Homework 2 Solutions

February 18, 2014

1 Problems from 2.1

8. Give a formula for $N(t)$ based on the information provided: $N_{0}=6$; population doubles every 40 minutes; one unit of time is 60 minutes.
Answer: Note that if one unit of t is 60 minutes, then 40 minutes is $2 t / 3$. So, when t reaches $2 / 3$, we want our population to have doubled. How can model this sort of behavior with a function? We want that $120=60 c^{2 / 3}$. In other words, after $2 / 3$ of a unit of time has passed, our original population of 60 has doubled. Solving this equation, we see that $c=2^{3 / 2}$. Thus our formula for $N(t)$ should be

$$
N(t)=60 \cdot 2^{3 t / 2}
$$

56. Write N_{t} as a function of t for the recursion: $N_{t+1}=N_{t} / 3$ with $N_{0}=3500$. Answer: If we consider the first few values of this recursion, it should become clear how to write it as a function of t. One point of advice - it might be helpful to avoid simplifying any of the values of N_{t} at this stage, since that will make the pattern clearer. So,

$$
\begin{align*}
& N_{0}=3500 \tag{1}\\
& N_{1}=\frac{3500}{3} \tag{2}\\
& N_{2}=\frac{3500}{3^{2}} \tag{3}\\
& N_{3}=\frac{3500}{3^{3}} \tag{4}
\end{align*}
$$

So it should be clear that the recursion can be written as

$$
N(t)=\frac{3500}{3^{t}}
$$

2 Problems from 2.2

20. Find the next four values of the sequence:

$$
-1, \frac{1}{4},-\frac{1}{9}, \frac{1}{16},-\frac{1}{25}, \ldots
$$

Answer: By examining the given values of the sequence, we'll try to find a pattern. The most obvious pattern is that the sequence is alternating. So we know that there's probably a $(-1)^{n}$ in there somewhere. The next most obvious thing is that the denominators are all perfect squares. What's more, the denominator of the $n^{t h}$ term is n^{2}. This tells us that the denominator is given by n^{2}. Putting these two facts together, and noticing that there's nothing else going on in this sequence, we can guess that a general form for the sequence is

$$
a_{n}=\frac{-1^{n}}{n^{2}} .
$$

So, we can determine that the next four terms should be:

$$
\frac{1}{36},-\frac{1}{49}, \frac{1}{64},-\frac{1}{81} .
$$

58. Find the limit a of the sequence $a_{n}=\frac{1}{\sqrt{n}}$, and determine N such that whenever $n>N,\left|a_{n}-a\right|<0.05$.
Answer: First, a few observations: it might help to notice that $0.05=$ $1 / 20$; also, note that \sqrt{n} is increasing, so $1 / \sqrt{n}$ is decreasing; and lastly, \sqrt{n} grows without bound (i.e. "goes to infinity") as n goes to infinity. Since \sqrt{n} just keeps getting bigger and bigger, we can probably guess right off the bat that $a=0$, and that guess would be correct. Now, let's try to find an N such that whenever $n>N$,

$$
\left|a_{n}-a\right|=\left|a_{n}-0\right|=a_{n}<1 / 20
$$

Now we want to use our observation that $1 / \sqrt{n}$ is decreasing. What this means is that as soon as we have a single n such that $a_{n}<1 / 20$, we're home free, since a_{n} can only get more less than $1 / 20$ after that. So, let's start with what we want and work backwards. What we want is

$$
\frac{1}{\sqrt{n}}<\frac{1}{20}
$$

Then we can cross-multiply to see that this requires

$$
20<\sqrt{n}
$$

So, let's choose $N=20^{2}=400$. Then we can check that if $n>N=20^{2}$, we know that

$$
\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{20^{2}}}=\frac{1}{20}
$$

So, indeed, $N=400$ works.
103. Find all fixed points of the recursion

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+5\right)
$$

with $a_{0}=1$.
Answer: For a number c to be a fixed point of the recursion, it means that $c=a_{n}=a_{n+1}$, since the recursion, once it gets to the fixed point, can't leave it (that's why it's called a fixed point!). So, we solve $a_{n}=a_{n+1}$. Or, more concretely, we do the following:

$$
\begin{aligned}
& \Rightarrow a_{n}=\frac{1}{2}\left(a_{n}+5\right) \\
& \Rightarrow 2 a_{n}=\left(a_{n}+5\right) \\
& \Rightarrow 2 a_{n}-a_{n}=5 \\
& \Rightarrow a_{n}=5 .
\end{aligned}
$$

So the only fixed point is 5 . Now, let's see if it looks like our recursion tends to 5 as n increases (it may help to use a calculator for the higher values):

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=3 \\
& a_{2}=4 \\
& a_{3}=4.5 \\
& a_{4}=4.75 \\
& a_{5}=4.875 \\
& a_{6}=4.9375 \\
& a_{7}=4.96875 \\
& a_{8}=4.984375 \\
& a_{9}=4.9921875 .
\end{aligned}
$$

So it does indeed seem that our recursion tends to 5 .

