
COMPLICIAL SETS, AN OVERTURE

EMILY RIEHL

Abstract. The aim of these notes is to introduce the intuition motivating the

notion of a complicial set, a simplicial set with certain marked “thin” simplices

that witness a composition relation between the simplices on their boundary.
By varying the marking conventions, complicial sets can be used to model

(∞, n)-categories for each n ≥ 0, including n = ∞. For this reason, compli-

cial sets present a fertile setting for thinking about weak infinite dimensional
categories in varying dimensions. This overture is presented in three acts: the

first introducing simplicial models of higher categories; the second defining the

Street nerve, which embeds strict ω-categories as strict complicial sets; and
the third exploring an important saturation condition on the marked simplices

in a complicial set and presenting a variety of model structures that capture
their basic homotopy theory. Scattered throughout are suggested exercises for

the reader who wants to engage more deeply with these notions.
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As the objects that mathematicians study increase in sophistication, so do their
natural habitats. On account of this trend, it is increasingly desirable to re-
place mere 1-categories of objects and the morphisms between them, with infinite-
dimensional categories containing 2-morphisms between 1-morphisms, 3-morphisms
between 2-morphisms, and so on. The principle challenge in working with infinite-
dimensional categories is that the naturally occurring examples are weak rather
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than strict, with composition of n-morphisms only associative and unital up to an
n + 1-morphism that is an “equivalence” in some sense. The complexity is some-
what reduced in the case of (∞, n)-categories, in which all k-morphisms are weakly
invertible for k > n, but even in this case, explicit models of these schematically
defined (∞, n)-categories can be extremely complicated.

Complicial sets provide a relatively parsimonious model of infinite-dimensional
categories, with special cases modeling (∞, 0)-categories (also called∞-groupoids),
(∞, 1)-categories (the ubiquitous ∞-categories), indeed (∞, n)-categories for any
n, and also including the general case of (∞,∞)-categories. Unlike other models of
infinite-dimensional categories, the definition of a complicial set is extremely simple
to state: it is a simplicial set with a specified collection of marked “thin” simplices,
in which certain elementary anodyne extensions exist. These anodyne extensions
provide witnesses for a weak composition law and guarantee that the thin simplices
are equivalences in a sense defined by this weak composition.

This overture is dividing into three acts, each comprising one part of the three-
hour mini course that generated these lecture notes. In the first, we explore how a
simplicial set can be used to model the weak composition of an (∞, 1)-category and
consider the extra structure required to extend these ideas to provide a simplicial
model of (∞, 2)-categories. This line of inquiry leads naturally to the definition of
a a complicial set as a stratified (read “marked”) simplicial set in which composable
simplices admit composites.

In the second part, we delve into the historical motivations for this model for
higher categories based on stratified simplicial sets. John Roberts proposed the
original definition of strict complicial sets, which admit unique extensions along
the elementary anodyne inclusions, as a conjectural model for strict ω-categories
[6]. Ross Street defined a nerve functor from ω-categories into simplicial sets [7],
and Dominic Verity proved that it defines a full and faithful embedding into the
category of stratified simplicial sets whose essential image is precisely the strict
complicial sets [8]. While we do not have the space to dive into proof of this result
here, we nonetheless describe the Street nerve in some detail as it is an important
source of examples of both strict and also weak complicial sets, as is explained in
part three.

In the final act, we turn our attention to those complicial sets that most ac-
curately model (∞, n)-categories. Their markings are saturated, in the sense that
every simplex that behaves structurally like an equivalence, is marked. We present
a variety of model structures, due to Verity, that encode the basic homotopy the-
ory of complicial sets of various flavors, including those that are n-trivial, with
every simplex above dimension n marked, and saturated. The saturation condi-
tion is essential for a conjectural equivalence between the complicial sets models of
(∞, n)-categories and other models known to satisfy the axiomatization of Barwick–
Schommer-Pries [1], which passes through a complicial nerve functor due to Verity.
This result will appear in a future paper.
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from June 6-7, 2016. The author wishes to thank Marcy Robertson and Philip
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she consulted while preparing these notes. Finally, thanks are due to an eagle-
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1. Introducing complicial sets

Infinite dimensional categories have morphisms in each dimension that satisfy
a weak composition law, which is associative and unital up to higher-dimensional
morphisms rather than on the nose. There is no universally satisfactory definition of
“weak composition”; instead a variety of models of infinite-dimensional categories
provide settings to work with this notion.

A complicial set, nee. weak complicial set, is a stratified simplicial set, with a
designed subset of “thin” marked simplices marked, that admits extensions along
certain maps. Complicial sets model weak infinite-dimensional categories, some-
times called (∞,∞)-categories. By requiring all simplices above a fixed dimension
to be thin, they can also model (∞, n)-categories for all n ∈ [0,∞].

Strict complicial sets were first defined by Roberts [6] with the intention of con-
structing a simplicial model of strict ω-categories. He conjectured that it should be
possible to extend the classical nerve to define an equivalence from the category of
strict ω-categories to the category of strict complicial sets. Street defined this nerve
[7], providing a fully precise statement of what is known as the Street–Roberts con-
jecture, appearing as Theorem 2.0.1. Verity proved the Street–Roberts conjecture
[8] and then subsequently defined and developed the theory of the weak variety of
complicial sets [9, 10] that is the focus here.

We begin in §1.1 by revisiting how a quasi-category (an unmarked simplicial set)
models an (∞, 1)-category. This discussion enables us to explore what would be
needed to model an (∞, 2)-category as a simplicial set in §1.2. These excursions
motivate the definition of stratified simplicial sets in §1.3 and then complicial sets
in §1.4. We conclude in §1.5 by defining n-trivial complicial sets, which, like (∞, n)-
categories, have non-invertible simplices concentrated in low dimensions.

We assume the reader has some basic familiarity with the combinatorics of sim-
plicial sets and adopt relatively standard notations, e.g., ∆[n] for the standard
n-simplex and Λk[n] for the horn formed by those faces that contain the kth ver-
tex.

1.1. Quasi-categories as (∞, 1)-categories. The most popular model for (∞, 1)-
categories were first introduced by Michael Boardman and Rainer Vogt under the
name weak Kan complexes [2].

Definition 1.1.1. A quasi-category is a simplicial set A so that every inner horn
admits a filler

Λk[n] A ∀n ≥ 2, 0 < k < n.

∆[n]

This presents an (∞, 1)-category with:

• A0 as the set of objects;
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• A1 as the set of 1-cells with sources and targets determined by the face
maps

A1 A0

d1=source

d0=target

and degenerate 1-simplices serving as identities;
• A2 as the set of 2-cells;
• A3 as the set of 3-cells, and so on.

The weak 1-category structure arises as follows. A 2-simplex

(1.1.2)

1

0 2

g
α

f

h

provides a witness that h ' gf .

Notation 1.1.3. We adopt the convention throughout of always labeling the ver-
tices of an n-simplex by 0, . . . , n to help orient each picture. This notation does
not assert that the vertices are necessarily distinct.

A 3-simplex then

1

0 3

2

kf

j

`

h

g

provides witnesses that h(gf) ' hj ' ` ' kf ' (hg)f .
The homotopy category of a quasi-category A is the category whose objects

are vertices and whose morphisms are a quotient of A1 modulo the relation f ' g
that identifies a pair of parallel edges if and only if there exists a 2-simplex of the
following form:

(1.1.4)

1

0 2

α
f

g

Notation 1.1.5. Here and elsewhere the notation “=” is used for degenerate sim-
plices.

Exercise 1.1.6. Formulate alternate versions of the relation f ' g and prove that
in a quasi-category each of these relations defines an equivalence relation and fur-
thermore that these relations are all equivalent.

The composition operation witnessed by 2-simplices is not unique on the nose
but it is unique up to the notion of homotopy just introduced.

Exercise 1.1.7. Prove that the homotopy category is a strict 1-category.

A quasi-category is understood as presenting an (∞, 1)-category rather than an
(∞,∞)-category because each 2-simplex is invertible up to a 3-simplex, and each
3-simplex is invertible up to a 4-simplex, and so on, in a sense we now illustrate.
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First consider a 2-simplex as in (1.1.4). This data can be used to define a horn
Λ1[3]→ A whose other two faces are degenerate

1 2 1 2

0 3 0 3

β '

=

=

f
α

g

f f

f

which can be filled to define a “right inverse” β in the sense that this pair of 2-cells
bound a 3-simplex with other faces degenerate. Similarly, there is a “special outer
horn”1 Λ3[3]→ A

1 2 1 2

0 3 0 3

α '

=

=

g
γ

f

g g

g

which can be filled to define a “left inverse” γ. In this sense, α is an equivalence
up to 3-simplices, admitting left and right inverses along the boundary of a pair of
three simplices.

This demonstrates that 2-simplices with a degenerate outer edge admit left and
right inverses, but what if α has the form (1.1.2)? In this case, we can define a
horn Λ1[3]→ A horn

1 2 1 2

0 3 0 3

g

α̂

g

g

=

α
f

'

gf

h h

f

whose 3rd face is constructed by filling a horn Λ1[2] → A. In this sense, any
2-simplex is equivalent to one with last (or dually first) edge degenerate.

Exercise 1.1.8. Generalize this argument to show that the higher-dimensional sim-
plices in a quasi-category are also weakly invertible.

1.2. Towards a simplicial model of (∞, 2)-categories. Having seen how a sim-
plicial set may be used to model an (∞, 1)-category, it is natural to ask how a
simplicial set might model an (∞, 2)-category. A reasonable idea would be inter-
pret the 2-simplices as inhabited by not necessarily invertible 2-cells pointing in a
consistent direction. The problem with this is that the 2-simplices need to play a
dual role: they must also witness composition of 1-simplices, in which case it does
not make sense to think of them as inhabited by non-invertible cells. The idea is to
mark as “thin” the witnesses for composition and then demand that these marked
2-simplices behave as 2-dimensional equivalences in a sense that can be intuited
from the preceding three diagrams.

Then 3-simplices can be thought of as witnesses for composition of not-necessarily
thin 2-simplices. For instance, given a pair of 2-simplices α and β with boundary

1Special outer horns Λ0[n] → A and Λn[n] → A have first or last edges mapping to 1-
equivalences (such as degeneracies) in A, as introduced in Definition 3.1.2 below.



6 EMILY RIEHL

as displayed below, the idea is to build a Λ2[3]-horn

1 2 1 2

0 3 0 3

g

k
β ⇑ '

g

kg

'

⇑ α ∗ β
kf

⇑α

h

` `

f

whose 0th face is a thin filler of the Λ1[2]-horn formed by g and k. The 2nd
face, defined by filling the horn Λ2[3]-horn, defines a composite 2-simplex, which
is witnessed by the (thin) 3-simplex. Note that because the 0th face is thin, its
1st edge is interpreted as a composite kg of g and k, which is needed so that the
boundary of the new 2-cell agrees with the boundary of the pasted composite of
β and α. Since the 3-simplex should be thought of as a witness to a composition
relation involving the 2-simplices that make up its boundary, the three simplex
should also be regarded as “thin.”

A similar Λ1[3]-horn can be used to define composites where the domain of α
is the last, rather than the first, edge of the codomain of β. It is in this way that
simplicial sets with certain marked simplices are used to model (∞, 2)-categories or
indeed (∞, n)-categories for any n ∈ [0,∞]. We now formally introduce stratified
simplicial sets before stating the axioms that define these complicial sets.

1.3. Stratified simplicial sets. We have seen that for a simplicial set to model
an infinite-dimensional category with non-invertible morphisms in each dimension,
it should have a distinguished set of “thin” n-simplices witnessing composition of
(n− 1)-simplices. Degenerate simplices are always thin in this sense. Furthermore,
the intuition that the “thin” simplices are the equivalences, in a sense that is made
precise in §3, suggests that certain 1-simplices might also be marked as thin. This
motivates the following definition:

Definition 1.3.1. A stratified simplicial set is a simplicial set with a desig-
nated subset of marked or thin positive-dimensional simplices that includes all
degenerate simplices. A map of stratified simplicial sets is a simplicial map that
preserves thinness.

Notation 1.3.2. The symbol “'” is used throughout to decorate thin simplices.

There are left and right adjoints

Strat sSetU

(−)[

⊥

(−)]
⊥

to the forgetful functor from stratified simplicial sets to ordinary simplicial sets,
both of which are full and faithful. The left adjoint assigns a simplicial set its
minimal stratification, with only degenerate simplices marked, while the right
adjoint assigns the maximal stratification, marking all simplices. When a simplicial
set is regarded as a stratified simplicial set, the default convention is to assign the
minimal stratification, with the notation “(−)[” typically omitted.

Definition 1.3.3. An inclusion U ↪→ V of stratified simplicial sets is:

• regular, denoted U ↪→r V , if thin simplices in U are created in V (a
simplex is thin in U if and only if its image in V is thin); and
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• entire, denoted U ↪→e V , if the map is the identity on underlying simpli-
cial sets (in which case the only difference between U and V is that more
simplices are marked in V ).

A standard inductive argument, left to the reader, proves:

Proposition 1.3.4. The monomorphisms in Strat are generated under pushout
and transfinite composition by

{∂∆[n] ↪→r ∆[n] | n ≥ 0} ∪ {∆[n] ↪→e ∆[n]t | n ≥ 1},

where the top-dimensional n-simplex in ∆[n]t is thin.

Exercise 1.3.5. Prove this.

1.4. Complicial sets. A stratified simplicial set is a simplicial set with enough
structure to talk about composition of simplices. A complicial set is a stratified
simplicial set in which composites exist and in which thin witnesses to composition
compose to thin simplices, an associativity condition that will also play a role in
establishing their equivalence-like nature. The following form of the definition of a
(weak) complicial set, due to Verity [9], modifies an earlier equivalent presentation
due to Street [7]. Verity’s modification focuses on a particular set of k-admissible
n-simplices, thin n-simplices that witness that the kth face is a composite of the
(k + 1)th and (k − 1)th simplices.

Definition 1.4.1 (k-admissible n-simplex). The k-admissible n-simplex is the
entire superset of the standard n-simplex with certain additional faces marked thin:
a non-degenerate m-simplex in ∆k[n] is thin if and only if it contains all of the
vertices {k − 1, k, k + 1} ∩ [n]. Thin faces include:

• the top dimensional n-simplex
• all codimension-one faces except for the (k − 1)th, kth, and (k + 1)th
• the 2-simplex spanned by [k − 1, k, k + 1] when 0 ≤ k ≤ n or the edge

spanned by [k − 1, k, k + 1] ∩ [n] when k = 0 or k = n.

Definition 1.4.2. A complicial set is a stratified simplicial set that admits ex-
tensions along the elementary anodyne extensions, which are generated under
pushout and transfinite composition by the following two sets of maps:

(i) The complicial horn extensions

Λk[n] ↪→r ∆k[n] for n ≥ 1, 0 ≤ k ≤ n

are regular inclusions of k-admissible n-horns. An inner admissible n-
horn parametrizes “admissible composition” of a pair of (n− 1)-simplices.
The extension defines a composite (n − 1)-simplex together with a thin
n-simplex witness.

(1.4.3)

Λk[n] A

∆k[n]

(ii) The complicial thinness extensions

∆k[n]′ ↪→e ∆k[n]′′ for n ≥ 1, 0 ≤ k ≤ n,
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are entire inclusions of two entire supersets of ∆k[n]. The stratified sim-
plicial set ∆k[n]′ is obtained from ∆k[n] by also marking the (k−1)th and
(k + 1)th faces, while ∆k[n]′′ has all codimension-one faces marked. This
extension problem

(1.4.4)

∆k[n]′ A

∆k[n]′′

demands that whenever the composable pair of simplices in an admissible
horn are thin, then so is any composite.

Definition 1.4.5. A strict complicial set is a stratified simplicial set that admits
unique extensions along the elementary anodyne extensions (1.4.3) and (1.4.4).

Example 1.4.6 (complicial horn extensions). To gain familiarity with the ele-
mentary anodyne extensions, let us draw the complicial horn extensions in low
dimensions, using red to depict simplices present in the codomain but not the do-
main and “'” to decorate thin simplices. The labels on the simplices are used to
suggest the interpretation of certain data as composites of other data, but recall
that in a (non-strict) complicial set there is no single simplex designated as the
composite of an admissible pair of simplices. Rather, the fillers for the complicial
horn extensions provide a composite and a witness to that relation.

• Λ1[2] ↪→r ∆1[2]

1

0 2

g'f

gf

• Λ0[2] ↪→r ∆0[2]

1

0 2

fe−1'e'

f

• Λ2[3] ↪→r ∆2[3]

1 2 1 2

0 3 0 3

g

k
β ⇑ '

g

kg

'

⇑ α ∗ β
kf

⇑α

h

` `

f

• Λ0[3] ↪→r ∆0[3]

1 2 1 2

0 3 0 3

fe−1

g

α ⇑ '

fe−1

he−1

αe−1

⇑' ge'

'

f

h h

e'

• For Λ2[4] ↪→r ∆2[4] the non-thin codimension-one faces in the horn define the
two 3-simplices with a common face displayed on the left, while their composite is
a 3-simplex as displayed on the right.
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1

2

0 4

3

1

0 4

3

It makes sense to interpret the right hand simplex, the 2nd face of the 2-admissible
4-simplex, as a composite of the 3rd and 1st faces because the 2-simplex

2

1 3

'
is thin.

1.5. n-trivialization and the n-core. We now introduce the complicial analog
of the condition that an (∞,∞)-category is actually an (∞, n)-category, in which
each r-cell with r > n is weakly invertible.

Definition 1.5.1. A stratified simplicial set X is n-trivial if all r-simplices are
marked for r > n.

The full subcategory of n-trivial stratified simplicial sets is reflective and core-
flective

Stratn-tr Strat⊥
⊥

trn

coren

in the category of stratified simplicial sets. That is n-trivialization defines an
idempotent monad on Strat with unit the entire inclusion

X ↪→e trnX

of a stratified simplicial set X into the stratified simplicial set trnX with the same
marked simplices in dimensions 1, . . . , n, and with all higher simplices “made thin.”
A complicial set is n-trivial if this map is an isomorphism.

The n-core corenX, defined by restricting to those simplices whose faces above
dimension n are all thin in X, defines an idempotent comonad with counit the
regular inclusion

corenX ↪→r X.

Again, a complicial set is n-trivial just when this map is an equivalence. As is
always the case for a monad-comonad pair arising in this way, these functors are
adjoints: trn a coren.

The subcategories of n-trivial stratified simplicial sets assemble to define a string
of inclusions with adjoints

sSet Strat0-tr Strat1-tr Strat(n−1)-tr Stratn-tr · · · Strat
(−)]

∼=
⊥
⊥

core1

tr1

· · · ⊥
⊥

coren−1

trn−1
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that filter the inclusion of simplicial sets, considered as maximally marked stratified
simplicial sets, into the category of all stratified simplicial sets.

Exercise 1.5.2. Show that the two right adjoints restrict to complicial sets to define
functors that model the inclusion of (∞, n − 1)-categories into (∞, n)-categories
and its right adjoint, which takes an (∞, n)-category to the “groupoid core,” an
(∞, n− 1)-category.

Remark 1.5.3. By contrast, the left adjoint, which just marks things arbitrarily,
does not preserve complicial structure; this construction is too naive to define the
“freely invert n-arrows” functor from (∞, n)-categories to (∞, n− 1)-categories.2

Exercise 1.5.4. Show that a 0-trivial complicial set is exactly a Kan complex with
the maximal “(−)]” marking.

Exercise 1.5.5. Prove that the underlying simplicial set of any 1-trivial complicial
set is a quasi-category.

Conversely, any quasi-category admits a stratification making it a complicial
set. The markings on the 1-simplices cannot be arbitrarily assigned. At minimum,
certain automorphisms (endo-simplices that are homotopic to identities) must be
marked. More to the point, each edge that is marked necessarily defines an equiva-
lence in the quasi-category. But it is not necessary to mark all of the equivalences.

Example 1.5.6. Strict n-categories define n-trivial strict complicial sets, with
unique fillers for the admissible horns, via the Street nerve, which is the subject of
the next section.

In the third part of these notes, we argue that the complicial sets that most
closely model (∞, n)-categories are the n-trivial saturated complicial sets, in which
all equivalences are marked. In the case of an n-trivial stratification, the equiva-
lences are canonically determined by the structure of the simplicial set. One bit
of evidence for the importance of the notion of saturation discussed below is the
fact that the category of quasi-categories is isomorphic to the category of saturated
1-trivial complicial sets (Example 3.2.11).

2. The Street nerve of an ω-category

The Street nerve is a functor

N : ω-Cat→ sSet

from strict ω-categories to simplicial sets. As is always the case for nerve construc-
tions, the Street nerve is determined by a functor

O : �→ ω-Cat.

In this case, the image of [n] ∈ � is the nth oriental On, a strict n-category defined
by Street [7]. The nerve of a strict ω-category C is then defined to be the simplicial
set whose n-simplices

NCn := hom(On, C)

2For instance, if A is a naturally marked quasi-category, that is 1-trivial, then its zero trivial-
ization is not a Kan complex (because we have not changed the underlying simplicial set) but its

groupoid core is (by a theorem of Joyal).
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are ω-functors On → C. There are various ways to define a stratification on the
nerve of an ω-category, defining a lift of the Street nerve to a functor valued in
stratified simplicial sets. One of these marking conventions turns Street nerves of
strict ω-categories into strict complicial sets, and indeed all strict complicial sets
arise in this way. This is the content of the Street–Roberts conjecture, proven by
Verity, which motivated the definition of strict complicial sets.

Theorem 2.0.1 (Verity). The Street nerve defines a fully faithful embedding

ω-Cat StratN

of ω-categories into stratified simplicial sets, where an n-simplex On → C in NC
is marked if and only if it carries the top dimensional n-cell on On to an identity
in C. The essential image is the category of strict complicial sets.

In §2.1, we introduce strict ω-categories, and then in §2.2 we introduce the
orientals. In §2.3, we then define the Street nerve and revisit the Street–Roberts
conjecture, though we leave the details of its proof to [8]. At the conclusion of this
section, we look ahead to §3.1, which explores other marking conventions for Street
nerves of strict n-categories. In this way, the Street nerve provides an important
source of examples of weak, as well as strict, complicial sets. These are obtained
by marking the equivalences and not just the identities in NC, the consideration
of which leads naturally to the notion of saturation in a complicial set, which is a
main topic for the final section of these notes.

2.1. ω-categories. Street’s “The algebra of oriented simplexes” [7] gives a single-
sorted definition of a (strict) n-category in all dimensions n = 1, . . . , ω. In the single-
sorted definition of a 1-category, an object is identified with its identity morphism,
and these 0-cells are recognized among the set of 1-cells as the fixed points for the
source and target maps.

Definition 2.1.1. A 1-category (C, s, t, ∗) consists of

• a set C of cells
• functions s, t : C ⇒ C so that ss = ts = s and tt = st = t (a target or

source has itself as its target and its source).
• a function ∗ : C ×C C → C from the pullback of s along t to C so that
s(a ∗ b) = s(b) and t(a ∗ b) = t(a) (the source of a composite is the source
of its first cell and the target is the target of the second cell).

and so that

• s(a) = t(v) = v implies a ∗ v = a (right identity)
• u = s(u) = t(a) implies u ∗ a = a (left identity)
• s(a) = t(b) and s(b) = t(c) imply a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity).

The objects or 0-cells are the fixed points for s and then also for t and conversely.

Definition 2.1.2. A 2-category (C, s0, t0, ∗0, s1, t1, ∗1) consists of two 1-categories

(C, s0, t0, ∗0) and (C, s1, t1, ∗1)

so that

• s1s0 = s0 = s0s1 = s0t1, t0 = t0s1 = t0t1 (globularity plus 1-sources and
1-targets of points are points)

• s0(a) = t0(b) implies s1(a∗0 b) = s1(a)∗0s1(b) and t1(a∗0 b) = t1(a)∗0 t1(b)
(1-cell boundaries of horizontal composites are composites).
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• s1(a) = t1(b) and s1(a′) = t1(b′) and s0(a) = t0(a′) imply that

(a ∗1 b) ∗0 (a′ ∗1 b′) = (a ∗0 a′) ∗1 (b ∗0 b′)

(middle four interchange).

Identities for ∗0 are 0-cells and identities for ∗1 are 1-cells.

Definition 2.1.3. An ω+-category3 consists of 1-categories (C, sn, tn, ∗n) for each
n ∈ ω so that (C, sm, tm, ∗m, sn, tn, ∗n) is a 2-category for each m < n. The
identities for ∗n are n-cells. An ω+-functor is a function that preserves sources,
targets, and composition for each n.

An ω-category is an ω+-category in which every element is a cell, an n-cell for
some n. Every ω+-category has a maximal sub ω-category of cells and all of the
constructions described here restrict to ω-categories.

An n-category is an ω-category comprised of only n-cells. This means that the
1-category structures (C, sm, tm, ∗m) for m > n are all discrete.

Example 2.1.4. The underlying set functor ω+-Cat → Set is represented by the
free ω+-category 2ω on one generator4, whose underlying set is

(2× ω) ∪ {ω}.

The element ω is the unique non-cell, while the objects (0, n) and (1, n) are n-cells,
respectively the n-source and n-target of ω:

sn(ω) = (0, n) and tn(ω) = (1, n).

An m-cell is necessarily its own n-source and n-target for m ≤ n; thus:

sn(ε,m) = tn(ε,m) = (ε,m) for m ≤ n,

while:

sn(ε,m) = (0, n) and tn(ε,m) = (1, n) for n < m.

The identity laws dictate all of the composition relations, e.g.:

ω ∗n (0, n) = ω = (1, n) ∗n ω.

Using 2ω one can define the functor ω+-category [A,B] for two ω+-categories
A and B: elements are ω+-functors A× 2ω → B.

Exercise 2.1.5. Work out the rest of the definition of the ω+-category [A,B] and
prove that ω+-Cat is cartesian closed.

Theorem 2.1.6 (Street). There is an equivalence of categories

(ω+-Cat)-Cat
'−→ ω+-Cat

which restricts to define an equivalence

(n-Cat)-Cat
'−→ (1 + n)-Cat

for each n ∈ [0, ω].5

3Street called these “ω-categories” but we reserve this term for something else.
4In personal communication, Ross suggests that there may be something wrong with this

example, but I do not see what it is.
5Recall that in ordinal arithmetic 1 + ω = ω.
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Proof. The construction of this functor is extends the construction of a 2-category
from a Cat-enriched category. Let C be a category enriched in ω+-categories. Define
an ω+-category C whose underlying set is

C := tu,v∈obCC(u, v).

The 0-source and 0-target of an element a ∈ C(u, v) are u and v, respectively, and
0-composition is defined using the enriched category composition. The n-source,n-
target, and n-composition are defined using the (n − 1)-category structure of the
ω+-category C(u, v).

Conversely, given an ω+-category C, the associated ω+-category enriched cate-
gory C can be defined by taking the 0-cells of C as the objects of C, defining C(u, v)
to be the collection of elements with 0-source u and 0-target v, using the operations
(sn, tn, ∗n) for n > 0 to define the ω+-category structure on C(u, v). �

2.2. Orientals. The nth oriental On is a strict n-category with a single n-cell
whose source is the pasted composite of (n− 1)-cells, one for each of the odd faces
of the simplex ∆[n], and whose target is a pasted composite of (n − 1)-cells, one
for each of the even faces of the simplex ∆[n]. The orientals On can be recognized
as full sub ω-categories of an ω-category Oω, the free ω-category on the ω-simplex
∆[ω], spanned by the objects that correspond to the vertices of ∆[n]. The precise
combinatorial definition ofOn is rather subtle to state, making use of Street’s notion
of parity complex, which we decline to introduce in general. Before defining the
orientals as special cases of parity complexes, we first describe the low-dimensional
cases.

The orientals O0,O1,O2, . . . are ω-categories, where each On is an n-category.
In low dimensions:

(n = 0) O0 is the ω-category with a single 0-cell:

0

(n = 1) O1 is the ω-category with two 0-cells 0, 1 and a 1-cell:

0 1

(n = 2) O2 is the ω-category with three 0-cells 0, 1, 2 and four 1-cells as displayed:

1

0 2

12

02

{01,12}
01

Note that only two of these are composable, with their composite the
1-cell denoted by {01, 12}. The underlying 1-category of O2 is the non-
commutative triangle, the free 1-category generated by the ordinal [2].

There is a unique 2-cell

1

0 2

12

02

⇑
{01,12}

01
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whose 0-source is 0 and whose 0-target is 2, and whose 1-source is 02 and
whose 1-target is {01, 12}. We can simplify our pictures by declining to
draw the free composites that are present in O2, as they must be in any
ω-category. Under this simplifying convention, O2 is depicted as:

1

0 2

12
⇑

02

01

(n = 3) Similarly O3 has four 0-cells, abbreviated 0,1,2,3; has the free category on
the graph [3] as its underlying 1-category, with six atomic 1-cells and five
free composites; has four atomic 2-cells plus two composites; and has a
3-cell from one of these composites to the other. Under the simplifying
conventions established above, O3 can be drawn as:

1 2 1 2

0 3 0 3

⇑ V
⇑

⇑
⇑

Definition 2.2.1 (the nth oriental, informally). The nth oriental is the strict
n-category On whose atomic k-cells corresponding to the k-dimensional faces of
∆[n] (the non-degenerate k-simplices, which can be identified with (k+ 1)-element
subsets of [n]). The codimension-one source of a k-cell is a pasted composite of
the odd faces of the ∆[k]-simplex, while the codimension-one target is a pasted
composite of the even faces of the k-simplex.

If S is a subset of faces of ∆[n] write S− for the union of the odd faces of simplices
in S and write S+ for the union of even faces of simplices in S. Write Sk for the
k-dimensional elements of S and |S|k for the elements of dimension at most k.

Definition 2.2.2 (the nth oriental, precisely). The k-cells of the n-category On
are pairs (M,P ) where M and P are non-empty, well-formed, finite subsets of
faces of ∆[n] of dimension at most k so that M and P both move M to P . Here
a subset S of faces of ∆[n] is well-formed if it contains at most one vertex and if
for any distinct elements x 6= y, x and y have no common sources and no common
targets. A subset S moves M to P if

M = (P ∪ S−)\S+ and P = (M ∪ S+)\S−.
If (M,P ) is a m-cell, the axioms imply that Mm = Pm. The k-source and

k-target are given by

sk(M,P ) := (|M |k,Mk ∪ |P |k−1)

tk(M,P ) := (|M |k−1 ∪ Pk, |P |k)

and composition is defined by

(M,P ) ∗k (N,Q) := (M ∪ (N\Nk), (P\Pk) ∪Q).

Example 2.2.3. The oriental O4 has a unique 4-cell given by the pair

M = {01234, 0124, 0234, 012, 023, 034, 04, 0}
P = {01234, 0123, 0134, 1234, 124, 234, 014, 01, 12, 23, 34, 4}.
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Exercise 2.2.4. Identify the source and target of the unique 4-cell in O4.

Exercise 2.2.5. Show that On has a unique n-cell.

The orientals satisfy the universal property of being freely generated by the
faces of the simplex, in the sense of the following definition of free generation for
an ω-category.

Definition 2.2.6. For an ω-category C, write |C|n for its n-categorical truncation,
discarding all higher-dimensional cells. The ω-category C is freely generated by
a subset G ⊂ C if for each ω-category X, n ∈ ω, n-functor |C|n → X, and map
G ∩ |C|n+1 → X, compatible with n-sources and targets there exists a unique
extension to an (n+ 1)-functor |C|n+1 → X.

G ∩ |C|n+1 X

|C|n+1

|C|n X

∩
tnsn

∃!

tnsn

Theorem 2.2.7 (Street). The category On is freely generated by the faces of ∆[n].

Exercise 2.2.8. Use this universal property to show that the orientals define a
cosimplicial object in ω-categories

O : �→ ω-Cat.

This cosimplicial object gives rise to the Street nerve, to which we now turn.

2.3. The Street nerve as a strict complicial set.

Definition 2.3.1. The Street nerve of an ω-category C, is the simplicial set NC
whose n-simplices are ω-functors On → C.

Example 2.3.2 (Street nerves of low-dimensional categories).

(i) The Street nerve of a 1-category is its usual nerve.
(ii) The Street nerve of a 2-category has 0-simplices the objects, 1-simplices

the 1-cells, and 2-simplices the 2-cells α : h⇒ gf whose target is a specified
composite

1

0 2

g
α ⇑

f

h

The 3-simplices record equations between pasted composites of 2-cells of
the form

1 2 1 2

0 3 0 3

α ⇑ =

δ⇑

⇑ γ
⇑β

This simplicial set is 3-coskeletal, with a unique filler for all spheres in
higher dimensions.

In general:
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Theorem 2.3.3 (Street). The nerve of an n-category is (n+ 1)-coskeletal.

The Street nerve can be lifted along U : Strat→ sSet by choosing a stratification
for the simplicial set NC.

Definition 2.3.4. In the identity stratification of the Street nerve of an ω-
category C, an n-simplex inNC is marked if and only if the corresponding ω-functor
On → C carries the n-cell in On to a cell of lower dimension in C. That is, in the
identity stratification of NC, only those n-simplices corresponding to identities are
marked.

The identity stratification defines a functor ω-Cat → Strat. This terminology
allows us to restate the Street–Roberts conjecture more concisely:

Theorem 2.3.5 (Verity). The Street nerve with the identity stratification defines
a fully faithful embedding

ω-Cat StratN

of ω-categories into stratified simplicial sets, with essential image the category of
strict complicial sets.

Example 2.3.6.

(i) If C is a 1-category, the identity stratification turns NC into a 2-trivial
strict complicial set with only the identity (i.e., degenerate) 1-simplices
marked.

(ii) If C is a 2-category, the identity stratification turns NC into a 3-trivial
strict complicial set with only the degenerate 1-simplices marked and with
a 2-simplex marked if and only if it is inhabited by an identity 2-cell,
whether or not there are degenerate edges, e.g.,:

1

0 2

1gf ⇑
gf

gf

An interesting feature of the complicial sets model of higher categories is that
strict ω-categories can also be a source of weak rather than strict complicial sets,
simply by choosing a more expansive marking convention. We begin the next section
by exploring this possibility.

3. Saturated complicial sets

In the previous section, we defined the Street nerve of an ω-category C, a simpli-
cial set NC whose n-simplices are diagrams On → C indexed by the nth oriental.
We observed that this simplicial set becomes a strict complicial set if we mark pre-
cisely those diagrams On → C that carry the n-cell of On to a cell of dimension
less than n in C (i.e., to an identity).

One of the virtues of the complicial sets model of weak higher categories is the
possibility of changing the stratification on a given simplicial set if one desires a
more generous or more refined notion of thinness, corresponding to a tighter or
looser definition of composition. The identity stratification of NC is the smallest
stratification that makes this simplicial set into a weak complicial set, but we will
soon meet other larger stratifications that are more categorically natural.



COMPLICIAL SETS, AN OVERTURE 17

In §3.1, we begin by looking in low dimensions for limitations on which sim-
plices can be marked in a complicial set, and discover that any marked 1-simplex
is necessarily an 1-equivalence, in a sense that we define. In §3.2, we introduce the
higher-dimensional generalization of these notions. We conclude in §3.3 by summa-
rizing the work of Verity that establishes the basic homotopy theory of complicial
sets of various flavors.

To construct weak complicial sets from nerves of strict ω-categories, the strat-
ification on the Street nerve is enlarged, but in other instances refinement of the
markings is desired. For example, Verity constructs a Kan complex of simplicial
cobordisms between piecewise-linear manifolds. Because the underlying simpli-
cial set is a Kan complex, it becomes a weak complicial set under the 0-trivial
stratification where all cobordisms (all positive-dimensional simplices) are marked.
Other choices, in increasing order of refinement, are to mark the h-cobordisms
(cobordisms for which the negative and positive boundary inclusions are homotopy
equivalences), the quasi-invertible cobordisms (the “equivalences”), or merely the
trivial cobordisms (meaning the cobordism “collapses” onto its negative and also
its positive boundary).

3.1. Weak complicial sets from strict ω-categories. To explore other potential
markings of Street nerves of strict ω-categories, we first ask whether it is possible
to mark more than just the degenerate 1-simplices.

If f is a marked edge in any complicial set A, then the Λ2[2]-horn with 0th face
f and 1st face degenerate is admissible, so f has a right equivalence inverse. A dual
construction involving a Λ0[2]-horn shows that f has a left equivalence inverse.

(3.1.1)

1 1

0 2 0 2

f'' ''' f'

The elementary thinness extensions imply further than these one-sided inverses are
also marked, so they admit further inverses of their own.

Definition 3.1.2. A 1-simplex in a stratified simplicial set is a 1-equivalence if
there exist a pair of thin 2-simplices as displayed

1 1

0 2 0 2

f' 'f

Note the notion of 1-equivalence is defined relative to the 2-dimensional stratifi-
cation.

Remark 3.1.3. There are many equivalent ways to characterize the 1-equivalences
in a complicial set A. We choose Definition 3.1.2 because of its simplicity and
naturality, and because this definition provides a homotopically well-behaved type
of equivalences in homotopy type theory; see [3, 2.4.10].

The elementary anodyne extensions displayed in 3.1.1 prove:

Proposition 3.1.4. Any marked 1-simplex in a complicial set is a 1-equivalence.

This result suggests an alternate stratification for nerves of 1-categories:
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Proposition 3.1.5. If C is a 1-category then the 1-trivial stratification of NC with
the isomorphisms as marked 1-simplices defines a complicial set.

Depending on the 1-category there may be intermediate stratifications where
only some of the isomorphisms are marked (the set of marked edges has to satisfy
the 2-of-3 property) but these are somehow less interesting.

Exercise 3.1.6. Prove Proposition 3.1.5.

Let us now consider the degenerate edges, the thin edges, and the 1-equivalences
as subsets of the set of 1-simplices in a complicial set A. In any stratified simplicial
set, the degenerate 1-simplices are necessarily thin. In a complicial set A, Proposi-
tion 3.1.4 proves that the thin 1-simplices are necessarily 1-equivalences, but there
is nothing in the complicial set axioms that guarantees that all equivalences are
marked. We introduce terminology that characterizes when this is the case:

Definition 3.1.7. A complicial set A is 1-saturated if every 1-equivalence is
marked.

If a 1-trivial complicial set is 1-saturated then it is saturated in the sense of
Definition 3.2.7 below. From the definitions, it is easy to prove:

Proposition 3.1.8. If C is a strict 1-category, there is a unique saturated 1-trivial
complicial structure on NC, namely the one in which every isomorphism in C is
marked. Moreover, this is the maximal 1-trivial stratification making NC into a
complicial set.

Exercise 3.1.9. Prove this.

To build intuition for higher dimensional generalizations of these notions, next
consider the Street nerve of a strict 2-category as a 2-trivial stratified simplicial
set. As the notion of 1-saturation introduced in Definitions 3.1.2 and 3.1.7 depends
on the markings of 2-simplices, it makes sense to consider the markings on the
2-simplices first. If only identity 2-simplices are marked, then the 1-saturation of
NC is as before: marking all of the 1-cell isomorphisms in the 2-category C. But
we might ask again whether a larger stratification is possible at level 2.

In any complicial set, consider a thin 2-simplex α with 0th edge degenerate.
From α one can build admissible Λ1[3] and admissible Λ3[3]-horns admitting thin
fillers:

1 2 1 2

0 3 0 3

β ' '

=

=

f

' α

g

f f

f

1 2 1 2

0 3 0 3

α ' '

=

=

g

' γ

f

g g

g

So again we conclude that any thin 2-simplex of this form is necessarily an “equiv-
alence” up to thin 3-simplices, in the sense of the displayed diagrams. Informally, a
complicial set is 2-saturated if all 2-simplices that are equivalences in this sense are
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marked. A precise definition of saturation that applies in any dimension appears
momentarily as Definition 3.2.7. It follows that:

Proposition 3.1.10. If C is a strict 2-category, there is a unique saturated 2-
trivial complicial structure on NC, in which the 2-cell isomorphisms and the 1-
cell equivalences are marked. Moreover, this is the maximal 2-trivial stratification
making NC into a complicial set.

Unlike the 1-trivial saturated stratification on the Street nerve of a 1-category
described in Proposition 3.1.8, the 2-trivial saturated stratification on the Street
nerve of a 2-category described in Proposition 3.1.10 describes a weak and not a
strict complicial set.

3.2. Saturation. To define saturation in any dimension, it is convenient to rephrase
the definition of 1-saturation as a lifting property. The pair of thin 2-simplices

1 1

0 2 0 2

f' g'e f

define the 3rd and 0th faces of an inner admissible Λ1[3]- or Λ2[3]-horn that fills to
define a thin 3-simplex

1 2 1 2

0 3 0 3

f

g' '

f

'

' ge

'
h h

e

This 3-simplex defines a map ∆[3]eq → A, where ∆[3]eq is the 3-simplex given a
1-trivial stratification with the edges [02] and [13] also marked.

Proposition 3.2.1. A complicial set A is 1-saturated if and only if it admits
extensions along the entire inclusion of ∆[3]eq into the maximally marked 3-simplex:

∆[3]eq A

∆[3]]
e

Exercise 3.2.2. Prove this.

There are similar extension problems that detects saturation in any dimension,
which are defined by forming the join of the inclusion ∆[3]eq ↪→e ∆[3]] with sim-
plices on one side or the other.

Definition 3.2.3 (join and slice). The ordinal sum on �+ extends via Day convo-
lution to a bifunctor on the category of augmented simplicial sets called the join.
Any simplicial set can be regarded as a trivially augmented simplicial set. Under
this inclusion, the join restricts to define a bifunctor

sSet× sSet
?−→ sSet

so that ∆[n] ?∆[m] = ∆[n+m+ 1]. More generally, an n-simplex in the join A?B
of two simplicial sets is a pair of simplices ∆[k] → A and ∆[n − k − 1] → B for
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some −1 ≤ k < n. Here ∆[−1] is the trivial augmentation of the empty simplicial
set, in which case the functors ∆[−1] ? − and − ? ∆[−1] are naturally isomorphic
to the identity.

The left and right slices of a simplicial set A over a simplex σ : ∆[n]→ A are
the simplicial sets σ\A and A/σ whose k-simplices correspond to diagrams

(3.2.4)

∆[k] σ\A ! ∆[n] ∆[n] ?∆[k] A

∆[k] A/σ ! ∆[n] ∆[k] ?∆[n] A/σ

σ

σ

See [4] for more.

Definition 3.2.5 (stratified join). The simplicial join lifts to a join bifunctor

Strat× Strat
?−→ Strat

in which a simplex ∆[n]→ A?B, with components ∆[k]→ A and ∆[n−k−1]→ B,
is marked in A ? B if and only if at least one of the simplices in A or B is marked.
More details can be found in [8].

Exercise 3.2.6. Define a stratification on the slices σ\A and A/σ over an n-simplex
σ : ∆[n]→ A so that the correspondence (3.2.4) extends to stratified simplicial sets.

Definition 3.2.7. A complicial set is saturated if it admits extensions along the
set of entire inclusions

{∆[m] ?∆[3]eq ?∆[n] ↪→e ∆[m] ?∆[3]] ?∆[n] | n,m ≥ −1}.

In fact, it suffices to require only extensions

∆[3]eq ?∆[n] A ∆[n] ?∆[3]eq A

∆[3]] ?∆[n] ∆[n] ?∆[3]]

along inclusions of one-sided joins of the inclusion ∆[3]eq ↪→e ∆[3]] with an n-
simplex for each n ≥ −1, and as it turns out only the left-handed joins or right-
handed joins are needed.

By Proposition 3.2.1, the n = −1 case of Definition 3.2.7 asserts that every 1-
equivalence in A, defined relative to the marked 2-simplices and marked 3-simplices,
is marked. By Proposition 3.2.1 again, the general extension property

∆[n] ∆[3]eq ?∆[n] A ! ∆[3]eq A/σ

∆[3]] ?∆[n] ∆[3]]

σ

asserts that every 1-equivalence in the slice complicial set A/σ is marked.
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At first blush, Definition 3.2.7 does not seem to be general enough. In the case of
a vertex σ : ∆[0]→ A, 1-equivalences in A/σ define 2-simplices in A whose [01]-edge
is a 1-equivalence. In particular, a generic 2-simplex

y

x z
⇑ α

gf

h

with no 1-equivalence edges along its boundary, does not define a 1-equivalence in
any slice complicial set. However, there are admissible 3-horns that can be filled to
define the pasted composites of α with 1f and 1g, respectively:

1 2 1 2

0 3 0 3

f

g

⇑ α '

f

'

gf⇑ α̌
g=

f

h h

1 2 1 2

0 3 0 3

g

α̂ ⇑ '

g

g

=

⇑ α
f

'

gf

h h

f

By the complicial thinness extension property, if any of α, α̂, or α̌ are marked, then
all of them are.

Exercise 3.2.8. Generalize this “translation” argument to prove that any n-simplex
in a complicial set is connected via a finite sequence of n-simplices to an n-simplex
whose first face is degenerate and an n-simplex whose last face is degenerate in such
a way that if any one of these simplices is thin, they all are.

Definition 3.2.9. In an n-trivial complicial set, an n-simplex σ : ∆[n] → A is an
n-equivalence if it admits an extension

∆[n] A

∆[3]eq ?∆[n− 2]

σ

along the map ∆[n] ↪→ ∆[3]eq ? ∆[n − 2] whose image includes the edge [1, 2] of
∆[3]eq and all of the vertices of ∆[n− 2].

Remark 3.2.10. The set of n-equivalences identified by Definition 3.2.9 depends on
the marked (n+1)-simplices, which is the reason we have only stated this definition
for an n-trivial complicial set. The n-equivalences in a generic complicial set are
characterized by an inductive definition, the formulation of which we leave to the
reader.

Example 3.2.11 (quasi-categories as complicial sets). Expanding on the work of
§1.1, a quasi-category has a unique saturated stratification making it a complicial
set: namely the 1-trivial saturation where all of the 1-equivalences are marked.
This is the “natural marking” discussed in [5]. Conversely, any 1-trivial saturated
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complicial set is a quasi-category. So quasi-categories are precisely the 1-trivial
saturated complicial sets.

Each simplicial set has a minimum stratification, with only degeneracies marked.
Because the definition of saturation is inductive, each simplicial set also has a
minimum saturated stratification. Larger saturated stratifications also exist (e.g.,
the maximal marking of all positive-dimensional simplices). It is more delicate to
describe how the process of saturating a given complicial set interacts with the
complicial structure: adding new thin simplices adds new admissible horns which
need fillers. What is more easily understood are model structures whose fibrant
objects are complicial sets of a particular form, a subject to which we now turn.

3.3. Model categories of complicial sets. The category of stratified simplicial
sets is cartesian closed, where the cartesian product × is referred to as the Gray
tensor product because this is the analogous tensor product in higher category
theory.6 We write “hom” for the internal hom characterized by the 2-variable
adjunction

Strat(A×B,C) ∼= Strat(A,hom(B,C)) ∼= Strat(B, hom(A,C)).

Let
I := {∂∆[n] ↪→ ∆[n] | n ≥ 0} ∪ {∆[n] ↪→ ∆[n]t | n ≥ 0}

denote the generating set of monomorphisms of stratified simplicial sets introduced
in Proposition 1.3.4 and let

J := {Λk[n] ↪→r ∆k[n] | n ≥ 1, k ∈ [n]} ∪ {∆k[n]′ ↪→e ∆k[n]′′ | n ≥ 2, k ∈ [n]}
denote the set of elementary anodyne extensions introduced in Definition 1.4.2,
the right lifting property against which characterizes the complicial sets. A combi-
natorial lemma proves that the pushout product I×̂J of maps in I with maps in J
is an anodyne extension: that is, may be expressed as a retract of a transfinite
composite of pushouts of coproducts of elements of J (here mere composites of
pushouts suffice). As a corollary:

Proposition 3.3.1 (Verity [9]). If X is a stratified simplicial set and A is a weak
complicial set, then hom(X,A) is a weak complicial set.

Verity provides a very general result for constructing model structures whose
fibrant objects are defined relative to some set of monomorphisms K containing
J . Call a stratified simplicial set a K-complicial set if it admits extensions along
each map in K. Suppose K is a set of monomorphisms of Strat so that

(i) every elementary anodyne extension is in K

and moreover each of/all of the following equivalent conditions hold for each j ∈ K:

(ii) Each element j of K is a K-weak equivalence: i.e., hom(j, A) is a ho-
motopy equivalence7 for each K-fibrant stratified set.

(iii) hom(j, A) is a trivial fibration for each K-complicial set.
(iv) Each K-complicial set admits extensions along all the maps i×̂j for all

i ∈ I and j ∈ K.

6Note that in the theory of bicategories, the cartesian product plays the role of the Gray tensor
product in 2-category theory, in the sense that there is a biadjunction between the cartesian prod-
uct and the hom-bicategory of pseudofunctors, pseudo-natural transformations, and modifications.

7Two maps f, g : X → A are homotopic if they extend to a map X ×∆[1]] → A. If A is a
weak complicial set, this “simple homotopy” is an equivalence relation.
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Call a map that has the right lifting property with respect to the set K a K-
complicial fibration.

Theorem 3.3.2 (Verity [9]). Each set of stratified inclusions K satisfying the
conditions (i)–(iv) gives rise to a cofibrantly generated model structure whose:

• weak equivalences are the K-weak equivalences,
• cofibrations are monomorphisms,
• fibrant objects are the K-complicial sets, and
• fibrations between fibrant objects are K-complicial fibrations.

Moreover, such a model structure is monoidal with respect to the Gray tensor prod-
uct.

Proof. Apply Jeff Smith’s theorem [9, 125]. �

Example 3.3.3. Theorem 3.3.2 applies to the minimal set of elementary anodyne
extensions

J := {Λk[n] ↪→r ∆k[n] | n ≥ 1, k ∈ [n]} ∪ {∆k[n]′ ↪→e ∆k[n]′′ | n ≥ 2, k ∈ [n]}
defining the model structure for complicial sets.

Example 3.3.4. Theorem 3.3.2 applies to the union of the minimal J with

Ktr
n := {∆[r] ↪→e ∆[r]t | r > n}

defining the model structure for n-trivial complicial sets.

Example 3.3.5. Theorem 3.3.2 applies to the union of the minimal J with

Ks := {∆[m] ?∆[3]eq ?∆[n] ↪→ ∆[m] ?∆[3]] ?∆[n] | m,n ≥ −1}
defining the model structure for saturated complicial sets.

Example 3.3.6. Theorem 3.3.2 applies to the union of the minimal J with both
Ktr
n and Ks defining the model structure for n-trivial saturated complicial

sets.

By Example 3.2.11, the n = 1 case of this last result gives a new proof of Joyal’s
model structure for quasi-categories.
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