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Natural numbers «, b, and ¢ encode the sizes of finite sets A, B, and C.
a=]4, b=|B, c=|q. }

Q: What is true of A and Bifa = b?

A:ra = bifand only if A and B are isomorphic, which means there exist
functions f: A — Band g: B — A that are inverses in the sense that
go f=idand fo g =id. Inthis case, we write A = B,

Fora:=|A|and b:=|B,
the equation a = b asserts the existence of an isomorphism A = B. J

Eugenia Cheng: "All equations are lies.”

Categorification: the truth behind a = bis A = B.
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Q: What is the deeper meaning of the equation

ax (b+c)=(axb)+(axec)?

The story so far:

® The natural numbers a, b, and ¢ encode the sizes of finite sets A, B,
and Ct
a:=|A], b:=|B], c:=|C|.

® The equation “=" asserts the existence of an isomorphism "=".

Q: What is the deeper meaning of the symbols “+" and "“x"?
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In summary:
® Natural numbers define cardinalities: there are sets A, B, and C'so
that a := |A|, b:=|B|, and ¢ := |C].
® The equation a = b encodes an isomorphism A = B.
® The disjoint union B + C'is a set with b + ¢ elements.
® The cartesian product A x Bis a set with a x b elements.

Q: What is the deeper meaning of the equation

ax (b+c)=(axb)+(axc)?

A It means that the sets A x (B + C) and (A x B) + (A x C) are
isomorphic!

Ax (B+C)=(AxB)+ (AxC(C)
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Ax (B+(C) = (Ax B)+ (AxC)

By categorification:

Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A x (B4 C) = (A x B) + (A x C)J
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The Yoneda lemma. A and B are isomorphic if and only if for any X the
sets of functions Fun(A, X) and Fun(B, X') are “naturally” isomorphic. J

Proof («): Suppose Fun(A, X) = Fun(B, X) for all X. Taking X = A
and X = B, we use the bijections:

W w W w
idy ————— g fe———idp

Fun(A,A) = Fun(B,A) Fun(A,B) = Fun(B,B)

to define functions g: B — A and f: A — B. By naturality:

iy r g
e
Fun(4, 4)=Fun(B, A and S|m||ar|y
fo=| Lo =id,. =
Fun(A, B)=Fun(B, B)
2

f 5 =




Summary of Steps | and 2

By categorification:

Step | summary: To prove a X (b+¢) = (a x b) + (a X ¢)




Summary of Steps | and 2 ‘

By categorification:

Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A x (B + (') =




Summary of Steps | and 2 ‘

By categorification:

Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A x (B + (') =

By the Yoneda lemma:

Step 2 summary: To prove A x (B+ C) = (A x B) + (A x C)




Summary of Steps | and 2 ‘
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Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
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By the Yoneda lemma:
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The universal property of the disjoint union

Q: Forsets B, C, and X, what is Fun(B + C, X)?
Q: What is needed to define a function f: B+ C — X7

A: For each b € B, we need to specify f(b) € X, and for each ¢ € C,
we need to specify f(c) € X. So the function f: B+ C — X'is
determined by two functions fgz: B — X and fo: C' — X.

By “pairing”

Fun(B+C,X) = Fun(B,X) x Fun(C,X)
w w
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A universal property of the cartesian product

Q: Forsets A, B, and X, what is Fun(A x B, X)?

Q: What is needed to define a function f: A x B — X?

A: Foreach b € B and a € A, we need to specify an element
f(a,b) € X. Thus, for each b € B, we need to specify a function

f(=,b): A — X sending ato f(a,b). So, altogether we need to
define a function f: B — Fun(A, X).

By “currying”
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Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A x (B+ C) = (A x B) + (A x C). J

By the Yoneda lemma:

Step 2 summary: Toprove A x (B+C) = (Ax B)+ (A xC)
> we'll instead define a “natural” isomorphism
Fun(Ax (B+C),X) =2Fun((A x B) + (A x C), X).

By representability:

Step 3 summary:
® Fun(B+ C,X) = Fun(B, X) x Fun(C, X) by “pairing” and
® Fun(A x B, X) = Fun(B, Fun(A, X)) by “currying.”
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Generalization to infinite cardinals

Note we didn't actually need the sets A, B, and C to be finite.

Theorem. For any cardinals o, 3, 7,
ax (B+7) = (@x )+ (ax).

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

adPr=af xa? and (aP)7 =7 = (o)
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The real point

The ideas of
® categorification (replacing equality by isomorphism),

® the Yoneda lemma (replacing isomorphism by natural
isomorphism),

® representability (characterizing maps to or from an object),

® |imits and colimits (like cartesian product and disjoint union), and
® adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!
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