
FACTORIZATION SYSTEMS

EMILY RIEHL

Abstract. These notes were written to accompany a talk given in the Alge-

braic Topology and Category Theory Proseminar in Fall 2008 at the University

of Chicago. We first introduce orthogonal factorization systems, give a few ex-
amples, and prove some basic theorems. Next, we turn to weak factorization

systems, which play an important role in the theory of model categories, a

connection which we make explicit. We discuss what it means for a weak
factorization system to be functorial and observe that functoriality does not

guarantee the existence of natural lifts. This leads us, naturally one might

say, to the definition of a natural weak factorization system, which is where
we conclude these notes. The reader is assumed to have some familiarity

with category theory — functors, limits and colimits, naturality, monads and
comonads, comonoids, 2-categories, and some basic categorical terminology;

[9] is a good reference for any concepts that may be unfamiliar.

1. Orthogonal Factorization Systems

Definition 1.1. An orthogonal factorization system in a category K is a pair (L,R)
of distinguished class of morphisms such that

(I) L and R contain all isomorphisms and are closed under composition.
(II) Every f ∈ mor K can be factored as f = me with e ∈ L and m ∈ R.
(III) This factorization is functorial, i.e., given the solid diagram

(1.2) · u //

e

��

·

e′

��
·

m

��

∃!
w

//___ ·

m′

��
·

v
// ·

there exists a unique arrow w such that both squares commute.

Definition 1.3. Given classes of morphisms E and M we say that E is orthogonal
to M and write E ⊥M if for all commutative squares

(1.4) ·
e

��

u // ·
m

��
·

v
//

w

@@�
�

�
�

·

with e ∈ E and m ∈ M there exists a unique arrow w making both triangles
commute. We will refer to such squares as lifting problems and the arrow w as a
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2 E. RIEHL

solution. In this language, we write E ⊥M if every lifting problem with e ∈ E and
m ∈M has a unique solution.

Remark 1.5. Let K be locally small and let e : A → B and m : X → Y . The
condition e ⊥ m means that the square

(1.6) Hom(B,X) e∗ //

m∗

��

Hom(A,X)

m∗

��
Hom(B, Y )

e∗
// Hom(A, Y )

is cartesian (i.e., is a pullback in Set).

Conditions (I) and (III) above imply that for any orthogonal factorization system
(L,R):

(IV) L ⊥ R.
It follows easily from (IV) that the factorizations guaranteed by (II) are unique up
to unique isomorphism.

Definition 1.7. For any class of morphisms E, let

E⊥ = {m ∈ mor K | E ⊥ m}.
Dually, let

⊥E = {m ∈ mor K | m ⊥ E}.

Note that
E ⊂ ⊥M⇐⇒ E ⊥M⇐⇒ E⊥ ⊃M.

Lemma 1.8. A pair of distinguished classes of morphisms (L,R) is an orthogonal
factorization system if and only if the following conditions are satisfied:

(II) Every f ∈ mor K can be factored as f = me with e ∈ L and m ∈ R.
(V) L = ⊥R and R = L⊥.

Proof. (I), (II), (III) ⇒ (V): We already remarked that (I) and (III) imply (IV), so
R ⊂ L⊥. Suppose f ∈ L⊥ and use (II) to write f = me with e ∈ L and m ∈ R.
The lifting problem

·
e

��

·
f

��
·

s

@@�
�

�
�
m

// ·

has a solution s such that se = 1. It follows that es and 1 are both solutions to the
lifting problem

·
e

��

e // ·
m

��
·

m
// ·

Uniqueness implies that these solutions are equal. So e is an isomorphism and
by (I), e ∈ R; hence, f = me ∈ R because (I) also says that R is closed under
composition. The proof that L ⊂ ⊥R follows dually.

(II), (V)⇒ (I), (III): The statement (V) is quite strong and implies (I) and (III)
by itself. (V)⇒ (III) is obvious because a lifting problem (1.2) give rise to a lifting
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problem of the form (1.4) by composing u and e′ and m and v. As there is always a
unique solution to a lifting problem if either the left or right arrows are invertible,
(V) clearly implies that L and R contain the isomorphisms. To show that L is
closed under composition, suppose e, e′ ∈ L and consider a lifting problem

·
e

��

u // ·

m

��

·

s

@@�
�

�
�

e′

��
·

v
//

t

GG�
�

�
�

�
�

�
·

As e ∈ L = ⊥R, there is a unique lift s as shown, which gives rise to a lifting
problem with e′ and m. This problem has a unique solution t, which clearly makes
the outer triangles commute. Suppose t′ were another solution to the lifting problem
with e′e and m. Then t′e′ and te′ both solve the lifting problem between e and m,
so we must have t′e′ = s = te′. But then t and t′ are both solutions to the lifting
problem between e′ and m, and thus orthogonality implies that t = t′. So e′e ⊥ m,
and (V) implies that e′e ∈ L, which is therefore closed under composition. The
proof for R is dual. �

This lemma gives an alternative definition of an orthogonal factorization system,
which we record now for easy reference. An obvious corollary is that each class of
an orthogonal factorization system determines the other.

Definition 1.9. An orthogonal factorization system in a category K is a pair (L,R)
of distinguished class of morphisms such that

(II) Every f ∈ mor K can be factored as f = me with e ∈ L and m ∈ R.
(V) L = ⊥R and R = L⊥.

By now some examples are perhaps overdue.

Example 1.10. The classes L of epimorphisms and R of monomorphisms form an
orthogonal factorization system in Set and also in other categories. In Top, we
take L to be the quotient maps and R to be continuous inclusions.

The classes of an orthogonal factorization system are often denoted by (E,M) in
the literature, which I suspect is due to a recognition of this example. Orthogonal
factorization systems are somtimes called E-M factorization systems, a term which
in [7] serves as an abbreviation for Eilenberg-Moore factorization systems. These
are defined as functorial weak factorization systems with a particular condition
about the factorization of trivial squares; the authors prove that this definition is
equivalent to that of an orthogonal factorization system, correcting any potential
historical discrepancy. We will say more about this later.

Example 1.11. A functor p : E → B is a discrete fibration if for each e ∈ obE
and g ∈ morB with codomain p(e), there is a unique f ∈ morE with codomain e
such that p(f) = g. A functor f : C → D is final if for all d ∈ D, the category
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defined by the pullback

(d\D)×D C //

��

y
C

f

��
d\D

u
// D

is connected. Cat has an orthogonal factorization system (L,R) where L is the
class of final functors and R is the class of discrete fibrations.

Example 1.12. (Due to [6].) Cat has another orthogonal factorization system
(L,R) where R is the class of conservative functors, i.e., functors which reflect
isomorphisms. The class L consists of iterated strict localizations. For any set
S ⊂ morA, where A is a small category, there is a functor A→ S−1A that inverts
S universally, which we call a strict localization of A at S. Given any f : A → B,
there is a factorization f = p1l1 where l1 is a strict localization of the morphisms
inverted by f . The functor p1 may not be conservative, but when we iterate this
process and take the colimit, the functor p induced by the resulting cone from the
colimit to B is conservative. The functor from A to the colimit is an iterated strict
localization, and this construction gives the functorial factorization of f .

A

f
((PPPPPPPPPPPPPPPP

l1 // A1

p1

!!BBBBBBBB
l2 // A2

p2

��

// · · · // colimiAi

p

uullllllllllllllll

B

Lemma 1.13. If (L,R) is an orthogonal factorization system, then L ∩ R is the
class of isomorphisms of K. Furthermore, L has the right cancellation property:

gf ∈ L and f ∈ L⇒ g ∈ L.

Dually, R has the left cancellation property:

gf ∈ R and g ∈ R⇒ f ∈ R.

Proof. If s ∈ L ∩ R then the lifting problem

·
s

��

·
s

��
·

@@�
�

�
�

·

defines its inverse.
Suppose gf ∈ L and f ∈ L and let m ∈ R. A lifting problem

(1.14) ·
g

��

u // ·
m

��
·

v
// ·

gives rise to a lifting problem ·
gf

��

uf // ·
m

��
·

v
//

w

@@�
�

�
�

·



FACTORIZATION SYSTEMS 5

which has a unique solution w. Then wg and u are both solutions to the lifting
problem

·
f

��

uf // ·
m

��
·

vg
// ·

so these must be equal and w is a solution to (1.14). Thus g ∈ ⊥R = L. The proof
that R has the left cancellation property is dual. �

Let 2 be the category consisting of two objects and one non-identity arrow:

• → •
The functor category K2 has morphisms of K as objects; arrows (u, v) : f → g are
commutative squares

(1.15) · u //

f

��

·
g

��
·

v
// ·

This is sometimes called the arrow category of K, for obvious reasons. This category
is equipped with functors

dom : K2 → K and cod : K2 → K

that project to the domain and codomain respectively. There is a natural transfor-
mation κ : dom→ cod such that κf = f for all f ∈ mor K.

The category 2 is a comonoid (2, δ, ε) in CAT with respect to the cartesian closed
structure (as is any small category). The functor δ : 2→ 2× 2 is the diagonal and
ε : 2 → 1 is the unique functor to the terminal object. The internal-hom of CAT
is a 2-functor CATop ×CAT→ CAT, which gives rise to a 2-functor

Ψ : CATop → [CAT,CAT]

because CAT is cartesian closed. We write (−)A for Ψ(A), if A is a small category;
this is consistent with our notation for the arrow category above. Together, the
2-functor Ψ and the comonoid (2, δ, ε) give rise to a 2-monad

(Φ, µ, η) = (Ψ(2),Ψ(δ),Ψ(ε))

on CAT called the squaring monad because the functor Φ takes a category A to
the category A2.

Korostenski and Tholen prove the following theorem in [7].

Theorem 1.16. Orthogonal factorization systems in small categories are equiva-
lently described by the normal pseudo-algebras with respect to the squaring 2-monad
(Φ, µ, η) on CAT.

The adjective pseudo means that the associativity diagrams are only required
to commute up to isomorphism, while normal means that the unit axiom holds
strictly.

Theorem 1.17. The class ⊥M is closed under colimits (taken in K2) for any class
of maps M in a category K. Hence, the left class of an orthogonal factorization
system is closed under colimits and dually the right class is closed under limits.
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Proof. It is possible to verify directly that ⊥M is closed under coequalizers and
arbitrary coproducts; this would be a good exercise. A proof of the latter is given
below for a class of maps that satisfy a weaker left lifting property. By contrast,
the proof that ⊥M is closed under coequalizers depends explicitly on the natural
choice of lifts (1.4).

Here we give a slick proof due to [6] of the dual statement (when K is locally
small): that M⊥ is closed under limits. For any arrows e : X → Y and m : Z →W ,
there is a commutive square (1.6). This yields a functor

S : (Kop)2 ×K2 → Set2×2

that is continuous in each variable. An arrow m belongs to M⊥ if and only if the
square S(e,m) is cartesian for each e ∈M. The full subcategory of Set2×2 spanned
by the cartesian squares is closed under limits, completing the proof. �

This is part of what is meant when one says that the left and right classes
of an orthogonal factorization system (L,R) have good stability properties. These
classes have other stability properties as well; these hold more generally for weak
factorization systems, which we now introduce.

2. Weak Factorization Systems

Let K be a category. A morphism f has the left lifting property with respect to
a morphism g, or equivalently, g has the right lifting property with respect to f if
every lifting problem

(2.1) ·
f

��

u // ·
g

��
·

v
//

w

@@�
�

�
�

·

has a solution w, not necessarily unique, such that both triangles commute. We
denote this by f � g.

As before, let E� be the class of arrows with the right lifting property with
respect to each e ∈ E and let �E be the class of arrows with the left lifting property
with respect to each e ∈ E. Write E � M to indicate that E ⊂ �M or equivalently
that M ⊂ E�.

Definition 2.2. A weak factorization system in a category K is a pair (L,R) of
distinguished classes of morphisms such that

(1) Every h ∈ mor K can be factored as h = gf with f ∈ L and g ∈ R.
(2) L = �R and R = L�.

Recall that a morphism f is a retract of g if there is a commutative diagram

· //

f

��

·
g

��

// ·
f

��
· // · // ·

with horizontal composites the identity.
Condition (2) implies:
(3) L � R.
(4) L and R are closed under retracts.
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The first statement is obvious. For the second, let h be a retract of f ∈ L and
let g ∈ R. Given a lifting problem

· //

h

��

·
g

��
· // ·

and a retract diagram ·

h

��

// ·
f

��

// ·

h

��
· // · // ·

with horizontal composites the identity. Combining these diagrams, we obtain an
expanded picture of the same lifting problem with an obvious solution:

·

h

��

// ·
f

��

// ·
h

��

// ·
g

��
· // · //

s

77ppppppp · // ·
In the above, s is the lift provided by the fact that f has the left lifting property
with respect to g. Thus, h has the left lifting property with respect to g, and so
h ∈ L = �R, proving that L is closed under retracts. The proof for R is similar.

Conversely, (2) follows from (1), (3), and (4) by what is called the retract argu-
ment, giving an alternative definition of a weak factorization system.

Lemma 2.3. If (L,R) is a pair of classes of morphisms satisfying (1), (3), and
(4), then (L,R) is a weak factorization system.

Proof. By (3), L ⊂ �R, so it remains to show the reverse inclusion. Given h ∈ �R

use (1) to write h = gf with f ∈ L and g ∈ R. The lifting problem

· f //

h

��

·
g

��
s

@@�
�

�
� ·

has a solution s, which we use to express h as a retract of f

·

h

��

·
f

��

·

h

��
·

s
// ·

g
// ·

By (4), h ∈ L. The dual proof shows that L� = R. �

Condition (4) implies:
(5) If s is a split monic and sf ∈ L, then f ∈ L. This follows from the retract

diagram:

·
f

��

1 // ·
sf

��

1 // ·
f

��
· s // · s−1

// ·
Dually if t is a split epic and gt ∈ R, then g ∈ R.

Condition (5) is the best analog of the cancellation properties of Lemma 1.13 for
weak factorization systems.

Lemma 2.4. If (L,R) is a pair of classes of morphisms satisfying (1), (3), and
(5), then (L,R) is a weak factorization system.
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Proof. Again, we must show that L = �R; R = L� follows dually. By (3), L ⊂ �R.
Given h ∈ �R, write h = gf as in the proof of (2.3) and use the same lifting
problem to define s. Commutativity of the upper triangle tells us that sh = f ∈ L

and commutativity of the lower triangle says that s is split monic. So h ∈ L by
(5). �

For convenience, we record the results of this discussion in the following defini-
tion.

Definition 2.5. A weak factorization system in a category K is a pair (L,R) of
distinguished classes of morphisms such that

(1) Every h ∈ mor K can be factored as h = gf with f ∈ L and g ∈ R.
(3) L � R.

and either of the following conditions hold
(4) L and R are closed under retracts.
(5) If s is split monic and sf ∈ L then f ∈ L, and if t is split epic and gt ∈ R

then g ∈ R.

Model categories provide numerous examples of weak factorization systems,
though we defer the task of making this connection explicit until the next sec-
tion. For now, we give a simple example that provides a nice comparison with
Example 1.10.

Example 2.6. The classes L of monomorphisms and R of epimorphisms form a
weak factorization system in Set. This is not an orthogonal factorization system be-
cause solutions to the lifting problem (2.1) are no longer unique when the positions
of the epimorphism and the monomorphism are reversed.

Example 2.7. Any orthogonal factorization system is a weak factorization system,
as is most easily seen by comparing Definition 1.9 with Definition 2.2.

The classes L and R of a weak factorization system still have several nice closure
properties, which are also shared by orthogonal factorization systems.

Definition 2.8. Let K be a cocomplete category. A class of morphisms E in K is
called saturated if

(i) E is closed under pushouts; i.e., if

· //

e

�� p

·

ẽ

���
�
�

· //___ ·
is a pushout square with e ∈ E, then ẽ ∈ E.

(ii) E is closed under retracts.
(iii) E is closed under transfinite composition; i.e., if λ is a non-empty ordinal

regarded as a category and X : λ→ K is a colimit preserving functor such that for
all β < λ the natural map

colimα<βX
α → Xβ

is in E1, then the induced map

X0 → colimα<λX
α

is in E. This morphism is called the transfinite composite of X.

1Equivalently, such that Xβ → Xβ+1 is in E for all β + 1 < λ.
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Remark 2.9. Let E be saturated. Then E necessarily contains all isomorphisms
by property (iii) applied to the ordinal 1 = {0}. E is also closed under composition,
by property (iii) applied to the ordinal 3 = {0, 1, 2}.

Properties (i) and (iii) together imply that E is closed under arbitrary coproducts,
taken in K2. Suppose we have a collection of morphisms eα : xα → yα in E indexed
by the ordinals α < λ for some ordinal λ. For each β < λ define e′β to be the
pushout

xβ

eβ

��

//

p

(tα<βyα) t (tβ≤α<λxα)

e′β
��

yβ // (tα≤βyα) t (tβ<α<λxα)

along the obvious inclusion. Then tα<λeα is the transfinite composite of the e′α,
and hence lies in E.

Theorem 2.10. Let K be a cocomplete category and let M be a fixed class of maps
in K. Let E = �M. Then E is saturated.

Proof. To show that E satisfies (i), let ẽ be a pushout of e ∈ E and consider a lifting
problem

·

p

e

��

// ·

ẽ

��

// ·
m

��
· // · // ·

with m ∈ M. Because e �m, there is a lift l, which induces the solution l̃ to our
lifting problem by the universal property of the pushout

·

p

e

��

// ·
ẽ

��

// ·
m

��
· //

l

77ppppppp · //
l̃

@@�
�

�
�

·

Thus ẽ ∈ E = �M.
For (ii), now suppose that ẽ is a retract of e and consider the following lifting

problem

· //
=

''

ẽ

��

· //

e

��

·

ẽ

��

u // ·
m

��
· h //

=

77· // ·
v

// ·

with m ∈M as above. Because e�m, there is a lift l as shown

· //
=

''

ẽ

��

· //

e

��

·

ẽ��

u // ·
m

��
· h //

=

77· //
l

77ppppppp ·
v

// ·
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and the composite lh is the solution to our lifting problem given by u and v. Thus
E satisfies (ii).2

For (iii), we use transfinite induction. The base case for the ordinal 1 is trivial
because isomorphisms satisfy the left lifting property with respect to any map, but
it is instructive to see how this works for the ordinal 2, which we regard as the
category 2 with two objects and a unique non-identity arrow: 0 → 1. Suppose
X : 2→ K is a functor such that the map X0 → X1 is in E. Let X2 be the colimit
of X0 → X1; we wish to show that the composite X0 → X2 has the left lifting
property with respect to M. Given m ∈ M and a lifting problem as shown, we
factor X0 → X2 and use the lifting property of X0 → X1 with respect to m to
define the map l:

X0

��

// a

m

��

X1

��

l

>>~
~

~
~

X2 // b

Now a is the summit of a cone under X0 → X1, so there is a map h : X2 → a
defined by the universal property of the colimit X2 such that the upper triangle of

X0 //

��

a

m

��
X2

h

>>~
~

~
~

// b

commutes. The lower triangle commutes by the uniqueness of this universal prop-
erty, since ml and X1 → X2 → b define the same cone with summit b. Thus h is
the desired lift and X0 → X2 is in E.

For the inductive hypothesis, suppose we have shown that E is closed under β-
composition for all ordinals β < λ. Let X : λ→ K be a colimit preserving functor
with each morphism colimα<βX

α → Xβ in E. By hypothesis, the composites
eβ : X0 → Xβ are in E so there exist lifts lβ : Xβ → a as shown

X0

eβ

��

// a

m

��

Xβ

��

lβ

99tttttt

colimβ<λX
β //

h

CC�
�

�
�

�
�

�
�

�
b

which define a cone under the diagram X with summit a. Hence, there is a map h
induced by the universal property of the colimit; the proof that h is the desired lift
is exactly analogous to the case where λ = 2. Thus, E satisfies (iii), which shows

2This is the same proof that was given at the beginning of this section. It is repeated here to
emphasize that we only need that E = �M and not that E is the left class of a weak factorization

system
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that any class of maps defined by a left lifting property in a cocomplete category
is saturated. �

The corollory of course is that if (L,R) is a weak factorization system, then L

is saturated and R is closed under retracts, products, pullbacks, and composition.
Note that as in the case of orthogonal factorization systems, these closure properties
have nothing to do with factorization; the proofs rely only on the lifting properties.

Now that we know that the classes L and R contain all isomorphisms of K, the
argument given for the first part of Lemma 1.13 proves the following:

Lemma 2.11. If (L,R) is a weak factorization system in a category K, then L∩R

is the class of isomorphisms in K.

3. Functorial Weak Factorization Systems

Many weak factorization systems are functorial, though in the absence of unique
lifts, we need to be slightly more careful about what this means. It is instructive
to compare the following definition with condition (III) for orthogonal factorization
systems.

Definition 3.1. A weak factorization system (L,R) is functorial if there is a pair
of functors L,R : K2 → K2 such that

domL = dom, codR = cod, codL = domR,

and f = Rf · Lf with Lf ∈ L and Rf ∈ R for every f ∈ mor K.

Remark 3.2. The functors L and R can be equivalently described by the functor

F = codL = domR : K2 → K

and natural transformations λ : dom→ F and ρ : F → cod such that κ = ρ · λ and
λf ∈ L and ρf ∈ R for all morphisms f ; explicitly, the factorization of f ∈ mor K

is given by

dom f
κf=f //

λf ##FFFFFFFF cod f

Ff

ρf

<<yyyyyyyy

We call the triple (F, λ, ρ) a functorial realization for the weak factorization (L,R).
Naturality of λ and ρ implies that for any commutative square (1.15), the diagram

(3.3) · u //

λf

��

·
λg

��
·
F (u,v) //

ρf

��

·
ρg

��
·

v
// ·

commutes.
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A functorial realization of a weak factorization system determines the system
itself. Suppose f ∈ L. The factorization of any f ∈ L gives rise to a lifting problem

·
f

��

λf // ·
ρf

��
·

s

@@�
�

�
�

·
which necessarily has a solution s. Dually, if g ∈ R, its factorization gives rise to a
lifting problem

·
λg

��

·
g

��
·

ρg
//

t

@@�
�

�
�

·

which has a solution t. Accordingly, given a functorial realization (F, λ, ρ) of a weak
factorization system (L,R), define

LF :={f | ∃s : λf = s · f, ρf · s = 1},
RF :={g | ∃t : ρg = g · t, t · λf = 1}.(3.4)

Given f ∈ LF and g ∈ RF the lifts s and t allow one to construct a solution to the
lifting problem (2.1)

(3.5) · u //

λf

��

·
λg

��
·

ρf

��

F (u,v) // ·

t

OO�
�
�

ρg

��
·

s

OO�
�
�

v
// ·

by taking w = t ·F (u, v) · s. The equations defining the lifts s and t guarantee that
the required triangles commute.

Theorem 3.6. (a) For every weak factorization system (L,R) with functorial re-
alization (F, λ, ρ), the classes L = LF and R = RF .

(b) For any triple (F : K2 → K, λ : dom → F, ρ : F → cod) with κ = ρ · λ and
such that λf ∈ LF and ρf ∈ RF for all f ∈ mor K, the pair (LF ,RF ) is a weak
factorization system with functorial realization (F, λ, ρ).

Proof. (a) By definition f ∈ LF satisfies s · f = λf ∈ L with s a split monic, so
LF ⊂ L by (5) and similarly RF ⊂ R. Conversely, if f ∈ L, factor f = ρfλf and
use f � ρf as in the proof of Lemma 2.3 to find a lift s such that λf = s · f and
ρf · s = 1. Hence, L ⊂ LF and dually R ⊂ RF .

(b) The equality κ = ρ ·λ gives factorization and (3.5) shows that LF �RF . We
show that LF and RF are closed under retracts. Given a retract diagram

· u //

h

��

· p //

f

��

·

h

��
·

v
// ·

q
// ·
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factor f and h to obtain

· u //

λh

��

· p //

λf

��

·
λh

��
·
F (u,v) //

ρh

��

·
F (p,q) //

ρf

��

·
ρh

��
·

v
// ·

s

OO�
�
�

q
// ·

If f ∈ LF there exists a lift s such that λf = s · f and ρf · s = 1. Define j =
F (p, q) · s · v. Then using that the outer horizontal composites are the identity, j
satisfies λh = j · h and ρh · j = 1. Hence, h ∈ LF and a dual argument shows RF is
closed under retracts as well. This implies that (LF ,RF ) satisfies (4). Hence, this
pair is a weak factorization system with functoral realization (F, λ, ρ). �

Remark 3.7. In a functorial weak factorization system, the middle arrow in (3.3)
depends functorially on u and v, but it is not in general the unique choice such that
this diagram commutes. Surprisingly, to guarantee uniqueness it suffices to impose
a condition on the functorial factorization of trivial arrows (f, f) : 1domf → 1codf

in K2. Specifically, one requires that the factorization of this square is

· f // ·

· f // ·

·
f

// ·

or at least something isomorphic to it. A functorial weak factorization system
satisfying this condition is called an Eilenberg-Moore factorization system by [7],
which gives a proof that these are equivalent to orthogonal factorization systems
(i.e., that functorial factorizations plus an identity condition implies unique choice).
On the other hand, there are many functorial weak factorization systems that exist
in nature (see Theorem 4.4 below) that are not orthogonal factorization systems,
which suggests that this identity condition is unreasonable to expect.

Rosicky and Tholen prove that many functorial weak factorization systems arise
as lax algebras for the squaring monad described in Theorem 1.16. These include all
cofibrantly generated weak factorization systems in a locally presentable category.
See [10] for details.

4. Weak Factorization Systems and Model Categories

The language of weak factorization systems allows us to give a particularly con-
cise definition of a model category. There are many good references for this subject
such as [1] or [5].

Definition 4.1. A model category K is a complete and cocomplete category to-
gether with three distinguished classes of morphisms — the cofibrations C, the
fibrations F, and the weak equivalences W — satisfying the following axioms:

(M1) The class W is closed under retracts and satisfies the 2 of 3 property: if
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f, g ∈ mor K are such that any two of f, g, or fg is a weak equivalence, so is the
third.

(M2) The pairs (C ∩W,F) and (C,F ∩W) are both weak factorization systems
on K.

Model categories provide a particularly abundant source of weak factorization
systems. Conversely, any weak factorization system (L,R) in a complete and co-
complete category K can be extended to a model structure with C = L, F = R,
and W = mor K. This structure is not particularly interesting.

Hovey [5] notes that the weak factorization systems in most familiar model struc-
tures are in fact functorial. Furthermore, many of them are cofibrantly generated,
which means that the right class of each weak factorization system is defined to be
those maps with the right lifting property with respect to some set of maps. The
left class is then defined to be those maps with the left lifting property with respect
to the right class.

The main tool for constructing cofibrantly generated weak factorization systems
is Quillen’s small object argument, which takes a set of maps I with a certain
condition about their domains and produces a functorial weak factorization system
(�(I�), I�). When this argument can be applied, the left class �(I�) is the smallest
saturated class of morphisms containing I, called the saturation of I.

We won’t attempt to reproduce the theory of cofibrantly generated model cat-
egories (see [5] for a good exposition), but we do give a few definitions leading up
to a statement of Quillen’s small object argument, which produces the cofibrantly
generated functorial weak factorization systems.

When κ is a regular cardinal, we say that an ordinal λ is κ-filtered if every subset
of cardinal less than κ has an upper bound in λ.

Definition 4.2. Let K be a locally small, cocomplete category, let E be a class of
maps in K, and let κ be a regular cardinal. An object A of K is κ-small relative to
E if for every κ-filtered ordinal λ, and every colimit preserving functor X : λ→ K

such that eβ : colimα<βX
α → Xβ is in E for all β < λ, the canonical map

ψ : colimβ<λK(A,Xβ) −→ K(A, colimβ<λX
β)

is a bijection. We say A is small relative to E if A is κ-small for some regular
cardinal κ, and say that A is small if it is small relative to mor K.

The colimit on the left is a quotient of

tβK(A,Xβ)

by the relation f ∼ g iff there is some γ < λ such that the composites

A
f→ Xα → Xγ and A

g→ Xβ → Xγ

are equal. Thus, ψ is well-defined by composing any representative f by the ap-
propriate map in the colimiting cone. In the examples, ψ is usually injective for
all objects A. The main point of this definition comes from surjectivity, which says
that if A is a small object, then any map A → colimβ<λX

β factors through some
object in the colimit diagram.

Example 4.3. Any set is small. More precisely, a set A is |A|-small where |A|
denotes the cardinality of A.
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Theorem 4.4 (Small Object Argument). Let K be a locally small, cocomplete
category, and let I be a set of maps that is small relative to transfinite compositions
of pushouts of elements of I. Then (�(I�), I�) is a functorial weak factorization
system.

Proof. It follows from the definitions that �(I�) and I� satisfy the desired lifting
properties. (Note there is something to show here; namely, that (�(I�))� = I�,
which is true because (−)� and �(−) form a Galois connection on subsets of mor K.)
The small object argument will provide a functorial factorization, provided we
choose all pushouts and colimits of all ordinal diagrams in K in advance.

Let κ be a sufficiently large cardinal so that all domains of morphisms in I are
κ-small and let λ be a κ-filtered ordinal. Let f : X → Y be any morphism in K,
and let X = Z0. Let S0 be the set of commutative squares

A //

j

��

X

f

��
B // Y

with j ∈ I. Define Z1 to be the pushout given by the diagram

tS0A //

�� p

Z0

i1

��
tS0B // Z1

which exists because K is cocomplete. The maps q0 = f : Z0 → Y and tS0B → Y
induce a map q1 : Z1 → Y . Inductively, let Sβ be the set of commutative squares

A //

j

��

Zβ

qn

��
B // Y

with j ∈ I, and define Zβ+1 to be the pushout

(4.5) tSnA //

�� p

Zβ

in+1

��
tSnB // Zβ+1

The cone qβ : Zβ → Y and tSβB → Y induces a map qβ+1 : Zβ+1 → Y . For limit
ordinals α define Zα = colimβ<αZ

β and define qα : Zα → Y to be the map induced
by the qβ .

This construction yields a λ-sequence Z : λ→ K and a cone under this sequence
with summit Y . Let Z = colimβ<λZ

β , and let i : X → Z and q : Z → Y be the
induced maps to and from the colimit. This gives a factorization f = qi that is
functorial because all of the colimits were chosen in advance.

It remains to show that i ∈ �(I�) and q ∈ I�. The left hand factor i was
constructed as a transfinite composite of pushouts of coproducts of elements of I

and thus i ∈ �(I�) by Remark 2.9 and Theorem 2.10. Hence, it remains only to
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show that q ∈ I�. Given a commutative square

A
u //

j

��

Z

q

��
B v

// Y

with j ∈ I, A is κ-small and λ is κ-filtered, so there exists a factorization of u
through some Zβ with β < λ. This gives a commutative diagram

A //

j

��

Zβ //

qβ

��

Z

q
~~}}}}}}}}

B v
// Y

The object Zβ+1 was defined as the pushout over coproducts of such diagrams, so
we have a map h : B → Zβ+1 such that

A

j

��

ũ // Zβ
iβ+1 // Zβ+1 // Z

q

��
B

h

66mmmmmmmm
v

// Y

commutes. The top composite in this rectangle is u, so it is clear that this gives
the desired lift. �

5. Natural Weak Factorization Systems

In the context of a weak factorization system, functoriality of the factorization
does not imply naturality of the lifts s and t of (3.5). To begin with, we do not
know in general that F (u, v) is the unique horizontal morphism that makes (3.5)
commute. Surprisingly, this follows from a simple condition concerning the functo-
rial factorization of trivial squares, which was described in Remark 3.7. Under this
additional hypothesis, the arrow F (u, v) is unique, and it follows from Definition
1.1 that the result is an orthogonal factorization system.

As remarked above, a consequence of this result is that the uniqueness condition,
while seemingly innocuous, is too much to hope for because many weak factorization
systems are not orthogonal. Grandis and Tholen take a different approach in [4],
ignoring the question of whether F (u, v) is unique, and asking instead that the lifts s
and t be somehow naturally chosen. This leads them to formulate the definition of a
natural weak factorization system, of which there are surprisingly many examples.
Richard Garner has developed the theory of natural weak factorization systems
much further in very recent years (see [2] and [3]).

The basic idea is that the factorization functors L and R of a functorial weak
factorization system defined in (3.1) can often be replaced by a comonad L and
monad R respectively, and the resulting extra data can be used to construct natural
lifts. A precise definition follows.

Let CAT/K be the slice 2-category of small categories over K. A monad (T, µ, η)
on f : A→ K in CAT/K is a monad (T, µ, η) on A in CAT such that fT = f and
fη = 1 = fµ.
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Definition 5.1. A natural weak factorization system in a category K is a pair
(L,R) such that

(i) L = (L,Φ,Σ) is a comonad on dom in CAT/K.
(ii) R = (R,Λ,Π) is a monad on cod in CAT/K.
(iii) codL = domR, codΦ = κR, domΛ = κL.

Example 5.2. Let K be any category with binary products. Then every h : X → Y
has a functorial graph factorization

X
(1,h)−→ X × Y πY−→ Y.

Dually, if K has binary coproducts, h has a functorial cograph factorization

X
ιX−→ X ∪ Y h+1−→ Y.

Both of these can be made into natural weak factorization systems. Details are in
[4].

When one keeps in mind that the factorizations of an orthogonal factorization
system are unique up to unique isomorphism, the following result, also in [4], is not
terribly surprising.

Theorem 5.3. Orthogonal factorization systems of K are equivalently described as
those natural weak factorization systems (L,R) for when L and R are idempotent.

In [4], the authors assert that any cofibrantly generated weak factorization sys-
tem in a locally finitely-presentable category is natural, though they do not give a
proof. Garner’s paper [3] works toward this result.

For a natural weak factorization system (L,R), we may construct the Eilenberg-
Moore categories LL and RR for the comonad L and the monad R, respectively. An
object of LL is a pair (f, (1, s) : f → Lf) ∈ ob K2 ×mor K2 such that

f

(1,s)

��

(1,s) //

��������

��������
Lf

Σf

��
f Lf

Φf

oo
L(1,s)

// LLf

The arrow s of K is a given splitting of ρf = Rf as in (3.5) and must be respected
by morphisms in LL. Objects of RR are pairs (g, (t, 1) : Rg → g) ∈ ob K2×mor K2

satisfying a dual condition; the arrow t is a given splitting of λf = Lf .
Because the splittings of a natural weak factorization system are naturally cho-

sen, the left and right classes enjoy the same closure properties of orthogonal fac-
torization systems.

Theorem 5.4. Let (L,R) be a natural weak factorization system. Then every f
factors as f = Rf ·Lf with the left factor and its accompanying lift an object of LL
and the right factor and its accompanying lift an object of RR. Furthermore, for all
(f, (1, s)) ∈ LL and (g, (t, 1)) ∈ RR a lifting problem (1.15) has a natural solution

w = t · F (u, v) · s.
The classes LL and RR are closed under all colimits and limits, respectively, that
exist in K, formed as in K2.

Proof. It is well-known that the forgetful functors LL → K2 and RR → K2 create
all colimits and limits, respectively, that exist in K. �
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