Quasi-category theory you can use

Emily Riehl

Harvard University http://www.math.harvard.edu/~eriehl

Graduate Student Topology & Geometry Conference UT Austin Sunday, April 6th, 2014

Plan

Part I. Introduction to quasi-categories.

- Quasi-categories are models for "abstract homotopy theory"
- Quasi-categories are good for homotopy limits and colimits

Part II. Category theory of quasi-categories (developed by Joyal, Lurie, Nichols-Barrer, Gepner, Haugseng, ..., R-Verity (v2.0).

• Universal properties in quasi-categories

(case study: initial objects)

• General colimits in quasi-categories

Abstract homotopy theory

Classical **homotopy theory** studies topological spaces up to (weak) homotopy equivalence.

Abstract homotopy theory studies objects up to "weak equivalence": given $X \xrightarrow{\sim} Y$ think of X and Y as "the same".

E.g.,

- chain complexes up to quasi-isomorphism
- spectra up to stable equivalence
- categories up to equivalences
- ...

But it's hard to work in the homotopy category. Better to use:

- a Quillen model category,
- a quasi-category (aka ∞-category).

Some recent work

Precise statements of the following theorems are proven using **quasi-categories**.

Theorem (Ben-Zvi & Nadler). S^1 -equivariant quasi-coherent sheaves on the loop space of a smooth scheme are de Rham modules.

Theorem (Francis). Homology theories for topological n-manifolds are equivalent to n-disk algebras.

Theorem (Barwick & Schommer-Pries). The homotopy theory of (∞, n) -categories is characterized up to equivalence by certain axioms, and its space of automorphisms is equivalent to $(\mathbb{Z}/2)^n$.

Quasi-categories

A **quasi-category** is a simplicial set A with composition.

Composition of 1-simplices: $\int_{\bullet}^{f} \int_{\bullet}^{\bullet} \int_{\bullet}^{g} \int_{\bullet}^{\bullet} \int_{\bullet}^{g} \int_{\bullet}^{\bullet} \int_{\bullet}^{g} \int_{\bullet}^$

Examples of quasi-categories

A **topological space** is a quasi-category: composites exist because any simplex deformation retracts onto each of its horns.

A **category** is a quasi-category: 0-simplices are objects, 1-simplices are arrows, n-simplices are composable strings of n arrows.

Some special quasi-categories:

- $\Delta^n =$ "topological *n*-simplex" = $(0 \to 1 \to \cdots \to n)$
- $S^{\infty} = (\bullet \cong \bullet) = \operatorname{colim}_n S^n$

Q: What homotopy theories do these present?

The homotopy category of a quasi-category

The **homotopy category** ho(A) of a quasi-category A has:

- objects = vertices of A = elements of A_0
- arrows = equivalence classes of 1-simplices

$$f \sim g: x \to y \qquad \Leftrightarrow \qquad x \xrightarrow{f} y \qquad y \xrightarrow{g} y \qquad x \xrightarrow{g} y \qquad x$$

E.g.,

- the homotopy category of a space is its fundamental groupoid
- the homotopy category of a category is the category

$$ho(\Delta^n) = (0 \to 1 \to \dots \to n) \qquad ho(S^\infty) = (\bullet \cong \bullet)$$

Isomorphisms in a quasi-category

An **isomorphism** in a quasi-category is a 1-simplex that represents an isomorphism in its homotopy category.

Theorem (Joyal). Each isomorphism in a quasi-category A extends to a map $S^{\infty} \to A$.

Data:
$$x, y, x \xrightarrow{f} y, y \xrightarrow{g} x, \quad x \xrightarrow{f} y \xrightarrow{g} y, \quad y \xrightarrow{g} x \xrightarrow{f}, \dots$$

Interlude: classical homotopy colimits

hocolimit cone:

$$Z \longrightarrow Y \longrightarrow X \longrightarrow W \longrightarrow \cdots$$

$$P \coloneqq Z \times I \cup_Z Y \times I \cup_Y X \times I \cup_X W \times I \cup_W \cdots$$

...and initial with this data.

Initial objects, Ø

defn \varnothing . A vertex a in a quasi-category A is **initial** iff any sphere in A with a as its starting vertex can be filled to a simplex.

$$\partial \Delta^n \xrightarrow{0 \mapsto a} A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta^n$$

$$a \longrightarrow x$$

$$a \xrightarrow{x} y$$

Initial objects, I & II

defn I. A vertex $a \in A$ is **initial** iff $\Delta^0 \xrightarrow{a} A$ is left adjoint to the constant functor $A \stackrel{!}{\rightarrow} \Delta^0$.

defn II. A vertex $a \in A$ is **initial** iff $a \downarrow A \xrightarrow{\sim} A$.

$$a \xrightarrow{\epsilon_x} x \qquad x \in A_0$$

$$a \xrightarrow{} x$$

$$\parallel & \downarrow & \downarrow \\ a \xrightarrow{} y \qquad \qquad \downarrow \\ a \xrightarrow{} x \qquad \qquad \downarrow \\ \parallel & \downarrow & \downarrow \\ a \xrightarrow{} z \qquad \qquad \downarrow$$

Initial objects, IV

defn IV. A vertex $a \in A$ is **initial** iff $\Delta^0 \xrightarrow{a} A$ and $A \xrightarrow{!} \Delta^0$ extend to a homotopy coherent adjunction.

adjunction data: $a \in A_0$ and $\epsilon : \operatorname{const}_a \leadsto \operatorname{id}_A \in (A^A)_1$ homotopy coherent adjunction data:

ullet higher simplices in A spanning the vertex a

ullet higher simplices in A^A spanning the vertices ${
m const}_a$ and ${
m id}_A$

Thus ϵ : $const_a \rightarrow id_A$ represents a unique equivalence class in A^A .

Colimits, Ø

defn \varnothing . A **colimit** of a diagram $d: \Gamma \to A$ in a quasi-category A is an initial object in the quasi-category of cones under d.

data:

The universal property of the colimit is encoded by the universal property of an initial object.

Colimits, I & II

defn I. A quasi-category A has Γ -shaped colimits iff the constant diagram functor $A \xrightarrow{!} A^{\Gamma}$ has a left adjoint $A^{\Gamma} \xrightarrow{\operatorname{colim}} A$.

defn II. The map $A^{\vdash} \xrightarrow{\operatorname{colim}} A$ defines a \vdash -colimit functor in A iff $\operatorname{colim} \downarrow A$ is equivalent to the quasi-category of cones.

Colimits, III

defn III. A quasi-category A has Γ -shaped colimits iff there exist maps ϵ : $\operatorname{colim} ! \rightsquigarrow \operatorname{id}_A$ in A^A and η : $\operatorname{id}_{A^\Gamma} \rightsquigarrow ! \operatorname{colim}$ in $(A^\Gamma)^{A^\Gamma}$ satisfying the triangle identities.

colimit cone:

universal property:

Colimits, IV

defn IV. A quasi-category A has Γ -shaped colimits iff the constant diagram functor $A \xrightarrow{!} A^{\Gamma}$ and its left adjoint $A^{\Gamma} \xrightarrow{\operatorname{colim}} A$ extend to a homotopy coherent adjunction.

homotopy coherent adjunction data: higher simplices in each of the four hom-quasi-categories between A and A^{Γ} corresponding to strictly undulating squiggles:

Colimits, V

defn V. A vertex $p \in A$ and cone under $d: \Gamma \to A$ define a **colimit cone** iff for any $f: X \to A$ and f-indexed cone under d, that cone factors uniquely (up to equivalence in A^X) through the colimit cone, inducing a map $\mathrm{const}_p \leadsto f$.

The universal property defines a unique 2-cell in the 2-category of quasi-categories.

References

"The 2-category theory of quasi-categories" arXiv:1306.5144

"Homotopy coherent adjunctions and the formal theory of monads" arXiv:1310.8279

"Completeness results for quasi-categories of algebras, homotopy limits, and related general constructions" arXiv:1401.6247

Categorical Homotopy Theory, Cambridge University Press, www.math.harvard.edu/~eriehl/cathtpy.pdf