams and describe various 
procedures through which they may be detected.

Given any diagram in qCat2 of the form displayed in (5.0.2) in qCat2 we may form 
comma objects B ↓ � and f ↓ g with canonical comma cones:

B ↓ �
p1

p0

⇓φ
B f ↓ g

q1

q0

⇓ψ

B

f

C

�

C
g

A

(5.1.1)

Pasting the canonical cone associated with B ↓ � onto the triangle (5.0.2) we obtain a 
comma cone which induces a functor w: B ↓ � → f ↓ g by the 1-cell induction property 
of f ↓ g. Recall this means that w makes the following pasting equality hold
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B ↓ �
p1 p0

C

g

� B

f
A

⇐φ

⇐λ

=

B ↓ �
w

p1 p0
f ↓ g

q1 q0
C

g

B

f
A

⇐ψ

(5.1.2)

and in particular may be regarded as being a 1-cell in the slice 2-category qCat2/(C×B)
from (p1, p0): f ↓ g ↠ C ×B to (q1, q0): B ↓ � ↠ C ×B.

5.1.3. Proposition. The data of (5.0.2) defines an absolute right lifting in qCat2 if and 
only if the induced map w: B ↓ � → f ↓ g of (5.1.2) is an equivalence.

Proof. For each pair of functors b: X → B and c: X → C as in (5.0.3) observe that 
sqg,f (c, b) (cf. Observation 3.5.3) is simply the set of those 2-cells of the form depicted 
in the square on the left of the equality in (5.0.3) and that sq�,B(c, b) is the set of those 
2-cells which inhabit the upper left triangle of the diagram to the right of that same 
equality. Define

sq�,B(c, b)
kλ
(c,b)

sqg,f (c, b)

to be the function which takes each triangle in its domain and pastes it onto our candidate 
lifting diagram (5.0.2) to obtain a corresponding square as depicted in (5.0.3). This family 
of functions is natural in (c, b): X → C × B in the sense that they are the components 
of a natural transformation kλ between the functors

(πg
0)∗(qCat2/(C ×B))op

sq�,B

sqg,f

⇓kγ Set

of Lemma 3.5.5. By construction, the triangle in (5.0.2) is an absolute right lifting if and 
only if kλ: sq�,B ⇒ sqg,f is a natural isomorphism.

Now consider a commutative square of natural transformations

πg
0(hom′

C×B(−, (p1, p0)))
u◦−

∼=

πg
0(hom′

C×B(−, (q1, q0)))

∼=

sq�,B
k

sqg,f

between presheaves on (πg
0)∗(qCat2/(C × B)), in which the vertical isomorphisms 

are those induced by the weakly universal comma cones of (5.1.1) as discussed in 
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Lemma 3.5.7. Applying Yoneda’s lemma and the definition of (πg
0)∗(qCat2/(C × B)), 

this square provides us with a canonical bijection between the set of natural transforma-
tions k: sq�,B ⇒ sqg,f and the set of isomorphism classes of 1-cells

B ↓ �
(p1,p0)

u
f ↓ g

(q1,q0)
C ×B

(5.1.4)

in qCat2/(C × B). By the Yoneda lemma, k: sq�,B ⇒ sqg,f is a natural isomorphism if 
and only if the corresponding u: B↓� → f ↓g is an isomorphism in (πg

0)∗(qCat2/(C×B)). 
By Observation 3.5.4, this holds if and only if u is an equivalence in qCat2/(C ×B). By 
Lemma 3.4.10, this is the case if and only if u is an equivalence in qCat2.

In particular, the natural transformation kλ: sq�,B ⇒ sqg,f constructed from the 
2-cell (5.0.2) corresponds to the isomorphism class of those induced 1-cells w: B↓� → f ↓g
over C × B which satisfy the pasting identity displayed in (5.1.2). We have just shown 
that the triangle in (5.0.2) is an absolute lifting diagram if and only if kλ: sq�,B ⇒ sqg,f

is a natural isomorphism, which is the case if and only if w: B ↓ � → f ↓ g is an equiva-
lence. �
5.1.5. Remark. There is nothing in the proof of Proposition 5.1.3, or in those of the results 
upon which it relies, which depends upon the vertex X in (5.0.3) being a quasi-category. 
The essential point here is that the space of maps out of any simplicial set X taking 
values in a quasi-category is still a quasi-category. Consequently, we find that absolute 
lifting diagrams in qCat2 possess the factorisation property displayed in (5.0.3) for 2-cells 
whose 0-cellular domains X are general simplicial sets.

For certain applications, it will be important to have a strengthened version of Propo-
sition 5.1.3 which says that from any equivalence B ↓ � � f ↓ g fibred over C × B we 
may construct a 2-cell which displays � as an absolute right lifting of g through f . This 
result, Proposition 5.1.8 below, proceeds directly from the following technical lemma:

5.1.6. Lemma. For all natural transformations k: sq�,B ⇒ sqg,f there exists a unique 
2-cell λ of the form depicted in (5.0.2) such that k is equal to the natural transformation 
kλ defined by pasting a 2-cell in a triangle over � with λ to form a 2-cell in a square over 
f and g.

Proof. A 2-cell in the triangle (5.0.2) is simply an element of sqg,f (C, �), so we may 
construct our candidate 2-cell λ from the natural transformation k: sq�,B ⇒ sqg,f by 
applying it to the identity 2-cell in sq�,B(C, �); that is, we take λ := k(C,�)(id�).

Lemma 3.5.7 reveals that sq�,B is a representable functor whose universal element 
is the 2-cell φ ∈ sq�,B(p1, p0) of the weakly universal cone (5.1.1) displaying B ↓ �. So 
Yoneda’s lemma tells us that in order to show that our original natural transformation 
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k is equal to kλ it is enough to check that they both map φ to the same element of 
sqg,f (p1, p0).

To do this, first observe that the functor i: C → B ↓ � defined in Lemma 4.1.6 can be 
regarded as a morphism in (πg

0)∗(qCat2/(C × B)). Its defining property, that φi = id�, 
may then be re-expressed as the equality sq�,B(i)(φ) = id� relating id� ∈ sq�,B(C, �) and 
φ ∈ sq�,B(p1, p0). By naturality of k, this then allows us to obtain a similar relationship 
between the 2-cell λ and the image μ := k(p1,p0)(φ) of φ under k, as given by the fol-
lowing computation: sqg,f (i)(k(p1,p0)(φ)) = k(C,�)(sq�,B(i)(φ)) = k(C,�)(id�) = λ. By the 
definition of the map sqg,f (i), this relationship may be expressed as a pasting equality:

C
�

C

g

⇐λ B

f
A

=

C

i
�

B ↓ �
p1 p0

C

g

⇐μ B

f
A

(5.1.7)

By definition, kλ acts on φ by pasting it to the 2-cell λ as depicted in the diagram on 
the left hand side of the following computation:

B ↓ �
p1

p0C

�

⇐φ

C

g

⇐λ B

f
A

=

B ↓ �
p1

p0

C

i
�

B ↓ �
p1 p0

C

g

⇐μ B

f
A

⇐φ

=

B ↓ �
p1

p0

C

i

B ↓ �
p1 p0

C

g

⇐μ B

f
A

⇐ν

=

B ↓ �
p1 p0

C

g

⇐μ B

f
A

To elaborate, the first step in this calculation is simply an application of the equality 
given in (5.1.7). Its second step follows from the first of the defining properties of the unit 
ν: idB↓� ⇒ ip1 of the adjunction p1 � i of Lemma 4.1.6, those being that p0ν = φ and 
p1ν = idp1 . The third of these equalities follows on observing that the pasting depicted on 
its left is simply the horizontal composite of the 2-cells μ and ν, which may be expressed 
as the vertical composite qp1ν ·μ in which the second factor is an identity by the second 
defining property of ν.

In other words, this calculation demonstrates that kλ(p1,p0)(φ) = μ which is in turn 

equal to k(p1,p0)(φ), by definition. Consequently, Yoneda’s lemma tells us that k = kλ

as required. Finally, the fact that λ is the unique 2-cell with the property that k = kλ

follows immediately from the patent fact that λ = kλ (id�). �
(C,�)
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As an immediate corollary, we have the following important result:

5.1.8. Proposition. Suppose we are given functors f : B → A, g: C → A, and �: C → B of 
quasi-categories. Then the construction depicted in (5.1.2) provides us with a bijection 
between 2-cells of the form

⇓λ

B

f

C
g

�

A

(5.1.9)

and isomorphism classes of 1-cells

B ↓ �
(p1,p0)

w
f ↓ g

(q1,q0)
C ×B

(5.1.10)

in qCat2/(C ×B). Furthermore, this 2-cell λ displays � as an absolute right lifting of g
through f if and only if any representative w of the corresponding isomorphism class of 
functors is an equivalence.

Proof. Lemma 5.1.6 provides a canonical bijection between 2-cells (5.1.9) and natural 
transformations sq�,B ⇒ sqg,f . The proof of Proposition 5.1.3 establishes a canonical 
bijection between natural transformations sq�,B ⇒ sqg,f and isomorphism classes of 
1-cells (5.1.10). Proposition 5.1.3 then concludes that λ displays � as an absolute right 
lifting of g through f if and only if any representative w of the corresponding isomorphism 
class of functors is an equivalence. �

As a special case, if f ↓A and B ↓ u are equivalent over A ×B, then f is left adjoint 
to u.

Proof of Proposition 4.4.3. If f ↓ A and B ↓ u are equivalent over A × B, then Propo-
sition 5.1.8 provides us with a corresponding 2-cell ε: fu ⇒ idA, which displays u as an 
absolute right lifting of idA through f . By Example 5.0.4, this provides us with enough 
information to conclude that f is left adjoint to u with counit ε. �

A second characterisation of absolute right liftings in qCat2 relates them to the posses-
sion of terminal objects by the fibres of q1: f ↓ g ↠ C. To explain this relationship, start 
by applying Observation 3.5.1 to show that arbitrary pairs (�, λ) as depicted in (5.1.9)
correspond to isomorphism classes of functors
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C

(C,�)

t
f ↓ g

(q1,q0)
C ×B

over C ×B defined by 1-cell induction

C

t
�

f ↓ g
q0q1

C

g

⇐ψ B

f
A

=

C
�

C

g

⇐λ B

fA

(5.1.11)

The following proposition relates the universal properties of pairs (�, λ) and correspond-
ing functors t.

5.1.12. Proposition. The 2-cell λ shown in (5.1.9) displays � as an absolute right lifting 
of the functor g through f if and only if the induced functor t: C → f ↓ g of (5.1.11)
features in a fibred adjunction:

C
t

f ↓ g
q1

q1

C

⊥
(5.1.13)

that is, if and only if t defines a right adjoint right inverse to the isofibration q1.

Proof. First assume that the triangle in (5.1.9) is an absolute right lifting diagram and 
apply Proposition 5.1.3 to show that the associated functor w: B ↓ � → f ↓ g is a fibred 
equivalence with equivalence inverse w′. Applying Proposition 4.3.2 in qCat2/(C × B)
and Corollary 4.5.3, this may be promoted to a fibred adjoint equivalence w′ � w over 
C ×B. Its pushforward along the projection C×B ↠ C is an adjoint equivalence fibred 
over C.

Example 4.5.4 provides us with an adjunction p1 � i: C → B ↓ � also fibred over 
C. Composing these, we obtain an adjunction p1w

′ � wi: C → f ↓ g again fibred over 
C. From the defining properties of w and i, as described in (5.1.2) and (4.1.7), it is 
clear that wi is a 1-cell induced over ψ by the comma cone λ, and so we may infer, by 
Observation 3.5.1, that it is isomorphic to t over C. Furthermore, w′ is fibred over C×B

so p1w
′ = q1, and the fibred adjunction p1w

′ � wi reduces to a fibred adjunction q1 � t

as required.
For the converse, assume that we have a fibred adjunction of the form given in (5.1.13). 

We must show that for any 2-cell μ
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Y
b

c

B

f

C

⇓μ

g
A

=
Y

b

c

B

f

C

�

g
A

⇓∃!τ
⇓λ

(5.1.14)

there exits a unique 2-cell τ which makes this pasting equation hold.
To do this, start by applying the 1-cell induction property of f ↓ g to the comma cone 

μ to give a functor m: Y → f ↓ g so that

Y

m
c b

f ↓ g
q0q1

C

g

⇐ψ B

fA

=

Y
c b

C

g

⇐μ B

fA

(5.1.15)

A 2-cell τ : b ⇒ �c satisfying (5.1.14) gives rise to a 2-cell ν from m: Y → f ↓ g to the 
composite functor tc: Y → f ↓ g over C by 2-cell induction: notice that the fact that we 
require ν to be a 2-cell over C means that the equation q1ν = idp1 must hold, which tells 
us that the second 2-cell of its inducing pair must be idp1 . The compatibility condition 
expressed in (3.3.26) for the pair (τ, idp1) reduces to the pasting equality (5.1.14) by 
direct application of the defining properties for m and t given in (5.1.15) and (5.1.11). 
Conversely, if ν: m ⇒ tc is any 2-cell over C then the whiskered 2-cell τ := q0ν: b ⇒ �c

satisfies (5.1.14).
Extending Definition 3.4.1, the map c defines a 2-functor hom′

C(c, −): qCat2/C →
Cat2. As in Observation 4.5.7, this 2-functor carries the postulated fibred adjunction 
q1 � t to a terminal object tc: Y → f ↓ g in the hom-category hom′

C(c, q1). It follows 
that there exists a unique 2-cell ν: m ⇒ tc over C; hence, the 2-cell q0ν: b ⇒ �c provides 
us with a solution to (5.1.14). Furthermore if τ : b ⇒ �c is any other 2-cell which solves 
that pasting equality then the 2-cell it induces must necessarily be the unique such 
ν: m ⇒ tc, and consequently we have the equality τ = q0ν. This demonstrates that the 
solution to (5.1.14) is unique. �
5.1.16. Observation. The upshot of Proposition 5.1.12 is that if the projection q1: f ↓g ↠
C has a fibred right adjoint (5.1.13), then we may compose it with the weakly universal 
cone associated with f ↓ g to obtain an absolute right lifting of g through f .

This characterisation of absolute right liftings leads to the following generalisation of 
a classical result:
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5.1.17. Proposition. There exists an absolute right lifting

⇓λ

B

f

C
g

�

A

(5.1.18)

if and only if there exists an absolute right lifting

⇓λ̂

f ↓A
p1

C
g

�̂

A

(5.1.19)

Furthermore, the 2-cell λ̂ is necessarily an isomorphism and �̂ may be chosen so as to 
make it an identity.

Proof. Write (r1, r0): p1 ↓ g ↠ C × f ↓ A for the projection defined by the comma 
quasi-category construction Definition 3.3.15. Directly from this definition, there exists 
a canonical isomorphism p1 ↓ g ∼= A ↓ g ×A f ↓ A commuting with the projections to 
C × f ↓A. Applying Proposition 5.1.12, our aim is to use a fibred right adjoint to q1 to 
construct a fibred right adjoint to r1 and vice versa.

C
t

f ↓ g
q1

q1

C

⊥ C p1 ↓ g

r1

r1

C

⊥
(5.1.20)

To that end, pull back the “composition–identity” fibred adjunctions (4.5.9) along the 
functor g × p1: C × f ↓A → A ×A to obtain a pair of adjunctions

p1 ↓ g ∼= A ↓ g ×A f ↓A m f ↓ g
i1

i0

⊥

⊥
(5.1.21)

fibred over C×f ↓A. Pushing forward along the projection C×f ↓A ↠ C, we may regard 
the adjunctions (5.1.21) as fibred over C with respect to the isofibrations r1: p1 ↓ g ↠ C

and q1: f ↓ g ↠ C.
With this adjunction in our armoury our result is essentially immediate. If we are 

given the left-hand fibred adjunction (5.1.20) witnessing the existence of the absolute 
right lifting of g through f then we may compose it with the lower fibred adjunction 
of (5.1.21) to obtain the right-hand fibred adjunction (5.1.20), providing us with an 
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absolute right lifting of g through p1. Conversely, we may go back in the other direction by 
composing the right-hand fibred adjunction with the upper fibred adjunction of (5.1.21)
to obtain an adjunction of the type on the left of (5.1.20).

All that remains is to check the final clause of the proposition. To that end, Obser-
vation 5.1.16 tells us that we may construct an absolute right lifting of g through p1 by 
composing the right adjoint functor

C
t

f ↓ g
i1

p1 ↓ g

where t is the fibred right adjoint of (5.1.20), with the comma cone that displays p1 ↓ g
as a weak comma object. By construction, the 2-cell of that cone is the restriction

p1 ↓ g A ↓ g A2 ⇓

p0

p1

A

of the 2-cell which displays A2 as a weak cotensor. Hence, the 2-cell λ̂ constructed by 
Proposition 5.1.12 is equal to

C
t

f ↓ g A2
i1

A2 ×A A2
π1

A2 ⇓

p0

p1

A

and, consulting the definition of i1 given in Example 4.5.8, it is straightforward to ver-
ify that the composite of the last three cells above is equal to the identity 2-cell on 
p1:A2

↠ A. Consequently, the 2-cell in our absolute right lifting is also an identity as 
required. �
5.2. Limits and colimits as absolute lifting diagrams

A diagram in a quasi-category A is just a map d: X → A of simplicial sets. In partic-
ular, when X is the nerve of a small category and A is the homotopy coherent nerve of 
a locally Kan simplicial category, a diagram is precisely a homotopy coherent diagram in 
the sense of Cordier, Porter, Vogt, and others [4].

5.2.1. Notation. From here on we use c: A → AX to denote the constant diagram map: 
the adjoint transpose of the projection map πA: A × X → A. Furthermore, we shall 
notationally identify functors f : X → A and natural transformations α: f ⇒ g: X → A

with their adjoint transposes f : Δ0 → AX and α: f ⇒ g: Δ1 → AX respectively.
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5.2.2. Definition. We say that an absolute right lifting diagram

⇓λ

A

c

Δ0

�

d
AX

(5.2.3)

displays the vertex � ∈ A as the limit of the diagram d: X → A. The 2-cell λ, which we 
may equally regard as going from the constant diagram X !−→ Δ0 �−→ A to d, is called 
the limiting cone. Dually, we say that an absolute left lifting diagram

⇑λ

A

c

Δ0

�

d
AX

(5.2.4)

displays the vertex � ∈ A as the colimit of the diagram d: X → A. Here again the 2-cell 
λ, from d to the constant diagram X !−→ Δ0 �−→ A, is called the colimiting cone.

5.2.5. Remark. For the most part in what follows, we shall present our results in terms of 
limits and absolute right liftings only. Of course, these arguments all admit the obvious 
duals which apply to colimits and absolute left liftings. Indeed the results of this section 
and the last are almost exclusively matters of formal 2-category theory. Their duals follow 
by re-interpreting these arguments in the dual 2-category qCatco2 obtained by reversing 
the direction of all 2-cells.

A special case of Proposition 5.1.12 gives an alternative definition of limits and colimits 
in a quasi-category.

5.2.6. Proposition. A limit of d: X → A is a terminal object in the quasi-category c ↓ d, 
and conversely a terminal object defines a limit.

Proof. A limiting cone defines a vertex in the comma quasi-category c ↓d by 1-cell induc-
tion; Lemma 3.3.27 and Proposition 5.1.12 tell us this vertex is unique up to isomorphism 
and terminal. Conversely, Proposition 5.1.12 implies that the data of a terminal object in 
c ↓d defines a limit object � ∈ A and a limiting cone λ in the sense of Definition 5.2.2. �

An important corollary of Proposition 5.2.6 is that our definition of limit agrees with 
the existing ones in the literature. As discussed in Section 2.4 and seen already in the 
proof of Proposition 4.4.7, this proof makes use of an equivalence between Joyal’s slice 
construction and our comma construction. In this case we show that the quasi-category 
of cones c ↓ d over a diagram d: X → A is equivalent to Joyal’s quasi-category of cones 
A/d, recalled in Definition 2.4.2.
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5.2.7. Lemma. For any diagram d: X → A in a quasi-category A, there is an equivalence

A/d
�

π

c ↓ d

q0

A

of quasi-categories over A.

Proof. As in the proof of Lemma 4.4.6, we will demonstrate an isomorphism c ↓d ∼= A//d

over A between the quasi-category of cones and the fat slice construction on d: X → A

defined in Definition 2.4.7. Via this isomorphism, the equivalence A/d � c ↓d is a special 
case of the equivalence of Proposition 2.4.13.

To establish the isomorphism, it suffices to show that c ↓ d has the universal property 
that defines A//d. By adjunction, a map Y → A//d corresponds to a commutative square, 
as displayed on the left:

(Y ×X) � (Y ×X)
πY �πX

Y �X

〈f,d〉

Y × Δ1 ×X
k

A

�

Y
k

(!,f)

(AX)Δ1

Δ0 ×A
d×c

AX ×AX

which transposes to the commutative square displayed on the right. The data of the 
right-hand square is precisely that of a map Y → c ↓ d by the universal property of the 
pullback Definition 3.3.15 defining the comma quasi-category. �

Joyal defines a limit of a diagram d: X → A to be a terminal vertex t in the slice 
quasi-category A/d, thought of as the “quasi-category of cones” over d. If π: A/d ↠ A

denotes the canonical projection then such a limiting cone displays � :=πt as a limit of d.

5.2.8. Proposition. The notion of limit and limit cone introduced in Definition 5.2.2 is 
equivalent to the notion of limit and limit cone introduced by Joyal in [9, 4.5].

Proof. By Proposition 5.2.6 tells us that our definition can be recast in a corresponding 
form: as a terminal vertex t in the comma quasi-category c ↓ d. Our “quasi-category of 
cones” is equipped with a projection q0: c ↓ d → A, and by Proposition 5.1.12 such a 
limiting cone displays � := q0t as a limit of d.

Lemma 5.2.7 supplies an equivalence over A between the quasi-category of cones and 
Joyal’s slice quasi-category A/d. Applying Proposition 4.3.4, our preservation result for 
terminal objects, we see that this equivalence maps a limit cone in Joyal’s sense to a 
limit cone in our sense and vice versa. Furthermore, since this is an equivalence over A, 
it follows that these corresponding cones display the same vertex � as the limit of d. �
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5.2.9. Definition. A family k of diagrams of shape X in a quasi-category A is simply 
a functor k: K → AX . In many cases, K will be the full sub-quasi-category of AX

determined by some set of diagrams and k will be the inclusion K ↪→ AX .
We say that A admits limits of the family of diagrams k: K → AX if there exists an 

absolute right lifting diagram:

⇓λ

A

c

K

lim

k
AX

(5.2.10)

Furthermore, we shall simply say that A admits all limits of shape X if it admits limits 
of the family of all diagrams AX .

A diagram d: X → A is said to be a member of the family k if it is a vertex in the 
image of k, that is to say if there is a vertex d̄ ∈ K such that d = kd̄. It is trivially 
verified, directly from the universal property of absolute right liftings, that if A admits 
limits of the family of diagrams k and d is a member of the family k then the restricted 
triangle

⇓λd̄

A

c

Δ0

lim d̄

d
AX

is again an absolute right lifting, thus providing us with a limit of individual diagram d. 
Our use of the adjective “absolute” here coincides with its usual meaning: absolute lifting 
diagrams are preserved by pre-composition by all functors.

This result has the following converse, whose proof we delay to Section 6:

5.2.11. Proposition. If A admits the limit of each individual diagram d: X → A in the 
family k: K → AX then it admits limits of the family of diagrams k.

As a special case of Example 5.0.4:

5.2.12. Proposition. A quasi-category A has all limits of shape X if and only if there 
exists an adjunction

AX

lim

⊥ A

c
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A key advantage of our 2-categorical definition of (co)limits in any quasi-category is 
that it permits us to use standard 2-categorical arguments to give easy proofs of the 
expected categorical theorems.

5.2.13. Proposition. Right adjoints preserve limits.

Our proof will closely follow the classical one. Given a diagram d: X → A and a 
right adjoint u: A → B to some functor f , a cone with summit b over ud transposes to 
a cone with summit fb over d, which factorises uniquely through the limit cone. This 
factorisation transposes back across the adjunction to show that the image of the limit 
cone under u defines a limit over ud.

Proof. Suppose that A admits limits of a family of diagrams k: K → AX as witnessed 
by an absolute right lifting diagram (5.2.10). Given an adjunction f � u, and hence by 
Proposition 4.3.3 an adjunction fX � uX , we must show that

⇓λ

A

c

u
B

c

K

lim

k
AX

uX
BX

is an absolute right lifting diagram. Given a square

Y

a

b

⇓χ

B

c

K
k

AX

uX
BX

we first transpose across the adjunction, by composing with f and the counit.

Y

a

b

⇓χ

B

c

f
A

c

K
k

AX

⇓εX
uX

BX
fX

AX

=

Y
∃!⇓ζ

⇓λ
a

b
B

f
A

c

K
lim

k
AX

Applying the universal property of the absolute right lifting diagram (5.2.10) produces a 
factorisation ζ, which may then be transposed back across the adjunction by composing 
with u and the unit.
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Y
∃!⇓ζ

⇓λ
a

b
B

⇓η
f A

c

u
B

c

K
lim

k
AX

uX
BX

=

Y

a

b

⇓χ

B

c

⇓η

f
A

c

u
B

c

K
k

AX

⇓εX
uX

BX
fX

AX

uX
BX

=

Y

a

b

⇓χ

B

c

B

c

K
k

AX

⇓εX
uX

BX
fX

⇓ηX

AX

uX
BX

=

Y

a

b

⇓χ

B

c

K
k

AX

uX
BX

Here the second equality is immediate from the definition of ηX and the third is by the 
triangle identity defining the adjunction fX � uX . The pasted composite of ζ and η is 
the desired factorisation of χ through λ.

The proof that this factorisation is unique, which again parallels the classical argu-
ment, is left to the reader: the essential point is that the transposes are unique. �
5.2.14. Corollary. Equivalences preserve limits and colimits.

Proof. This follows immediately from Propositions 5.2.13 and 4.3.2. �
5.2.15. Observation. Under the 2-adjunction − × Y � (−)Y triangles of the form

B

f

K × Y

�

k
A

⇓λ (5.2.16)

correspond to transposed diagrams:

BY

fY

K

�̂

k̂
AY

⇓λ̂ (5.2.17)

Furthermore, if the first of these triangles is an absolute right lifting then so is the second 
one. To prove this, we must show that we can uniquely factorise the 2-cell in a square

Z

u

v

⇓α

BY

fY

K
k̂

AY
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through the 2-cell λ̂ in (5.2.17). Transposing that square under the 2-adjunction, we 
obtain the square on the left of the following diagram:

Z × Y

ũ

ṽ

⇓α̃

B

f

K × Y
k

A

=

Z × Y

ũ

ṽ

∃!⇓

⇓λ

B

f

K × Y
k

�

A

The unique factorisation on the right arises from the universal property of the absolute 
lifting diagram (5.2.16), and its transpose provides the desired unique factorisation of α.

5.2.18. Proposition (Pointwise limits in functor quasi-categories). If a quasi-category 
A admits limits of the family of diagrams k: K → AX of shape X then the functor 
quasi-category AY admits limits of the corresponding family of diagrams kY : KY →
(AX)Y ∼= (AY )X of shape X.

Proof. On precomposing the absolute right lifting that displays the limits of the family 
k: K → AX (5.2.10) by the evaluation map ev: KY × Y → K, we obtain an absolute 
right lifting diagram whose adjoint transpose under the 2-adjunction −× Y � (−)Y is 
the triangle

⇓λY

AY

cY

KY

limY

kY
(AX)Y

By the last observation, this is again an absolute right lifting diagram which, on compo-
sition with the canonical isomorphism (AX)Y ∼= (AY )X , displays limY as the family of 
limits required in the statement. �

Proposition 5.2.12 tells us that if A has all limits of shape X, then there is a functor 
lim: AX → A that is right adjoint to the constant functor c: A → AX . In ordinary 
category theory we often deploy another adjunction related to the existence of limits of 
shape X, this being the restriction—right Kan extension adjunction between diagrams 
of shape X and diagrams whose shape is that of a cone over X.

The shape of a cone over a diagram of shape X is given by the simplicial set Δ0 
X, 
defined using Joyal’s join construction of Definition 2.4.1.

5.2.19. Proposition. A quasi-category A admits limits of the family of diagrams k: K →
AX of shape X if and only if there exists an absolute right lifting diagram
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AΔ0�X

res

K

ran

k
AX

⇓λ

in which res is the restriction isofibration given by pre-composition with the inclusion 
X ↪→ Δ0 
 X. Furthermore, when these equivalent conditions hold λ is necessarily an 
isomorphism and, indeed, we may choose ran so that λ is an identity.

Proof. By Proposition 2.4.11, the canonical comparison Δ0 � X → Δ0 
 X is a weak 
equivalence in Joyal’s model structure. So if A is a quasi-category, it follows, by Propo-
sition 3.2.10, that the associated pre-composition functor AΔ0�X → AΔ0�X is an equiva-
lence of quasi-categories. Now the contravariant exponential functor A(−): sSetop → qCat
carries colimits to limits so it is immediate, from Definition 2.4.5, that we have a pullback

AΔ0�X AX×Δ1

A×AX ∼= AΔ0�X AX�X ∼= AX ×AX

from which we see that AΔ0�X is isomorphic to the comma quasi-category c ↓AX . It is 
now easily checked that a triangle of the form given in the statement is an absolute right 
lifting if and only if the following rearranged triangle

c ↓AX

p1

K

ran

k
AX

⇓λ
:=

AΔ0�X

res

∼
c ↓AX

p1

K

ran

k
AX

⇓λ

has that property; now the current result is merely a special case of Proposi-
tion 5.1.17. �
5.2.20. Corollary. A quasi-category A admits all limits of shape X if and only if the 
restriction functor associated with the inclusion X ↪→ Δ0 
 X has a fibred right adjoint

AX

ran
⊥ AΔ0�X

res

res
AX
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Proof. Since the restriction functor AΔ0�X
↠ AX is an isofibration, we may follow 

Example 4.5.5 and pick its right adjoint so that the counit of the adjunction res � ran is 
an identity. By Corollary 4.5.3, this adjunction lifts to an adjunction fibred over AX . �

As an application of some significant classical interest, we may use Proposition 5.2.19
to construct a loops–suspension adjunction in any pointed quasi-category admitting cer-
tain pullbacks and pushouts.

5.2.21. Definition (Pointed quasi-categories). A zero object in a quasi-category is an object 
in there that is both initial and terminal. We say that a quasi-category A is pointed if 
it has a zero object and write ∗ ∈ A for that object. We call the counit ρ: ∗! ⇒ idA of 
the adjunction ∗ � ! : A → Δ0 the family of points of the objects of A and call the unit 
ξ: idA ⇒ ∗! of the adjunction ! � ∗ : A → Δ0 the family of co-points of the objects of A.

5.2.22. Notation (Pushout and pullback diagrams). We shall adopt the following notation 
for certain important diagram shapes which arise naturally as simplicial subsets of the 
square Δ1 × Δ1:

• ⌟ will denote the simplicial subset (Δ1 × Δ{1}) ∪ (Δ{1} × Δ1), and
• ⌜ will denote the simplicial subset (Δ1 × Δ{0}) ∪ (Δ{0} × Δ1).

Of course, ⌟ and ⌜ are the shapes of pullback and pushout diagrams, isomorphic to the 
horns Λ2,2 and Λ2,0 respectively. The joins Δ0 
 ⌟ and ⌜ 
 Δ0 are each isomorphic to 
the square Δ1 ×Δ1. These isomorphisms identify the canonical inclusions of those joins 
with the corresponding subset inclusions ⌟ ↪→ Δ1 × Δ1 and ⌜ ↪→ Δ1 × Δ1 respectively.

5.2.23. Definition (Pushouts and pullbacks in quasi-categories). A pullback in a quasi-
category is a limit of a diagram of shape ⌟. Dually a pushout in a quasi-category is a 
colimit of a diagram of shape ⌜.

5.2.24. Observation. The family of points of a pointed quasi-category A may be rep-
resented by a simplicial map ρ: A → A2. Now the pullback diagram shape ⌟ may be 
represented as a glueing of two copies of 2 identified at their initial vertex, so it fol-
lows that A⌟ may be constructed as a pullback of two copies of A2 along the projection 
p1: A2

↠ A. Consequently, two copies of ρ give rise to a functor ρ̄: A → A⌟. This functor 
maps each object a of A to a pushout diagram with outer vertices ∗, inner vertex a, 
and maps two copies of the component of ρ at a. Dually we may define a corresponding 
functor ξ̄: A → A⌜ using two copies of the family of co-points.

5.2.25. Definition (Loop spaces and suspensions). We say that a pointed quasi-category 
A admits the construction of loop spaces if it admits limits of the family of diagrams 
ρ̄: A → A⌟. Dually, we say that A admits the construction of suspensions if it admits 
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colimits of the family of diagrams ξ̄: A → A⌜. These constructions, when they exist, are 
displayed by absolute right and left liftings

⇓

A

c

A

Ω

ρ̄
A⌟

⇑

A

c

A

Σ

ξ̄
A⌜

in which Ω is called the loop space functor and Σ is called the suspension functor. Of 
course, if A admits all pullbacks (resp. pushouts) then, as a special case, it admits the 
construction of loop spaces (resp. suspensions).

5.2.26. Example. In the quasi-category of spaces, which we construct by applying the ho-
motopy coherent nerve to the simplicially enriched category of Kan complexes, pushouts 
and pullbacks are constructed by taking classical homotopy pushouts and pullbacks. The 
quasi-category of pointed spaces is simply the slice under Δ0 and its pushouts and pull-
backs may be computed as in the quasi-category of spaces. It follows, therefore, that the 
loop space and suspension constructions in this quasi-category coincide with the usual 
notions in classical homotopy theory.

The following proposition promotes our classical intuition about the relationship be-
tween loop and suspension constructions to a genuine adjunction of quasi-categories. 
To keep our proof as simple and transparent as possible, we choose to assume that 
the quasi-category here admits all pushouts and pullbacks, leaving it to the reader to 
generalise this result to one in which we only assume the existence of loop spaces and 
suspensions.

5.2.27. Proposition. Suppose that A is a pointed quasi-category which admits all pushouts 
and pullbacks. Then A has a loops–suspension adjunction

A
Ω

⊥ A

Σ

Proof. By Corollary 5.2.20 and the ruminations of Notation 5.2.22, the hypothesis that 
A has pullbacks and pushouts implies that there are adjunctions

A⌟

ran
⊥
res

AΔ1×Δ1
A⌜

lan

res
⊥ (5.2.28)

which are fibred over A⌟ and A⌜, respectively. Now the inclusion of Δ0�Δ0 into Δ1×Δ1

which picks out the vertices (1, 0) and (0, 1) factorises through each of the subsets ⌟
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and ⌜ and therefore induces restriction isofibrations A⌟ ↠ A × A and A⌜ ↠ A × A. 
So we may push forward our fibred adjunctions along these isofibrations to obtain a 
composable pair of adjunctions fibred over A × A. Composing these and pulling back 
along (∗, ∗): Δ0 → A ×A, we obtain an adjunction

A⌟∗
Ω

⊥ A⌜∗

Σ

(5.2.29)

where A⌟∗ ⊆ A⌟ and A⌜∗ ⊆ A⌜ are the sub-quasi-categories of pullback and pushout 
diagrams whose outer vertices are pinned at the zero object ∗.

The family of points ρ: A → A2 discussed in Observation 5.2.24 factorises through the 
sub-quasi-category ∗ ↓ A ⊆ A2; hence, the family of diagrams ρ̄: A → A⌟ for the loop 
space construction also factorises through A⌟∗ ⊆ A⌟. Furthermore, it is clear that the 
pullback expressing A⌟ in terms of two copies of A2 restricts to the pullback expressing 
A⌟∗ in terms of two copies of ∗ ↓A in the following diagram:

A

ρ̄

ρ

ρ
A⌟∗ ∗ ↓A

p1

∗ ↓A
p1

A

We claim that each functor in this diagram is an equivalence. To show this start 
by observing that the initiality of ∗ in A implies that the isofibration p1 is an equiva-
lence, as is its right inverse ρ by the 2-of-3 property. Trivial fibrations are stable under 
pullback, so the two projections from A⌟∗ are equivalences, as is ρ̄ by the 2-of-3 prop-
erty. Observe also that the functor which restricts each pullback diagram to its inner 
vertex is an isofibration left inverse to ρ̄ and so, by the 2-of-3 property, it too is an 
equivalence. The dual argument shows that the family of diagrams ξ̄: A → A⌜ for the sus-
pension construction also factorises through A⌜∗ ⊆ A⌜ to give an equivalence ξ̄: A → A⌜∗
with left inverse the isofibration that restricts each pullback diagram to its inner ver-
tex.

Now we may promote the equivalences ρ̄ and ξ̄ to adjoint equivalences and compose 
them with the adjunction (5.2.29). The right adjoint in this composite adjunction is equal 
to the composite A ρ̄−→ A⌟ ran−−−→ AΔ1×Δ1 res−−→ A in which the last map is the restriction 
functor associated with the inclusion of Δ0 as the vertex (0, 0) of Δ1×Δ1. The composite 
of these last two functors is the pullback functor lim: A⌟ → A, so pre-composing it with 
ρ̄: A → A⌟ produces a functor which picks out limits of the diagrams in the family ρ̄. This 
must therefore be isomorphic to the loop space functor Ω by Definition 5.2.25. A dual 
argument demonstrates that the left adjoint in the composite adjunction is isomorphic 
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to the suspension functor Σ, thus completing the verification that the adjunction we 
have constructed is the one asked for in the statement. �
5.3. Geometric realisations of simplicial objects

A classical result from simplicial homotopy theory states that if a simplicial object 
admits an augmentation together with a splitting, also called a contracting homotopy 
or simply “extra degeneracies”, then the augmentation is homotopy equivalent to its 
geometric realisation. More precisely, the augmented simplicial object, a diagram of 
shape Δop

+ , defines a colimit cone over the restriction of this diagram to Δop.
In this section, we import these ideas into the quasi-categorical context, proving that 

if a simplicial object in a quasi-category admits an augmentation and a splitting then 
the augmentation is its quasi-categorical colimit. Again, the result is not new (cf. [15, 
6.1.3.16]), but our proof closely mirrors the classical one (see, e.g., [18]). Specifically, we 
show that the structure of the contracting homotopies define an absolute left extension 
diagram in Cat. Furthermore, this universal property is witnessed equationally and so 
is preserved by any 2-functor. Dual remarks apply to cosimplicial objects admitting a 
coaugmentation and a splitting.

The first step is to describe the shape of a split simplicial object. There are two choices, 
distinguished by whether we choose a “forwards” or “backwards” contracting homotopy. 
The corresponding categories are opposites. Let Δ∞ and Δ−∞ denote the subcategories 
of Δ consisting of those maps that preserve the top or bottom element respectively in 
each ordinal. There is an inclusion [0] ⊕ −: Δ+ ↪→ Δ−∞ which freely adjoins a bottom 
element. Note the degree shift: this functor sends the initial object [−1] ∈ Δ+ to the zero 
object [0] ∈ Δ−∞.

A simplicial object is augmented if it admits an extension to Δop
+ and split if it admits 

a further extension to Δ∞ ∼= Δop
−∞. Evaluating at [0] ∈ Δ∞ yields the augmentation. 

Restriction along the inclusion Δop ↪→ Δop
+ ↪→ Δ∞ yields the original diagram. We will 

prove:

5.3.1. Theorem. For any quasi-category B, the canonical diagram

⇑

B

c

BΔ∞

ev0

res BΔop

is an absolute left lifting diagram. Hence, given any simplicial object admitting an aug-
mentation and a splitting, the augmented simplicial object defines a colimit cone over 
the original simplicial object. Furthermore, such colimits are preserved by any functor.

Our proof uses a 2-categorical lemma.
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5.3.2. Lemma. Suppose given an adjunction in a slice 2-category C/C

C

b
⊥ a

B

c

f

⊥ A
u

If b admits a left adjoint c in C with unit ι, then the 2-cell fι: f ⇒ fbc = ac exhibits c
as an absolute left lifting of f through a.

Proof. Let ν be the counit of c � b, and write η and ε for the unit and counit of the 
adjunction f � u; because this adjunction is under C we have εa = ida and ηb = idb. 
Any 2-cell χ of the form displayed below factorises through fι as follows

X

x

y

⇑χ

C

a =

X

x

y

⇑χ

C

a =

X

⇑χx

y
C

a

a

b

A

=

X

x

y

⇑χ

C

a
b ⇑ν

C

a

B
f

A B
f

A

u
⇑η

B
f

⇑η
A

u
B

f

B
f

⇑η
A

u
B

c

f
A

⇑fι

B
f

⇑ε
A

using a triangle identity for each adjunction and the fact that εa = ida. Such factori-
sations are unique because the 2-cell ζ can be recovered from the pasted composite 
with fι:

X

x

y

⇑ζ

⇑fι

C

a
b⇑ν

C

B

c

f

⇑η

A
u

B

c

=

X

x

y

⇑ζ

⇑ι

C

b a
b

C

⇑ν

B

c

B
f ⇑η

A
u

B

c

= X

x

y

⇑ζ

⇑ι

C

b

⇑ν

C

B

c

B

c

=

X

x

y

⇑ζ

C

B

c

�
Proof of Theorem 5.3.1. The inclusion Δop ↪→ Δ∞ admits a left adjoint. One way to 
define it is to present Δop via the “interval representation”: after employing a degree 
shift [n] �→ [n + 1], Δop is the subcategory of Δ+ consisting of ordinals with distinct top 
and bottom elements and maps that preserve these. Most generally, we might think of 
the interval representation as the diagonal composite functor in the pullback diagram
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Δop
+ Δ∞

Δ−∞ Δ+

The arrows Δ−∞ ← Δop
+ → Δ∞ extend the category indexing augmented simplicial 

objects by introducing extra maps that define “extra degeneracies” either on the left or 
on the right. The restricted functor Δop → Δ∞ is the inclusion described above. It has 
a left adjoint: a map α: [k] → [n + 1] in Δ∞ is given by a map [n] → [k] in Δ that sends 
i ∈ [n], thought of as a “gap” between adjacent elements in [n +1], to the minimal j ∈ [k]
so that α(j) = i + 1.

For any quasi-category B, the 2-functor B(−): Catop2 → qCat2 carries the adjoint 
functors

1

[0]

Δ∞ ⊥

!
⊥

Δop

!

to an adjunction in the slice 2-category B/qCat2

B

c

c

BΔ∞
res
⊥

ev0

⊥

BΔop

The 2-cell defined by whiskering res with the unit of ev0 � c is the 2-cell res ⇒ c · ev0
obtained by applying the 2-functor B− to the unique 2-cell

Δop

!

⇓

Δ∞

1
[0]

that exists because [0] ∈ Δ∞ is terminal. The result now follows from Lemma 5.3.2.
It remains only to prove the last statement. Given any functor f : B → A, the diagrams

⇑

B

c

f
A

c

BΔ∞

ev0

res BΔop

fΔop
AΔop

= ⇑

B

c

BΔ∞

fΔ∞
AΔ∞

ev0

res AΔop
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coincide by bifunctoriality of the internal hom 2-functor in qCat2. In particular, the 
left-hand side inherits the universal property of the right-hand side. �
5.3.3. Example. Theorem 5.3.1 can be used to prove that any object in the quasi-category 
of algebras associated to a coherent monad is a homotopy colimit of a canonical simplicial 
object of free algebras. See [24] and [25].

6. Pointwise universal properties

We have seen that limits and adjunctions can be encoded as absolute lifting diagrams 
in qCat2. In this section, we prove a theorem that allows such diagrams to be identified 
in practice: we show that absolute left or right lifting diagrams can be defined “point-
wise” by specifying initial or terminal objects, respectively, in the appropriate comma or 
slice quasi-categories; the definition of Joyal’s slice quasi-categories is recalled in Defini-
tion 2.4.2.

We conclude by proving a corollary of this result: that simplicial Quillen adjunctions 
between simplicial model categories are adjunctions of quasi-categories. Adjunctions in 
homotopical contexts are commonly presented as Quillen adjunctions, which can be 
replaced by adjunctions of this type in good set-theoretical cases [22]. This result implies 
that such adjunctions can be imported into the quasi-categorical context.

6.1. Pointwise absolute lifting

Immediately from Definition 5.2.9, absolute lifting diagrams are preserved by pre-
composition by all functors and, in particular, under evaluation at a vertex in the domain 
quasi-category.

6.1.1. Definition (Pointwise universal property of absoluting lifting diagrams). If the left-
hand diagram

⇓λ

B

f

C
g

�

A

� ⇓λc

B

f

Δ0
gc

�c

A

(6.1.2)

is an absolute lifting diagram and c is an object of C then pre-composition by the functor 
c: Δ0 → C gives a 2-cell λc: f�c ⇒ gc which displays �c: Δ0 → B as an absolute right 
lifting of gc: Δ0 → A through f : B → A. The family of absolute lifting diagrams as 
displayed on the right encode the pointwise universal property of the absolute lifting 
diagram displayed on the left.

A special case of Proposition 5.1.12 provides an alternate characterisation of a point-
wise absolute lifting property:
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6.1.3. Lemma. Given functors g: C → A and f : B → A the data of a pointwise absolute 
right lifting diagram at a vertex c ∈ C is equally the data of a terminal object in the 
comma or slice quasi-categories f ↓ gc � f/gc.

Lemma 4.4.6 supplies an equivalence f ↓ gc � f/gc along which we may transport 
terminal objects. Lemma 6.1.3 demonstrates that if g admits an absolute right lifting 
through f , then f ↓ gc � f/gc has a terminal object, for each vertex c in the domain of g. 
In fact, these terminal objects suffice to demonstrate the existence of an absolute right 
lifting:

6.1.4. Theorem. The functor g: C → A admits an absolute right lifting through the functor 
f : B → A if and only if for all objects c of C the quasi-category f ↓ gc � f/gc has a 
terminal object.

Proof of Theorem 6.1.4. Suppose each f/gc has a terminal object λc: fb → gc, i.e., 
suppose we can fill any sphere ∂Δn → f/gc with n ≥ 1 whose final vertex is λc. Unpacking 
the definition, we have assumed that we can solve any lifting problem

∂Δn f/gc

Δn

�

∂Δn B
f

Λn+1,n+1 A

Δn

δn+1

Δn+1

(6.1.5)

in qCat2 for which the {n, n + 1} edge of the Λn+1,n+1-horn in A is λc.
It follows that we can solve any extension problem

∂Δn × Δ{0} B
f

∂Δn × Δ1 ∪ Δn × Δ{1} A

Δn × Δ{0}

Δn × Δ1

(6.1.6)

for which the image of the edge between the vertices (n, 0) and (n, 1) is λc: The filler is 
constructed by inductively choosing images for the shuffles of Δn×Δ1 starting from the 
filled end of the specified cylinder. The images for all but the last shuffle are defined by 
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filling the obvious inner horns in A. The final shuffle is attached by filling a Λn+1,n+1-horn 
in A precisely of the form (6.1.5).

We are interested in extension problems (6.1.6) where the n-simplex in A given as one 
end of the cylinder is in the image of some specified n-simplex of C under g; these are 
precisely the data specified by a lifting problem

Δ0
{n}

λc

∂Δn f ↓ g

q1

Δn C

(6.1.7)

in which case the extension of (6.1.6) provides a solution. We have just shown that any 
lifting problem (6.1.7) in which the final vertex of the sphere maps to a terminal object 
λc ∈ f/gc has a solution. By Lemma 4.4.12, this tells us that q1: f ↓g → C admits a right 
adjoint right inverse t: C → f ↓ g, which by Proposition 5.1.12 encodes the data of an 
absolute right lifting diagram, as displayed on the bottom right.

C

t
�

f ↓ g
q0q1

C

g

⇐ψ B

f
A

=

C
�

C

g

⇐λ B

fA

�

Theorem 6.1.4 provides a useful criterion for the existence of absolute lifting diagrams. 
The following corollary supplies the corresponding detection result, identifying when a 
candidate lifting diagram has the desired universal property. The lifting property implies 
that each of its fibres admit terminal objects, a definition that will be introduced in the 
next section.

6.1.8. Corollary. A triangle

⇓λ

B

f

C
g

�

A

displays � as an absolute right lifting of g through f if and only if it has that property 
pointwise.
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Proof. Necessity of the pointwise absolute lifting property of Definition 6.1.1 is immedi-
ate. Conversely, the assumed pointwise lifting tells us, in particular, that for each object 
c in C the slice quasi-category f ↓ gc � f/gc has a terminal object. Consequently, we 
may apply Theorem 6.1.4 to construct a functor �′: C → A and 2-cell λ′: f�′ ⇒ g which 
displays �′ as an absolute right lifting of g through f .

The universal property of (�′, λ′) applied to the triangle (�, λ) provides us with a 
unique 2-cell τ : � ⇒ �′ with the defining property that λ′ · fτ = λ. Now both of the 
2-cells λ and λ′ possess the pointwise lifting property, the first by assumption and the 
second by construction. In other words, for all objects c in C the 2-cell λc: f�c ⇒ gc

(respectively λ′c: f�′c ⇒ gc) displays �c (respectively �′c) as an absolute right lifting of 
gc through f for all objects c of C. Furthermore, the defining property of τ whiskers to 
tell us that λ′c · f(τc) = λc, so since λc and λ′c both possess the absolute right lifting 
property it follows that τc is an isomorphism. Applying Observation 3.2.3, we find that 
τ : � ⇒ �′ is an isomorphism and thus that the given triangle is isomorphic to the absolute 
right lifting that we constructed and is thus itself an absolute right lifting. �

Proposition 5.2.11, which states that a quasi-category admits limits of a family of 
diagrams of a fixed shape if and only if it admits limits of each individual diagram in 
the family, is a special case of Theorem 6.1.4.

Proof of Proposition 5.2.11. If A admits limits of each diagram in a family k: K → AX , 
then Proposition 5.2.8 implies that for each vertex d ∈ K, c/kd has a terminal object. 
By Theorem 6.1.4, it follows that k admits an absolute right lifting along c: A → AX , 
i.e., A admits limits of the family of diagrams k: K → AX . �
6.2. Simplicial Quillen adjunctions are adjunctions of quasi-categories

Now we use Theorem 6.1.4 to prove the assertions made in Example 4.0.4: namely 
that any simplicial Quillen adjunction between simplicial model categories descends to 
an adjunction of quasi-categories. Another proof of this result is given in [15, 5.2.4.6].

Recall that the quasi-category associated to a simplicial model category A is defined 
by restricting to the full simplicial subcategory Acf of fibrant–cofibrant objects and then 
applying the homotopy coherent nerve N : sSet-Cat → sSet.

6.2.1. Theorem. A simplicial Quillen adjunction

A
u

⊥ B
f

between simplicial model categories gives rise to an adjunction between the quasi-
categories NAcf and NBcf .
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Proof. We introduce a pair of simplicial categories coll(f, A) and coll(B, u), with B and 
A as full subcategories that are jointly surjective on objects. Declare the hom-spaces 
from a ∈ A to b ∈ B to be empty and define

coll(f,A)(b, a) := A(fb, a) coll(B, u)(b, a) := B(b, ua).

The simplicial adjunction f � u is encoded in the proposition that the simplicial cate-
gories coll(f, A) and coll(B, u) are isomorphic under B

∐
A.

Now write coll(f, A)cf ∼= coll(B, u)cf for the full simplicial sub-categories spanned by 
the fibrant–cofibrant objects of A and B. Via these restrictions, we obtain a diagram

Bcf ↪→ coll(f,A)cf ∼= coll(B, u)cf ←↩ Acf

of locally Kan simplicial categories. Applying the homotopy coherent nerve, we have a 
pair of isomorphic cospans in qCat2:

⇑ψ

NAcf

⇓β

NBcf

i

NBcf

f

N coll(f,A)cf NAcf

u

j
N coll(B, u)cf

Our objective is to define an absolute left lifting (f, ψ) and an absolute right lifting 
(u, β). Proposition 5.1.8 and its dual then provides a fibred equivalence

f ↓NAcf � NBcf ↓ u

over NAcf × NBcf , which by Proposition 4.4.3 implies that f � u : NAcf → NBcf is 
an adjunction of quasi-categories.

The arguments building the absolute right lifting diagram (u, β) and the absolute left 
lifting diagram (f, ψ) are entirely dual. Interpreting the statement of Theorem 6.1.4 in 
this context, we are asked to produce, for each fibrant–cofibrant object a ∈ A, a terminal 
object in i/ja, defined to be the pullback of the slice quasi-category (N coll(B, u)cf )/a
along the natural inclusion i: NBcf → N coll(B, u)cf . To that end, choose a cofibrant 
replacement q: t → ua in the model category B such that the map q is a trivial fibration. 
It follows that whenever b ∈ B is cofibrant, the natural map q∗: B(b, t) → B(b, ua) is a 
trivial fibration between Kan complexes. We claim that q is terminal in i/ja.

Let C denote the left adjoint to the homotopy coherent nerve. Unpacking the definition, 
an n-simplex in i/ja is
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Δn

δn+1

NBcf CΔn

δn+1

Bcf

i

Δn 
 Δ0 ∼= Δn+1 N coll(B, u)cf � CΔn+1 coll(B, u)cf

Δ{n+1}
a

1

last
a

The vertex q ∈ N coll(B, u)cf is terminal if and only if we can extend any diagram of 
simplicial functors

C∂Δn Bcf

CΛn+1,n+1 coll(B, u)cf

CΔn

δn+1

CΔn+1

(6.2.2)

in which the unique vertex in the hom-space between the objects n and n + 1 in the 
simplicial category CΛn+1,n+1 is mapped to q ∈ B(t, ua).

The simplicial categories CΛn+1,n+1 and CΔn+1 have objects 0, . . . , n + 1 and all but 
two of the same hom-spaces, the only exceptions being the hom-spaces from 0 to n
and to n + 1. We have CΔn+1(0, n) ∼= (Δ1)n−1 and CΔn+1(0, n + 1) ∼= (Δ1)n, while 
CΛn+1,n+1(0, n) ∼= ∂(Δ1)n−1 and CΛn+1,n+1(0, n + 1) is the open box B ↪→ (Δ1)n with 
the interior of the n-cube and one face removed [15, 1.1.5.10] and [23, 16.4.10]. In this 
way, writing b ∈ B for the image of the object 0, the extension problem (6.2.2) in the 
category of simplicial categories reduces to an extension problem

∂(Δ1)n−1 B(b, t)
q∗

∼

B

∼

B(b, ua)

(Δ1)n−1

(Δ1)n
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in the category of simplicial sets. For the reader’s convenience, we have used the standard 
decorations to mark cofibrations, fibrations, and weak equivalences in Quillen’s model 
structure on simplicial sets.

The extension (6.2.2) may be achieved by first extending along the map B ↪→ (Δ1)n in 
the Kan complex B(b, ua). This chooses an image under the map q∗ for the (n − 1)-cube 
missing from the box B. An (n − 1)-cube in B(b, t) with this image can be found by 
lifting the cofibration ∂(Δ1)n−1 ↪→ (Δ1)n−1 against the trivial fibration q∗. �
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