

Johns Hopkins University

The synthetic approach to ∞ -category theory

joint with Dominic Verity and Michael Shulman

Summer School on Higher Topos Theory and Univalent Foundations

The idea of an ∞ -category

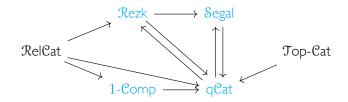
An ∞ -category — a category weakly enriched over ∞ -groupoids — should have:

- objects
- I-arrows between these objects
- with composites of these I-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
- with these witnesses coherent up to invertible arrows all the way up

But this definition is tricky to make precise in classical foundations.

Models of ∞ -categories

The notion of ∞ -category is made precise by several models:



 topological categories and relative categories are the simplest to define but do not have enough maps between them

quasi-categories (nee. weak Kan complexes),Rezk spaces (nee. complete Segal spaces),Segal categories, and(saturated I-trivial weak) I-complicial sets are cartesian closed, and in fact any of these categories can be enriched over any of the others

The analytic vs synthetic theory of ∞ -categories

Q: How might you develop the category theory of ∞ -categories? Strategies:

• work analytically to give categorical definitions and prove theorems using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in <u>Rezk</u>; Simpson in <u>Segal</u>)

• work synthetically to give categorical definitions and prove theorems in all four models qCat, Rezk, Segal, 1-Comp at once

(R-Verity: an ∞-cosmos axiomatizes the common features of the categories qCat, Rezk, Segal, 1-Comp of ∞-categories)

• work synthetically in a simplicial type theory augmenting HoTT to prove theorems in Rezk

(R-Shulman: an ∞ -category is a type with unique binary composites in which isomorphism is equivalent to identity)

Plan

0. The analytic theory of ∞ -categories

'' ∞ -category theory for experts''

I. The synthetic theory of ∞ -categories (in an ∞ -cosmos) " ∞ -category theory for graduate students"

2. The synthetic theory of ∞ -categories (in homotopy type theory) " ∞ -category theory for undergraduates"

The synthetic theory of ∞ -categories (in an ∞ -cosmos)

∞ -cosmoi of ∞ -categories

An $\infty\text{-}cosmos$ axiomatizes the structures needed to ''develop $\infty\text{-}category$ theory.''

not-the-defn. An $\infty\text{-}\mathrm{cosmos}$ is a cartesian closed category ${\mathcal K}$ that has

- certain (flexible weighted enriched) limits
- an adjunction

$$\mathcal{K}$$
 $\stackrel{ho}{\perp}$ Cat

Theorem. qCat, Rezk, Segal, 1-Comp define biequivalent ∞ -cosmoi.

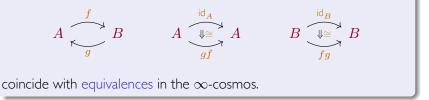
Henceforth ∞ -category and ∞ -functor are technical terms that refer to the objects and morphisms of some ∞ -cosmos.

The homotopy 2-category

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f \colon A \to B$ in the ∞ -cosmos

Key fact: equivalences in the homotopy 2-category



Thus, non-evil 2-categorical definitions are "homotopically correct."

Adjunctions between ∞ -categories

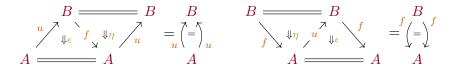
defn. An adjunction between ∞ -categories is an adjunction in the homotopy 2-category, consisting of:

- ∞ -categories A and B
- ∞ -functors $u \colon A \to B$, $f \colon B \to A$
- ∞ -natural transformations B

$$B \underbrace{\downarrow_{\eta}}_{uf} B \text{ and } A \underbrace{\downarrow_{\epsilon}}_{\mathsf{id}_{A}}$$

far

satisfying the triangle equalities

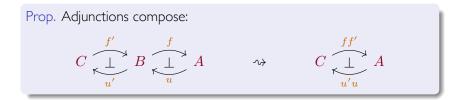


id

Write $f \dashv u$ to indicate that f is the left adjoint and u is the right adjoint.

The 2-category theory of adjunctions

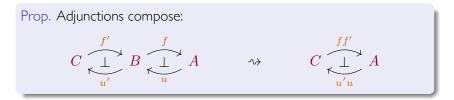
Since an adjunction between ∞ -categories is just an adjunction in the homotopy 2-category, all 2-categorical theorems about adjunctions become theorems about adjunctions between ∞ -categories.



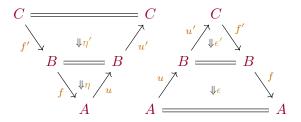
Prop. Adjoints to a given functor $u \colon A \to B$ are unique up to canonical isomorphism: if $f \dashv u$ and $f' \dashv u$ then $f \cong f'$.

Prop. Any equivalence can be promoted to an adjoint equivalence: if $u: A \xrightarrow{\sim} B$ then u is left and right adjoint to its equivalence inverse.

Composing adjunctions

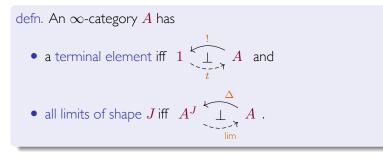


Proof: The composite 2-cells



define the unit and counit of $ff' \dashv u'u$ satisfying the triangle equalities.

Limits and colimits in an ∞ -category



Note: the counit components $\lim_{d \to 0} A^{J} \downarrow_{\Delta}$ define the limit cone. 1 $\xrightarrow{} A^{J} A^{J}$

Prop. Right adjoints preserve limits and left adjoints preserve colimits.

Proof: The usual one!

Universal properties of adjunctions and limits defn. Any ∞ -category A has an ∞ -category of arrows A^2 , pulling back Hom_A(f,g) $\longrightarrow A^2$ to define the comma ∞ -category: (cod,dom) $C \times B \xrightarrow{g \times f} A \times A$

This specializes to define the mapping space $\text{Hom}_A(x, y)$ between each pair of elements $x, y: 1 \to A$.

$$\operatorname{Prop.} A \underbrace{\stackrel{f}{\underbrace{ \ \ }}}_{u} B \ \text{ if and only if } \operatorname{Hom}_A(f,A) \simeq_{A \times B} \operatorname{Hom}_B(B,u).$$

Prop. An ∞ -functor $d: J \to A$ has limit $\ell: 1 \to A$ iff $\operatorname{Hom}_A(A, \ell) \simeq_A \operatorname{Hom}_{A^J}(\Delta, d).$

Prop. Mapping spaces are discrete ∞ -categories, i.e., ∞ -groupoids.

The synthetic theory of ∞ -categories (in homotopy type theory)

The Rosetta Stone for Homotopy Type Theory

type theory	set theory	logic	homotopy theory
A	set	proposition	space
x:A	element	proof	point
$\emptyset, 1$	$\emptyset, \{\emptyset\}$	\perp, \top	$\emptyset, *$
$A \times B$	set of pairs	A and B	product space
A + B	disjoint union	A or B	coproduct
$A \to B$	set of functions	A implies B	function space
$x: A \vdash B(x)$	family of sets	predicate	fibration
$x:A\vdash b:B(x)$	fam. of elements	conditional proof	section
$\prod_{x:A} B(x)$	product	$\forall x.B(x)$	space of sections
$\sum_{x:A}^{x:A} B(x)$	disjoint sum	$\exists x.B(x)$	total space
$p: x =_A y$	x = y	proof of equality	path from x to y
$\sum_{x,y:A} x =_A y$	diagonal	equality relation	path space for A

The identity type family is freely generated by the terms $\operatorname{refl}_x : x =_A x$.

Path induction. If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then to prove B(x, y, p) it suffices to assume y is x and p is refl_x. I.e., there is a function

$$\mathsf{path-ind}: \left(\prod_{x:A} B(x,x,\mathsf{refl}_x)\right) \to \left(\prod_{x,y:A} \prod_{p:x=_A y} B(x,y,p)\right).$$

A model for the type theory for synthetic ∞ -categories (

$\operatorname{Set}^{\mathbf{\Delta}^{\operatorname{op}} imes \mathbf{\Delta}^{\operatorname{op}}}$	\supset	$\mathcal{R}eedy$	\supset	Segal	\supset	\mathcal{R} ezk
II				Ш		Ш
bisimplicial sets		types		types with		types with
				composition		composition
						& univalence

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). ∞ -categories are modeled by Rezk spaces aka complete Segal spaces.

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi\subset 2^n,$ polytopes embedded in a directed cube, defined in a language

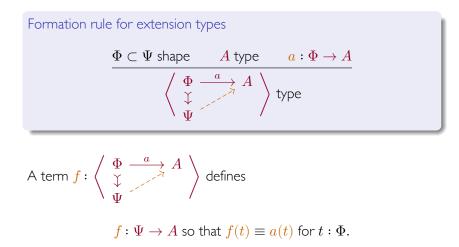
$$op, \bot, \land, \lor, \equiv$$
 and $0, 1, \leq$

satisfying intuitionistic logic and strict interval axioms.

$$\begin{split} \Delta^n &\coloneqq \{(t_1, \dots, t_n): 2^n \mid t_n \leq \dots \leq t_1\} \quad \text{ e.g. } \quad \Delta^1 \coloneqq 2 \\ \Delta^2 &\coloneqq \begin{cases} (t, t) & | (1, t) \\ (0, 0) & (t, 0) \end{cases} \end{split}$$

$$\begin{split} \partial \Delta^2 &\coloneqq \{(t_1,t_2): 2^2 \mid (t_2 \leq t_1) \land ((0=t_2) \lor (t_2=t_1) \lor (t_1=1)) \} \\ \Lambda^2_1 &\coloneqq \{(t_1,t_2): 2^2 \mid (t_2 \leq t_1) \land ((0=t_2) \lor (t_1=1)) \} \end{split}$$

Extension types



The simplicial type theory allows us to *prove* equivalences between extension types along composites or products of shape inclusions.

Hom types

The hom type for A depends on two terms in A:

 $x,y:A\vdash \mathrm{Hom}_A(x,y)$

$$\operatorname{Hom}_A(x,y) \coloneqq \left\langle \begin{array}{c} \partial \Delta^1 & \xrightarrow{[x,y]} & A \\ \updownarrow & & & \\ \Delta^1 & & \end{array} \right\rangle \operatorname{type}$$

A term $f : \text{Hom}_A(x, y)$ defines an arrow in A from x to y.

In the ∞ -cosmos \Re ezk:

- $\operatorname{Hom}_A(x,y)$ recovers the mapping space from x to y and
- $\sum_{x,y:A} \operatorname{Hom}_A(x,y)$ recovers the ∞ -category of arrows A^2 .

Segal types \equiv types with binary composition

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: \operatorname{Hom}_A(x,y)$ and $g: \operatorname{Hom}_A(y,z)$ the type

$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$

is contractible.

Semantically, a Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \twoheadrightarrow A^{\Lambda_1^2}$ has contractible fibers.

By contractibility,
$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$
 has a unique inhabitant. Write $g \circ f : \operatorname{Hom}_A(x,z)$ for its inner face, *th*e composite of *f* and *g*.

Identity arrows

6

For any x : A, the constant function defines a term

$$\mathrm{id}_x \coloneqq \lambda t.x \colon \mathrm{Hom}_A(x,x) \coloneqq \left\langle \begin{array}{c} \partial \Delta^1 & \xrightarrow{[x,x]} & A \\ \updownarrow & & & \\ \Delta^1 & & & \end{array} \right\rangle,$$

which we denote by id_x and call the identity arrow.

For any $f: \operatorname{Hom}_A(x, y)$ in a Segal type A, the term

$$\lambda(s,t).f(t):\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[\mathrm{id}_x,f]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$

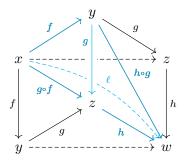
witnesses the unit axiom $f = f \circ id_x$.

Associativity of composition

Let A be a Segal type with arrows

 $f: \operatorname{Hom}_A(x,y), \quad g: \operatorname{Hom}_A(y,z), \quad h: \operatorname{Hom}_A(z,w).$

Prop. $h \circ (g \circ f) = (h \circ g) \circ f.$ Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:



Composing defines a term in the type $\Delta^2 \to (\Delta^1 \to A)$ which yields a term $\ell \colon \operatorname{Hom}_A(x, w)$ so that $\ell = h \circ (g \circ f)$ and $\ell = (h \circ g) \circ f$.

Isomorphisms

An arrow $f: \operatorname{Hom}_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g: \operatorname{Hom}_A(y, x)$. However, the type

$$\sum_{g \colon \operatorname{Hom}_A(y,x)} (g \circ f = \operatorname{id}_x) \times (f \circ g = \operatorname{id}_y)$$

has higher-dimensional structure and is not a proposition. Instead define

$$\mathrm{isiso}(f) \coloneqq \left(\sum_{g \colon \mathrm{Hom}_A(y,x)} g \circ f = \mathrm{id}_x\right) \times \left(\sum_{h \colon \mathrm{Hom}_A(y,x)} f \circ h = \mathrm{id}_y\right).$$

For x, y : A, the type of isomorphisms from x to y is:

$$x\cong_A y\coloneqq \sum_{f:\mathrm{Hom}_A(x,y)}\mathrm{isiso}(f).$$

Rezk types $\equiv \infty$ -categories

By path induction, to define a map

 $\mathsf{path-to-iso} \colon (x =_A y) \to (x \cong_A y)$

for all x, y: A it suffices to define

 $\mathsf{path-to-iso}(\mathsf{refl}_x) \coloneqq \mathsf{id}_x.$

A Segal type A is Rezk iff every isomorphism is an identity, i.e., iff the map path-to-iso: $\prod_{x,y:A} (x =_A y) \to (x \cong_A y)$

is an equivalence.

Discrete types $\equiv \infty$ -groupoids

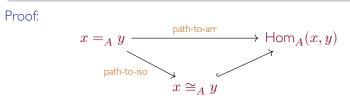
Similarly by path induction define

path-to-arr:
$$(x =_A y) \to \operatorname{Hom}_A(x, y)$$

for all x, y : A by path-to-arr(refl_x) := id_x.

A type A is discrete iff every arrow is an identity, i.e., iff path-to-arr is an equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms.



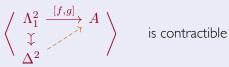
∞ -categories for undergraduates

defn. An ∞ -groupoid is a type in which arrows are equivalent to identities:

path-to-arr: $(x = A y) \rightarrow \text{Hom}_A(x, y)$ is an equivalence.

defn. An ∞ -category is a type

which has unique binary composites of arrows:



• and in which isomorphisms are equivalent to identities: path-to-iso: $(x =_A y) \rightarrow (x \cong_A y)$ is an equivalence. Covariant type families \equiv categorical fibrations

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \operatorname{Hom}_A(x, y)$ and u : B(x) there is a unique lift of f with domain u.

The codomain of the unique lift defines a term $f_*u : B(y)$.

Prop. For u: B(x), $f: \operatorname{Hom}_A(x,y)$, and $g: \operatorname{Hom}_A(y,z)$, $g_*(f_*u) = (g \circ f)_*u$ and $(\operatorname{id}_x)_*u = u$.

Prop. If $x : A \vdash B(x)$ is covariant then for each x : A the fiber B(x) is discrete. Thus covariant type families are fibered in ∞ -groupoids.

Prop. Fix a : A. The type family $x : A \vdash Hom_A(a, x)$ is covariant.

The Yoneda lemma

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

$$\operatorname{ev-id} \coloneqq \lambda \phi.\phi(a,\operatorname{id}_a) : \left(\prod_{x:A} \operatorname{Hom}_A(a,x) \to B(x)\right) \to B(a)$$

and

$$\mathsf{yon} \coloneqq \lambda u.\lambda x.\lambda f.f_*u: B(a) \to \left(\prod_{x:A}\mathsf{Hom}_A(a,x) \to B(x)\right)$$

are inverse equivalences.

Corollary. A natural isomorphism $\phi : \prod_{x:A} \operatorname{Hom}_A(a, x) \cong \operatorname{Hom}_A(b, x)$ induces an identity $\operatorname{ev-id}(\phi) : b =_A a$ if the type A is Rezk.

The dependent Yoneda lemma

Yoneda lemma. If A is a Segal type and B(x) is a covariant family dependent on x : A, then evaluation at (a, id_a) defines an equivalence

$$\operatorname{ev-id}: \left(\prod_{x:A}\operatorname{Hom}_A(a,x) \to B(x)\right) \to B(a)$$

The Yoneda lemma is a "directed" version of the "transport" operation for identity types, suggesting a dependently-typed generalization analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a covariant family dependent on x, y : A and $f : \text{Hom}_A(x, y)$, then evaluation at (x, x, id_x) defines an equivalence

$$\operatorname{ev-id}: \left(\prod_{x,y:A} \prod_{f:\operatorname{Hom}_A(x,y)} B(x,y,f)\right) \to \prod_{x:A} B(x,x,\operatorname{id}_x)$$

Dependent Yoneda is directed path induction

Slogan: the dependent Yoneda lemma is directed path induction.

Path induction. If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then to prove B(x, y, p) it suffices to assume y is x and p is refl_x. I.e., there is a function

$$\mathsf{path-ind}: \left(\prod_{x:A} B(x,x,\mathsf{refl}_x)\right) \to \left(\prod_{x,y:A} \prod_{p:x=_A y} B(x,y,p)\right).$$

Arrow induction. If B(x, y, f) is a covariant family dependent on x, y : A and $f : \operatorname{Hom}_A(x, y)$ and A is Segal, then to prove B(x, y, f) it suffices to assume y is x and f is id_x. I.e., there is a function

$$\mathrm{id\text{-}ind}: \left(\prod_{x:A} B(x,x,\mathrm{id}_x)\right) \to \left(\prod_{x,y:A} \prod_{f:\mathrm{Hom}_A(x,y)} B(x,y,f)\right).$$

References

For more on the synthetic theories of ∞ -categories, see:

Emily Riehl and Dominic Verity

• draft book in progress:

 $\label{eq:elements} \begin{array}{l} \text{Elements of ∞-Category Theory} \\ \text{www.math.jhu.edu}/\sim \text{eriehl/elements.pdf} \end{array}$

• mini-course lecture notes:

 ∞ -Category Theory from Scratch arXiv:1608.05314

Emily Riehl and Michael Shulman

• A type theory for synthetic ∞-categories, Higher Structures 1(1):116–193, 2017; arXiv:1705.07442