
TWO-SIDED DISCRETE FIBRATIONS
IN 2-CATEGORIES AND BICATEGORIES

EMILY RIEHL

Abstract. Fibrations over a category B, introduced to category theory by

Grothendieck, determine pseudo-functors Bop → Cat. A two-sided discrete
variation models functors Bop×A→ Set. By work of Street, both notions can

be defined internally to an arbitrary 2-category or bicategory. While the two-

sided discrete fibrations model profunctors internally to Cat, unexpectedly,
the dual two-sided codiscrete cofibrations are necessary to model V-profunctors

internally to V-Cat. There are many categorical prerequisites, particularly in

the later sections, but we believe they are strictly easier than the topics below
that take advantage of them. These notes were written to accompany a talk

given in the Algebraic Topology and Category Theory Proseminar in the fall

of 2010 at the University of Chicago.

1. Introduction

Fibrations were introduced to category theory in [Gro61, Gro95] and developed in
[Gra66]. Ross Street gave definitions of fibrations internal to an arbitrary 2-category
[Str74] and later bicategory [Str80]. For the case K = Cat, the 2-categorical
definitions agree with the classical ones, while the bicategorical definitions are more
general.

While these notes present fibrations in these contexts, the real goal is to define
two-sided discrete fibrations, which provide a model profunctors Bop × A → Set
in Cat and the dual two-sided codiscrete cofibrations, which model V-profunctors
Bop ⊗A → V in V-Cat.

In our attempt to cover a lot of material as expediently as possible, we give only
a few proofs but do provide thorough citations.

This theory has been extended to quasi-categories, a model for (∞, 1)-categories,
by André Joyal and Jacob Lurie. The Grothendieck construction, which is called
straightening in [Lur09], plays a particularly important role. A sequel to these
notes, which may or may not be written, would address this extension.

Comma categories. One categorical prerequisite is so important to merit a brief
review. Given a pair of functors B

f→ C
g← A (an opspan in Cat), the comma

category f/g has triples (b ∈ B, fb→ ga, a ∈ A) as objects and morphisms (b, fb→
ga, a) → (b′, fb′ → ga′, a′) given by a pair of arrows a → a′ ∈ A, b → b′ ∈ B such
that the obvious triangle commutes. This category is equipped with canonical
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projects to A and B as well as a 2-cell

f/g

c

��

d // B

f

��
A g

//

⇐

C

and is universal among such data. Equivalently, it is the limit of the opspan B
f→

C
g← A weighted by 1

d→ 2
c← 1, the inclusions of the terminal category as the

domain and codomain of the walking arrow.
Often, we are interested in comma categories in which either f or g is an identity

(in which case it is denoted by the name of the category) or in which either A or B
is terminal (in which case the functor is denoted by the object it identifies). Such
categories are sometimes called slice categories.

A few notes on terminology. What we call fibrations in Cat are sometimes
called categorical, Grothendieck, Cartesian, or right (and unfortunately also left)
fibrations. The left-handed version, now opfibrations, was originally called cofibra-
tions, though this name was rejected to avoid confusing topologists. Somewhat
unfortunately, as we shall see below, once fibrations have been defined internally
to a 2-category K, the opfibrations are precisely the fibrations in Kco (formed by
reversing the 2-cells only), while the cofibrations are precisely the fibrations in Kop

(formed by reversing the 1-cells only).

Acknowledgments. In addition to the cited sources, I learned about this material
from conversations with Dominic Verity and Mike Shulman, and also from Urs
Schreiber and the nLab, a wiki devoted to category theory and higher category
theory.

2. Fibrations in 1-category theory

Loosely, a fibration is a functor p : E → B such that the fibers Eb depend
contravariantly pseudo-functorially on the objects b ∈ B. Many categories are
naturally fibered in this way.

2.1. Discrete fibrations. We start with an easier variant.

Definition 2.1.1. A functor p : E → B is a discrete fibration if for each object
e ∈ E and arrow f : b′ → pe ∈ B, there exists a unique lift g : e′ → e.

Let DFib(B) denote the category of discrete fibrations over B, defined to be a
full subcategory of the comma category Cat/B. Two facts about discrete fibrations
are particularly important:

Theorem 2.1.2. There is an isomorphism of categories

DFib(B) ∼= [Bop,Set].

Proof. Given a discrete fibration E → B, define Bop → Set by b 7→ Eb, the
category whose objects sit over b ∈ B and whose arrows map to the identity at b.
Because 1b has a unique lift for each e ∈ Eb, this category is discrete. For each
morphism f : b′ → b, define f∗ : Eb → Eb′ by mapping e ∈ Eb to the domain of the
unique lift of f with codomain e. Functoriality follows from uniqueness of lifts.
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Conversely, given a functor F : Bop → Set, the canonical functor from its cate-
gory of elements ∗/F to B is a discrete fibration. The comma category ∗/F , whose
objects are elements of Fb for some b ∈ B, is sometimes called the Grothendieck
construction on the presheaf F . �

A functor f : C → D is final if any diagram of shape D can be restricted along
f to a diagram of shape C without changing its colimit or, equivalently, if for all
d ∈ D, the comma category d/f is non-empty and connected.

Theorem 2.1.3. There is an orthogonal factorization system (E ,M) on Cat with
E the final functors and M the discrete fibrations.

Proof. Exercise. (Indeed, this was an exam problem for the Part III course I took
from Peter Johnstone.) �

This is called the comprehensive factorization system for reasons I’ve never un-
derstood. Note that there is an “internal” rephrasing of this definition. Write B0

for the set of objects and B1 for the set of arrows of a small category B.

Definition 2.1.4. A functor p : E → B between small categories is a discrete
fibration iff

E1

p1

��

y

cod // E0

p0

��
B1

cod
// B0

is a pullback in Set.

Finally, we mention discrete opfibrations, which are discrete fibrations p : Eop →
Bop which have unique lifts of morphisms with specified domain. These correspond
bijectively to functors B → Set and form an orthogonal factorization system with
the class of initial functors which are those such that restriction preserves limits.

2.2. Fibrations. Now we’re ready for the real thing.

Definition 2.2.1. Given a functor p : E → B, an arrow g : e′ → e in E is p-
cartesian if for any g′ : e′′ → e such that pg′ = pg · h in B, there is a unique lift k
of h such that g′ = g · h. A functor p : E → B is a fibration if each f : b→ pe in B
has a p-cartesian lift with codomain e.

Some sources differentiate between fibrations and those with chosen cartesian
lifts which may satisfy additional properties. See [Gra66] or the nLab.

Theorem 2.2.2. A functor p : E → B is a fibration if and only if either

(i) for each e ∈ E, the functor p : E/e→ B/p(e) has a right adjoint right inverse
(ii) the canonical functor E2 → B/p has a right adjoint right inverse

Proof. In each case, the right adjoint picks out p-cartesian lifts for each morphism.
See [Gra66, Prop 3.11]. �

Let Fib(B) denote the sub 2-category of Cat/B of fibrations, functors that
preserve cartesian arrows, and all 2-cells.
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Theorem 2.2.3. There is a 2-equivalence of 2-categories

Fib(B) ∼= [Bop,Cat]ps,

where the latter is the 2-category of pseudo-functors, pseudo-natural transforma-
tions, and modifications.

Proof. The lax colimit of a pseudo-functor Bop → Cat is canonically a fibration
over B. Conversely, a fibration E → B gives rise to a pseudo-functor b 7→ Eb,
f : b′ → b 7→ f∗ : Eb → E′b. By the universal property of the cartesian lifts, this
assignment is functorial up to natural isomorphism. �

Fibrations enjoy similar stability properties to their topology analogs.

Theorem 2.2.4. Fibrations are closed under composition and pullback along arbi-
trary functors.

Proof. See [Gra66, 3.1]. �

Before giving examples, we mention the dual notion. A functor p : E → B is an
opfibration if p : Eop → Bop. A functor p : E → B that is both a fibration and an
opfibration is called a bifibration. The proof of the following lemma is left as an
exercise.

Lemma 2.2.5. A fibration p : E → B is also an opfibration if and only if each
functor f∗ : Eb → Eb′ has a left adjoint f!.

Finally, some examples:

Example 2.2.6.
(i) The codomain functor C2 → C is an opfibration that is a fibration iff C has

pullbacks. (Hence the name “cartesian”.)
(ii) The domain functor C2 → C is a fibration this is an opfibration iff C has

pushouts.
(iii) The forgetful functor Mod→ Ring is a bifibration. For each ring homomor-

phism f , f∗ is restriction of scalars, f! is extension of scalars.
(iv) For any category C, the category of set-indexed families of objects of C is a

fibration over Set with the forgetful functor taking a family to its indexing
set. The functors f∗ are given by reindexing and have left adjoints iff C has
small coproducts, and right adjoints iff C has small products.

We mention one final result which will motivate the definitions in Section 3.

Theorem 2.2.7. A functor p : E → B is a fibration if and only if the functor
[X, p] : [X,E]→ [X,B] is a fibration for every category X.

Proof. See [Gra66, 3.6]. �

2.3. Two-sided discrete fibrations. Finally, we reach the variant of interest.

Definition 2.3.1. A two-sided discrete fibration is a span A
q← E

p→ B such that
(i) each qe → a′ in A has a unique lift in E that has domain e and lies in the

fiber over pe
(ii) each b′ → pe in B has a unique lift in E that has codomain e and lies in the

fiber over qe
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(iii) for each f : e → e′ in E the codomain of the lift of qf equals the domain of
the lift of pf and their composite is f .

Let DFib(A,B) denote the full subcategory of Span(A,B) on the two-sided
discrete fibrations.

Theorem 2.3.2. There exist equivalences of categories

DFib(A,B) ' [Bop ×A,Set],

pseudo-natural in A and B.

Proof. Given a two-sided discrete fibration A
q← E

p→ B, define Bop × A → Set
by (b, a) 7→ Ea,b, the objects in the fiber over a and b. Given g : b′ → b, the
corresponding function g∗ : Ea,b → Ea,b′ sends e ∈ Ea,b to the domain of the
unique lift of g in the fiber over a with codomain e; likewise, given f : a → a′ the
corresponding f∗Ea,b → Ea′,b sends e to the codomain of the unique lift of f in the
fiber over b with domain a′.

Conversely, P : Bop × A → Set, let the objects of E be triples (b ∈ B, e ∈
P (b, a), a ∈ A, ) and morphisms (b, e, a) → (b′, e′, a′) be pairs of arrows f : a → a′

in A and g : b→ b′ in B such that f∗(e) = g∗(e′). Note this isn’t the collage of P ,
a category living over the walking arrow 2, defined below. Rather it’s the category
of sections of this functor, with morphisms the natural transformations. See the
nLab discussion of two-sided fibrations. �

Comma categories provide an important class of examples of two-sided discrete
fibrations. In fact, in Cat, they tell the whole story.

Theorem 2.3.3. For any opspan B
f→ C

g← A, its comma category

f/g

c

��

d // B

f

��
A g

//

⇐

C

is a two-sided discrete fibration A
c← f/g

d→ B. Furthermore, all two-sided discrete
fibrations in Cat arise this way.

Proof. See [Str74, 14]. �

Finally, for completeness, we give the definition of two-sided fibrations, which
aren’t required to be discrete.

Definition 2.3.4. A span A
q← E

p→ B is a two-sided fibration if
(i) any g : qe→ a ∈ A has an opcartesian lift with domain e that lies in the fiber

over the identity at pe
(ii) any f : b→ pe has a cartesian lift with codomain e that lies in the fiber over

the identity at qe
(iii) given a cartesian lift f∗e → e of f and an opcartesian lift e → g!e of g, as

above, the composite
f∗e→ e→ g!e

lies over both f and g. Write f∗e→ g!f
∗e and f∗g!e→ g!e for its opcartesian

and cartesian lifts. The canonical comparison g!f
∗e → f∗g!e induced by the

universal property of either of these must be an isomorphism.
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Two-sided fibrations determine pseudo-functors Bop ×A → Cat.

3. Fibrations in 2-categories

The notions of fibration and two-sided discrete fibration internal to a 2-category
are due to [Str74]; a good summary of the main results can be found in [Web07, §2].
In order to perform desired constructions, we work in finitely complete 2-categories
K, i.e., a 2-category that admits finite conical limits and cotensors with the “walking
arrow” category 2. In particular:

Lemma 3.0.5. A finitely complete 2-category K has all comma objects.

Proof. First note that

A2
d //

c

��

A

1A

��
A

1A

//

⇐

A

is a comma object, where d and c are induced by the domain and codomain in-
clusions 1 ⇒ 2. To see this, recall that comma objects, like all weighted limits,
are defined representably, meaning in this case that the comma object A/A of the
depicted opspan must induce isomorphisms of categories

K(X,A/A) ∼= K(X,A)/K(X,A)

for all X ∈ K, where the right hand side denotes the comma category for the pair
of identity functors on K(X,A). But we know that in Cat, this comma category is
K(X,A)2. Hence, A/A must induce isomorphisms of categories

K(X,A/A) ∼= K(X,A)2

which is the defining universal property of the cotensor of A ∈ K by 2.
Given an opspan A

g→ C
f← B in K, its comma object is the (composite) 2-

pullback
A

1A

����
��

��
�

g

��?
??

??
??

? C2

c

~~}}
}}

}}
}} d

  A
AA

AA
AA

A B
f

����
��

��
�� 1B

��@
@@

@@
@@

A C C B

with 2-cell defined by whiskering the 2-cell of the comma object C2. This can
be proven directly in Cat, implying the result for a generic 2-category K by the
representability of weighted limits. �

Another proof of the previous lemma uses the pasting lemma for comma squares.

Lemma 3.0.6. Given a diagram in a 2-category K such that the right-hand square
is a comma square

·

��

// ·

��

// ·

��
· // · //

⇐

·
the whole diagram is a comma square if and only if the left-hand square is a 2-
pullback.

Proof. Analogous to the pasting lemma for ordinary pullbacks. �
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3.1. Fibrations. Fibrations in a 2-category are defined representably.

Definition 3.1.1. A 1-cell p : E → B in a 2-category K is a fibration iff K(X, p) is
a fibration for all X ∈ K and if

K(X,E)

K(X,p)

��

K(x,E)// K(Y,E)

K(Y,p)

��
K(X,B)

K(x,B)
// K(Y,B)

is a map of fibrations for all x : Y → X in K.

Unpacking this definition, p : E → B is a fibration if every 2-cell

X
e //

b   @
@@

@@
@@

@ E

p

��

⇒β

B

has a p-cartesian lift α : e′ ⇒ e so that pα = β. A 2-cell

X
e′

++⇓α
e

44 E

is p-cartesian when for all x : Y → X, αx is a K(Y, p)-cartesian arrow in K(Y,E).
This means that for all 2-cells

Y
e′′ //

x
  @

@@
@@

@@

⇓ξ

E Y

x

��

e′′ //

⇓γ

E

p

��
X

e

>>~~~~~~~
X

e′
// E p

// B

such that pξ = pα · γ, then there is a unique 2-cell ζ : e′′ ⇒ e′x such that ξ = αζ
and pζ = γ.

Note this definition did not require any hypotheses on the 2-category K; we do
make use of finite completeness going forward.

Theorem 3.1.2. In any finitely complete 2-category K

(i) the composite of fibrations is a fibration
(ii) the pullback of a fibration is a fibration

Proof. Follows from Theorem 2.2.4. �

Theorem 3.1.3. Let K be a finitely complete 2-category, p : E → B a 1-cell. The
following are equivalent:

(i) p is a fibration
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(ii) for all b : X → B, the map i : X ×B E → b/p has a right adjoint in K/X

X ×B E

i %%K
KK

��

&&
b/p //

��

E

p

��
X

b
//

⇒

B

(iii) the map E → B/p has a right adjoint in K/B.
(iv) the canonical arrow E2 → B/p has a right adjoint with counit an isomor-

phism.

Proof. (iii) is (ii) with b = 1B . (iii) implies (ii) by the pasting lemma 3.0.6. Equiv-
alence with (i) requires some cleverness. See [Web07, 2.7]. (i) ⇔ (iv) is analogous
to Theorem 2.2.2; see [Str74, 9]. �

An opfibration in K is a fibration in Kco. It follows from characterization
(iii) above that any 2-functor between finitely complete 2-categories that preserves
comma objects preserves fibrations and opfibrations. We briefly mention the very
simplest examples.

Example 3.1.4.
(i) The fibrations internal to the 2-category Cat are exactly the fibrations defined

above.
(ii) A fibration internal to the 2-category Cat/A is a functor p : E → B such that

arrows b → pe in the fiber over an identity in A have p-cartesian lifts. If the
functors E → A and B → A are fibrations in Cat and p preserves cartesian
arrows, then p is a fibration in Cat if and only if it is a fibration in Cat/A.
In general, the notion of fibration in Cat/A is weaker.

Discrete fibrations in a 2-category K with cotensors by 2 can either be defined
representably or in analogy with Definition 2.1.4 and these definitions are equiva-
lent.

3.2. Two-sided discrete fibrations. In a bicategory K, we write Span(K) for
the bicategory of spans in K0, the 1-category underlying K. If K has binary prod-
ucts, the hom-categories Span(K)(A,B) are isomorphic to the comma categories
K/A × B; hence, they are actually 2-categories. Furthermore, the composition is
2-functorial.

Definition 3.2.1. A span A
q← E

p→ B is a two-sided discrete fibration if and only
if it is representably so, i.e., if for all X ∈ K,

K(X,A) K(X,E)
K(X,q)oo K(X,p)// K(X,B)

is a two-sided discrete fibration.

As in Cat, comma objects provide examples of two-sided discrete fibrations.

Theorem 3.2.2. Given f : A → C and g : B → C, the span A ← f/g → B is a
two-sided discrete fibration.
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Proof. Because weighted limits are also defined representably, it suffices to prove
when K = Cat. See Theorem 2.3.3. �

Theorem 3.2.3. If A
q← E

p→ B is a two-sided discrete fibration, then p is a
fibration and q is an opfibration.

Proof. Technical, but suffices to prove for p because the second part follows by
interpreting this in Kco. �

In his original paper, Street defines fibrations, opfibrations, and two-sided dis-
crete fibrations to be pseudo-algebras for certain 2-monads on the appropriate
hom-2-category of Span(K). For instance, the 2-monad on Span(K)(A,B) for
two-sided discrete fibrations sends a span A

q← E
p→ B to the 2-pullback of

A2

d

~~}}
}}

}}
}} c

  A
AA

AA
AA

A E
q

����
��

��
�� p

��?
??

??
??

? B2

d

~~}}
}}

}}
}} c

  A
AA

AA
AA

A

A A B B

See [Str74] for details.

3.3. Yoneda lemma. Part of the motivation for defining two-sided discrete fibra-
tions internally to a 2-category was to state and prove a Yoneda lemma in this
context. While this is peripheral to our discussion, we nonetheless take a brief
detour to give the statement.

Theorem 3.3.1. Let K be finitely complete 2-category, A
q← E

p→ B a two-sided
discrete fibration and f : B → A a 1-cell. There is a unique arrow i : B → f/A from
the 2-pullback of f along the identity at A to the comma object. Precomposition
with i induces a bijection between arrows of spans f/A → E and arrows of spans
B → E.

Proof. See [Str74, 16] or [Web07, 2.12]. �

4. Fibrations in bicategories

The notions of fibration and two-sided discrete fibration internal to a 2-category
are due to [Str80]; a good summary of the main results can be found in [CJSV94].
The first two sections are somewhat abbreviated; we excuse this laxity by mention-
ing that it enables us to quickly get to the main point in the final two sections. The
reader who wishes to see statements analogous to those of Section 3 is encouraged
to prove them, replacing any 2-limits that appear with the appropriate bilimits.

Section 4.3 relies heavily on the “codiscrete cofibration” entry at the nLab.

4.1. Fibrations. In a bicategory, it is generally considered unreasonable to ask for
an equality of 1-cells, but there is no moral objection to asking 2-cells to be equal.
Thus, when defining fibrations internally to a generic bicategory K, we can use the
definition of p-cartesian 2-cells that was “unpacked” above, enabling the definition:

Definition 4.1.1. A 1-cell p : E → B in a bicategory K is a fibration if for all 1-
cells e : X → E and 2-cells α : b⇒ pe : X → B, there exists a p-cartesian χ : e′ ⇒ e
for which there is an isomorphism b : pe′ whose composite with pχ is α.
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Example 4.1.2. The fibrations internal to Cat as a bicategory are sometimes
called Street fibrations. Explicitly, a functor p : E → B is a Street fibration if for
every f : b → pe in B, there is a p-cartesian arrow g : e′ → e and an isomorphism
h : b→ pe′ such that f = pg · h.

This notion of fibration is invariant under equivalence of categories. In particular,
equivalences of categories are Street fibrations, though they are not necessarily
fibrations in the classical sense.

Lemma 4.1.3. A 1-cell p : E → B in a bicategory K is a fibration if and only if

(i) for all X ∈ K, K(X, p) : K(X,E)→ K(X,B) is a Street fibration
(ii) for all 1-cells x : Y → X in K, precomposition with x induces a map of fibra-

tions K(X, p)→ K(Y, p).

4.2. Two-sided fibrations and two-sided discrete fibrations. First, we should
say a few words about the tricategory Span(K). When K is a bicategory, not a 2-
category, we define the 1-cells and 2-cells of the bicategory Span(K)(A,B) slightly
differently. A morphism of spans from A to B is given by a 1-cell f in K and
isomorphic 2-cells as depicted

E
q

~~}}
}}

}}
}} p

  A
AA

AA
AA

A

f

��

A µ∼= B∼=ν

E′
q′

``AAAAAAA p′

>>}}}}}}}

A 2-cell in Span(K)(A,B) is a 2-cell θ : f ⇒ f ′ that pastes together with one of
each pair of 2-cells isomorphisms to give the other.

Definition 4.2.1. A span A
q← E

p→ B in K is a two-sided discrete fibration if

(i) for every e : X → E and 2-cell α : qe⇒ a : X → A, there exists an opcartesian
2-cell χ : e⇒ e′ and isomorphism qe′ ⇒ a whose composite with qχ is α and
such that pχ is an isomorphism.

(ii) for every e : X → E and 2-cell β : b ⇒ pe : X → B, there exists a cartesian
2-cell ζ : e′ ⇒ e and isomorphism b ⇒ pe′ whose composite with pζ is β and
such that qζ is an isomorphism.

(iii) for all η, η′ : e ⇒ e′ : X → E, if pη = pη′, qη = qη′, and pη and qη are
invertible, then η = η′ and is invertible.

Condition (iii) is equivalent to saying that the span is representably essentially
discrete, i.e., for all spans E′ from A to B, the hom-category

Span(K)(A,B)(E′, E)

is equivalent to a discrete category.
Proof of the following alternate characterization, which is due to [CJSV94] and

should be compared with Definition 2.3.1, is left as an exercise.

Lemma 4.2.2. A span A
q← E

p→ B is a two-sided discrete fibration if and only if
the following conditions hold.
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(i) for all arrows e : X → E and 2-cells α : qe⇒ a, the category whose objects are
pairs (χ : e ⇒ e′, ν : qe′ ∼= a) with α = ν · qχ and pχ invertible is essentially
discrete and non-empty;

(ii) for all arrows e : X → E and 2-cells β : b⇒ pe, the category whose objects are
pairs (ζ : e′ ⇒ e, µ : b ∼= pe′) with β = pζ · µ and qζ invertible is essentially
discrete and non-empty;

(iii) each 2-cell η : e⇒ e′ : X → E is a composite ζχ where pχ and qζ are invert-
ible.

By a comma object in a bicategory, we mean the bilimit with the shape de-
scribed above, relaxing the defining isomorphism K(X, f/g) ' K(X, f)/K(X, g) of
categories to an equivalence.

Theorem 4.2.3. Any comma object in a bicategory gives a two-sided discrete fi-
bration.

Proof. See [Str80, 3.44]. �

4.3. Two-sided codiscrete cofibrations. For this section, the motivating exam-
ple is the 2-category K = V-Cat of categories enriched in some closed symmetric
monoidal category (V,⊗, I). We’ll see in the next section what is special about the
case V = Set, K = Cat.

In enriched category theory, V-profunctors play an important role; if A,B ∈ V-
Cat, a V-profunctor from A to B is a V-functor Bop ⊗A → V. A warning: unless
V is cartesian monoidal, the tensor product of V-categories is distinct from their
cartesian product. The tensor product of V-categories gives the morally correct
notion of V-profunctors and it is necessary for the construction of collages below.

We would like to be able to model V-profunctors internally to the 2-category of
V-categories because this will make it easier to understand which pseudo-functors
V-Cat→ K “preserve” profunctors. One way to describe the data of a V-profunctor
in V-Cat is through its collage.

Definition 4.3.1. The collage of F : Bop ⊗A → V is a cospan A → E ← B, where
E is the V-category with objects obA t obB and hom-objects

E(b′, b) = B(b′, b), E(b, a) = F (b, a), E(a, a′) = A(a, a′), E(a, b) = ∅,
for all a, a′ ∈ A and b, b′ ∈ B. The V-functors A → E , B → E are the inclusions.

The main result is the following theorem of [Str80]:

Theorem 4.3.2. The collages for V-profunctors are exactly the two-sided codiscrete
cofibrations in V-Cat, regarded as a bicategory.

The reader may have already guessed the following definitions.

Definition 4.3.3. A cospan A→ E ← B in a bicategory K is a two-sided cofibra-
tion if and only if it is a two-sided fibration in Kop, the bicategory with 1-cells re-
versed. The span is codiscrete if it is representably discrete in Cospan(K)(A,B) ∼=
A t B/K, that is, if the hom-category Cospan(K)(A,B)(E,E′) is equivalent to a
discrete category for all cospans A→ E′ ← B.

In order for the model of profunctors in K to be complete, we need to be able to
compose a two-sided codiscrete cofibration from A to B and from B to C and obtain
a two-sided codiscrete cofibration fromA to C. If we removed the word “codiscrete,”
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this would be a piece of cake. So long as K has finite colimits, cofibrations are stable
under pushout and composition. Hence, the pushout-composite of a cospan from
A to B and a cospan from B to C is a cospan from A to C that is a two-sided
cofibration if the original cospans were. This composition law is associative up to
isomorphism, which is good enough.

However, the resulting two-sided cofibration is unlikely to be codiscrete, whether
or not the original two-sided cofibrations were. For instance, given V-profunctors
Bop ⊗ A → V and Cop ⊗ B → V and considering their collages, the pushout A →
E ← C is a V-category with objects obA t obB t obC called a gamut ; because
of the presence of objects of B, this is too fat to be a collage for a V-profunctor
Cop ⊗A → V.

This problem can be solved provided there is a method for coreflecting from
two-sided cofibrations into two-sided codiscrete cofibrations; a subcategory is core-
flective if the inclusion has a right adjoint. In some examples, there may be a limit
construction that achieves this. This is the approach that Street takes originally,
but see [Str87].

A simpler approach is to ask that K have an orthogonal factorization system
whose left class is generated by the two-sided codiscrete cofibrations A t B → E.
An orthogonal factorization system in a bicategory consists of two classes (L,R) of
1-cells such that

(i) every 1-cell in K is isomorphic to the composite of a 1-cell in L followed by a
1-cell in R

(ii) for all l : X → Y ∈ L, r : Z →W ∈ R, the square

K(Y,Z)

K(l,Z)

��

K(Y,r) // K(Y,W )

K(l,W )

��
K(X,Z)

K(X,r)
//

∼=

K(X,W )

is a bipullback in Cat.
An orthogonal factorization system (L,R) is generated by a collection of 1-cells

if the right class consists of precisely those 1-cells that satisfy axiom (ii) for all l
in this collection. When the generators are taken to be the codiscrete cofibrations,
arrows in the right class are necessarily representably fully faithful. If the right
class is stable under pushout and cotensor with 2, then the composite of a pair of
two-sided codiscrete cofibrations can be defined by factoring the cospan AtC → E
formed by taking their pushout. This is the approach of [CJSV94] and the nLab.

We record this fact in the following theorem.

Theorem 4.3.4. Suppose K is a bicategory with finite limits and colimits. If the
two-sided codiscrete cofibrations A t B → E generate an orthogonal factorization
system whose right class is closed under pushout and cotensor with 2, then there is a
bicategory DCof(K) whose objects are the objects of K, whose 1-cells A→ B are the
two-sided codiscrete cofibrations from A to B, and whose 2-cells are isomorphism
classes of morphisms of cospans.

Proof. See [CJSV94, 4.20]. �

Here is how this works in our main example.
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Lemma 4.3.5. V-Cat has an orthogonal factorization system whose left class con-
sists of the essentially surjective V-functors and whose right class consists of the
V-fully faithful functors that is generated by the two-sided codiscrete cofibrations.

Proof. We leave it to the reader to prove that this orthogonal factorization exists;
we show that it is generated by the two-sided codiscrete cofibrations. The collages
are surjective on objects, so V-fully faithful functors are necessarily right orthogonal
to them. It remains to show that any V-functor F : C → ∆ right orthogonal to the
collages A t B → E is necessarily V-fully faithful. Let I denote the V-category
with one-object and the unit as its hom-object. A V-profunctor from I to itself is
specified by a single object in V. Given c, c′ ∈ C, form the collage of the V-profunctor
Iop⊗I → V determined by ∆(Fc, Fc′). This collage has the form ItI → E , where
E has two objects 0,1 and one non-trivial hom E(0, 1) = ∆(Fc, Fc′). The obvious
lifting problem

I t I //

��

C

F

��
E

1
//

<<y
y

y
y

y
∆

must have a unique solution, which shows that F is V-fully faithful. �

It remains to check that V-fully faithful functors are stable under pushout and
cotensors with 2; we leave this to the reader.

4.4. A final note on modeling profunctors in Cat. We now have two models
for profunctors in Cat, the two-sided discrete fibrations and the two-sided codiscrete
fibrations. It turns out there is a formal reason that these are the same.

In any 2-category K with comma and cocomma objects, there is an adjunction

cocomma: Span(K)(A,B)
//

⊥ Cospan(K)(A,B) : commaoo

We’ve seen above that comma objects are always two-sided discrete fibrations;
dually, cocomma objects are always two-sided codiscrete cofibrations. In Cat, this
adjunction is idempotent the comma object of the cocomma object of a comma
object is isomorphic to the original comma object; this is equivalent to the dual
statement. Any such adjunction restricts to an adjoint equivalence between the
full subcategories in the image of each functor, which are consequently reflective
and coreflective subcategories of the originals. So this adjunction restricts to an
equivalence between the reflective subcategory of two-sided discrete fibrations and
the coreflective subcategory of two-sided codiscrete cofibrations. Hence, both of
these are equivalent to the 2-category of profunctors from A to B.
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