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Motivation |

CAHIERS DE TOPOLOGIE VOL. NXNIH-1 (1991)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

«-GROUPOIDS AND HOMOTOPY TYPES e |5 statements =
by M.M. KAPRANOV and V.A. VOEVODSKY 4 theorems
RESUME.  Nous présentons une description de la categorie +9 propositions
homotopique des CW-complexes en termes des w-groupoides.
La ssibilité d’une telle description a été suggérée par
A. Grothendieck dans son memoire “"A la poursuite des + | |emma
champs".
’ + | corollary
It is well-known [GZ] that CW-complexes X  such that 0 . "
w(Xx) =0 for all i2:2, xeX, oare described, at the * 5 short “obvious
homotopy level, by groupoids. A. Grothendieck suggested, in
his unpublished memoir [Gr), that this connection should have proofs + 3 pr-oofs
a  higher-dimensional  generalisation  involving  polycategories.
viz. poly ical 1 of id It is the pur-

pose of this paper to establish such a generralisation.

¢ Carlos Simpson'’s “Homotopy types of strict 3-groupoids” (1998)
shows that the 3-type of S2 can't be realized by a strict 3-groupoid
— contradicting the last corollary

¢ But no explicit mistake was found. Voevodsky: “| was sure that we
were right until the fall of 2013 ()"



A sociological problem

The Origins and
Motivations of
Univalent Foundations

A Personal Mission to Develop Computer Proof
Verification to Avoid Mathematical Mistakes

By Viadimir Voevodsky e Published 2014
“A technical argument by a trusted author, which is hard to check

and looks similar to arguments known to be correct, is hardly ever
checked in detail.”



Motivation ||

The Yoneda lemma. An object of a category is determined up to
canonical isomorphism by the network of relationships that the object
has with all the other objects in the category.

Corollary. All theorems in category theory. J

The Yoneda lemma for ordinary |-categories is proven on:
* page 61/314 of Categories for the Working Mathematician
* page 57/240 of Category Theory in Context

The Yoneda lemma for co-categories is proven on:
* page 269/416 in a series of papers by Riehl-Verity

* page 47/78 of Riehl-Shulman, A type theory for synthetic
oo-categories, Higher Structures | (1):116-193,2017.



Motivation llI

Why do | study category theory?

— | find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

— | find homotopy type theoretic arguments to be aesthetically
appealing.



Plan

I. The right way to think about equality
2. Homotopy type theory

3. A type theory for co-categories

4. Segal, Rezk, and discrete types

5. The synthetic theory of co-categories

Main takeaway:
¢ path induction (substitution for equality): the identity type family is
freely generated by the reflexivity term
¢ arrow induction (Yoneda lemma): the hom type family is freely
generated by the identity arrow
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The right way to think about equality



What is the correct way to think about equality? 4

“The heart and soul of much mathematics consists of the fact that the
‘same’ object can be presented to us in different ways.”
— Barry Mazur “When is one thing equal to some other thing?"

Not what it is but what it does.

Principle of substitution. To prove that every x, y with x = y have
property P, it suffices to:

* Prove that every pair x, x (for which x = x) has property P.

Example.
* To prove symmetry — for all x, y if x = y then y = x — apply the
principle of substitution to the property P(x,y) :=y = x. Now it's
enough to show that for all x then x = x, which is true by reflexivity.

* Transitivity — for all x,y,z if x =y and y = z then x = z — can be
deduced similarly from the principle of substitution.



@

Homotopy type theory



Homotopy type theory

Homotopy type theory is:
* a formal system for mathematical constructions and proofs
¢ in which the basic objects, types, may be regarded as “spaces” or
0o-groupoids
¢ and all constructions are automatically “continuous” or
equivalence-invariant.

homotopy (type theory)

Homotopy type theory is
Prup K {(homotopytype) theory

Types A can be regarded simultaneously as both mathematical
constructions and mathematical assertions; accordingly, a term a : A can
be regarded as a proof of the proposition A. But it's somewhat
misleading to think of propositions as types, because types may have
non-trivial higher dimensional structure.



Types, terms, and type constructors

Homotopy type theory has:
s types A B
s termsx:Ay:B
* dependent types x : A+ B(x), x,y : A F B(x,y) including in

particular identity types x,y : A x =4 y.

Type constructors build new types and terms from given ones:
* products A x B, coproducts A + B, function types A — B,
* dependent sums ), ., B(x), dependent products [,., B(x).

Each type constructor comes with rules:

(i) formation: a way to construct new types

(i) introduction: ways to construct terms of these types
(iii) elimination: ways to use them to construct other terms

(iv) computation: what happens when we follow (i) by (iii)




The Curry-Howard-Voevodsky correspondence

type theory set theory logic homotopy theory
A set proposition space
XA element proof point
0,1 0,{0} 1,T 0, *
AxB set of pairs Aand B product space
A+4+B disjoint union AorB coproduct
A—B set of functions A implies B function space
x:AF B(x) family of sets predicate fibration
x Ak b:B(x) | fam. of elements | conditional proof section
[L..B(x) product Vx.B(x) space of sections
> a B(X) disjoint sum Ix.B(x) total space
pix=aY X=y proof of equality | path from xtoy
ZX%A X =AY diagonal equality relation | path space for A



|dentity types

Formation and introduction rules for identity types

X,y A XA
X =4 Y type refly : x =a x
Zx,y:A X =AY
Semantics ¢ Axreflc -7 ¢
A—F— AxA

Hence ZX%A X =a y is interpreted as the path space of A and a term
p : x =4 y may be thought of as a path from x to y in A.



Path induction

The identity type family is freely generated by the terms refl, : x =4 x.

Path induction. If B(x,y,p) is a type family dependent on x,y : A and
p: x =4y, then to prove B(x,y, p) it suffices to assume y is x and p is
refl,. lLe., there is a function

path-ind : (HB(X,X, reﬂx)> — H H B(x,y,p)
X:A

X,y:A PiX=ay

Path induction expresses the elimination rule for Per Martin-L&f's identity
type — an enhanced version of:

Principle of substitution. To prove that every x, y with x =y have
property P, it suffices to:

* Prove that every pair x, x (for which x = x) has property P.




The oo-groupoid of paths

Theorem (Lumsdaine,Garer—van den Berg). The terms belonging to the
iterated identity types of any type A form an oco-groupoid. J

The oo-groupoid structure of A has
* terms x : A as objects
e paths p : x =4 y as [-morphisms
* paths of paths h : p =,—,, g as 2-morphisms, . ..
The required structures are proven from the path induction principle:
¢ constant paths (reflexivity) refl, : x = x
* reversal (symmetry) p: x =y vields p~' 1y = x
¢ concatenation (transitivity) p : x =y and q : y = z vield
gxp:x=2z
and furthermore
* concatenation is associative

* the associators are coherent, ...
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A type theory for co-categories



The intended model

Set X % D Reedy D Segal D Rezk
Il l I Il
bisimplicial sets types types with types with
composition composition

& univalence

Theorem (Shulman). Homotopy type theory is modeled by the category
of Reedy fibrant bisimplicial sets. J

Theorem (Rezk). oo-categories are modeled by Rezk spaces aka
complete Segal spaces. J




Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes @ C 2,
polytopes embedded in a directed cube, defined in a language
T, LAV, = and 0,1, <

satisfying intuitionistic logic and strict interval axioms.

A= {(t,... ) 2" [, <<t} eg  Al=2

(t,0) (L.1)
A2 7 a
' (0,0) — (1,0)
(t,0)
= {(t1,12) : 2% | (e ) A (0 =12) V (2 = 12) V (11 = 1))}

A2 = {(t 1,t2) 22 [ (<u)A((0=t2) V(=1))}

Because ¢ A 1) implies @, there are shape inclusions A? C A% C A2,



Extension types

shape inclusion: ® == {t € 2" | ¢} and ¥ = {t € 2" | ¥} so that ¢
implies 1, i.e,, so that ® C W.

Formation rule for extension types
® C ¥ shape A type a:®—A

o 25 A
1 s type
R

-
-

o 2 A
Atermf:( v 7 defines
v

f:W¥ —Asothatf(t)=a(t)fort: ®.
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Segal, Rezk, and discrete types



Hom types

The hom type for A depends on two terms in A:

X,y A E homa(x,y)

DA ¢ Al shape A type [x,y] : DAl — A

8A1 [va] A
homa(y) ={ y type

Al

Aterm [ : homa(x,y) defines an arrow in A from x to y.



Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique
composite, i.e, for every f : homa(x,y) and g : homa(y, z) the type

[fsel

A2 —" A
T /,/7 is contractible.
Az’
Notation. Let compg: { e denote the unique
A2

inhabitant and write g o f : homa(x, z) for its inner face, the composite
of f and g.



|dentity arrows

For any x : A, the constant function defines a term

| onr 7,
id, == At.x : homa(x, x) == r ,
Al

which we denote by id, and call the identity arrow.

Forany f : homa(x,y) in a Segal type A, the term

A(s, t).f (1) : < T 7 >
Az

witnesses the unit axiom f = f o id,.



Associativity of composition
Let A be a Segal type with arrows

f:homa(x,y), g:homa(y,z), h:homa(z,w).

Prop. ho(gof)=(hog)eof.
Proof: Consider the composable arrows in the Segal type Al — A:

z
N ‘h
w

Composing defines a term in the type A? — (A! — A) which yields a
term (: homa(x,w) sothat { =ho (gof)and ¢ = (hog)of.




Isomorphisms

An arrow f: homa(x,y) in a Segal type is an isomorphism if it has a
two-sided inverse g: homa(y, x). However, the type

Y (gof =id) x (fog=id,)

g: homa(y,x)

has higher-dimensional structure and is not a proposition. Instead define

isiso(f) = > gof=id ] x > foh=id,

g: homa(y,x) h: homa(y,x)

For x,y : A, the type of isomorphisms from x to y is:

X Epy = Z isiso(f).

frhorma ()



Rezk types G

By path induction, to define a map
path-to-iso: (x =4 y) = (x Zay)
forall x,y : A it suffices to define

path-to-iso(refly) = id,.

A Segal type A is Rezk if every isomorphism is an identity, i.e., if the map

path-to-iso: H(x =ay) = (x=ay)
X,y:A

is an equivalence.




Discrete types “
Similarly by path induction define

path-to-arr: H(x =py) = homa(x,y) by path-to-arr(refl,) == id,.
X,yA

A type A is discrete if path-to-arr is an equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are
isomorphisms. Thus, if the Rezk types are co-categories, then the
discrete types are co-groupoids.

Proof:
path-to-arr
X=py > homa(x, y)

path—tcm /

XZEay
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The synthetic theory of oco-categories



Covariant type families

A type family x : A - B(x) over a Segal type A is covariant if for every
f : homa(x,y) and u : B(x) there is a unique lift of f with domain u. J

Notation. The codomain of the unique lift defines a term f.u : B(y).

Prop. For u: B(x), f : homa(x,y), and g : homa(y, z),

gi(fut) = (gof)su and (idy) U = u.

Prop. If x : A F B(x) is covariant then for each x : A the fiber B(x) is
discrete. Thus covariant type families are fibered in co-groupoids.

Prop. Fix a : A. The type family x : A homa(a, x) is covariant.



The Yoneda lemma

Let x : A F B(x) be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

ev-id :== \p.¢(a, id,) : <H homa(a, x) — B(x)) — B(a)

Xx:A

and

yon = AuAxAf.fyu @ B(a) — (H homa(a, x) — B(X))

X:A

are inverse equivalences.

Corollary. A natural isomorphism ¢ : [],., homa(a, x) = homa(b, x)
induces an identity ev-id(¢) : b =, a if the type A is Rezk.



The dependent Yoneda lemma

Yoneda lemma. If A is a Segal type and B(x) is a covariant family
dependent on x : A, then evaluation at (a, id,) defines an equivalence

X:A

ev-id : (H homa(a, x) — B(X)) — B(a)

The Yoneda lemma is a “directed” version of the “transport” operation
for identity types, suggesting a dependently-typed generalization
analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x,y,f) is a
covariant family dependent on x,y : A and f : homa(x, )
evaluation at (x, x, id, ) defines an equivalence

, then

ev-id : H H B(x,v,f) —>HB(X,x,idX)
Xx:A

Xyt A f homA vy)




Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction. If B(x,y, p) is a type family dependent on x,y : A and
p: x =4y, then to prove B(x, y, p) it suffices to assume y is x and p is
refl,. l.e, there is a function

path-ind : (H B(x, x, reﬂX)> = H H B(x,y,p)
X:A

X,y:A DIX=aY

Arrow induction. If B(x,y,f) is a covariant family dependent on x,y : A
and f : homa(x,y) and A is Segal, then to prove B(x,y, f) it suffices to
assume y is x and [ is id. l.e, there is a function

id-ind:(HB(X,x,idX)>—> IT II Btrn
X:A

X»)“A f:homA (X7y)
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