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Abstract

We study the Plateau Problem of finding an area minimizing disk bounding a given

Jordan curve in a certain class of Alexandrov spaces. These are complete metric

spaces with a lower curvature bound given in terms of triangle comparison along

with an additional condition that is satisfied by all Alexandrov spaces according to

a conjecture of Perel’man. The key is to develop a harmonic map theory from two

dimensional domains into these spaces. In particular, we show that the solution to

the Dirichlet problem from a disk is Hölder continuous in the interior and continuous

up to the boundary.

Readers: Chikako Mese (Advisor) and William Minicozzi.
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3.1 The Interior Hölder Continuity . . . . . . . . . . . . . . . . . . . . . 20

3.2 Boundary Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Plateau Problem 32

4.1 The area functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 The Plateau Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



Chapter 1

Introduction

The Plateau Problem is the problem of finding a surface minimizing the area amongst

all surfaces which are images of a map from a disk and spanning a given Jordan curve

Γ in a space X. If X is the Euclidean space Rn, we can formulate this problem more

precisely as follows. If D is the unit disk in R2, the area of a map u : D → Rn is

(1.1) A(u) =

∫

D

√∣∣∣∣
∂u

∂x

∣∣∣∣
2 ∣∣∣∣

∂u

∂y

∣∣∣∣
2

−
(

∂u

∂x
· ∂u

∂y

)2

dxdy.

The Plateau Problem in Rn. Given a Jordan curve Γ ⊂ Rn, let

F = {v : D → Rn : v ∈ W 1,2(D) ∩ C0(D) and v
∣∣
∂D

monotonically parameterizes Γ}.

Find u ∈ F so that A(u) ≤ A(v) for all v ∈ F .

The mathematical problem of proving the existence of an area minimizing surface

spanning a given contour was raised by J. Lagrange in the mid-eighteenth century, but

the problem is named after the Belgian physicist J. Plateau who studied soap films. It

was not until the 1930’s that J. Douglas [D] and T. Rado [R1] [R2] properly formulated

and independently solved this problem. In the 1950’s, C.B. Morrey [Mo] generalized

the problem by replacing the ambient Euclidean space by a space belonging to a
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very general class of Riemannian manifolds (that includes all compact ones). Further

generalization is due to I. Nikolaev [N] who replaced the Riemannian manifold by a

complete metric space with the curvature bounded above in the sense of Alexandrov.

Our interest here is to extend the generalization to the case when the ambient space

is an Alexandrov space, i.e. when the curvature is bounded from below.

An important ingredient for the Plateau Problem (and minimal surface theory in

general) is the theory of harmonic maps from a domain of dimension 2. In fact, the

solution of the Plateau Problem in Euclidean space and Riemannian manifolds can be

given by a map that is harmonic and conformal. With the assumption of non-positive

curvature, the harmonic map theory into a singular target space (with the domain

assumed to be a Riemannian domain of arbitrary dimension) was first considered in

the foundational paper of M. Gromov and R. Schoen [GS] and further generalized

by N. Korevaar and R. Schoen [KS1], [KS2]. This theory was also developed inde-

pendently by J. Jost (see [J] and references therein). A generalization to the case

when the curvature is bounded from above by an arbitrary constant was given by T.

Serbinowski [S1]. The aspect that makes the harmonic map theory tractable in this

setting is the strong convexity property of the energy functional under the assump-

tion of an upper curvature bound. The regularity theory for the Dirichlet problem

(i.e. the problem of finding a map of least energy amongst all maps with a given

boundary condition) states that the Dirichlet solution is Lipschitz continuous in the

interior [KS1] and Hölder continuous up to the boundary if given a Hölder continuous

boundary condition [S2]. Recall also that there often exists a heavy reliance on the

upper sectional curvature bound when one studies harmonic maps into Riemannian

manifolds (see for example [ES]). The harmonic map approach to the Plateau Prob-

lem in metric spaces of curvature bounded from above is discussed by the first author

in [Me1], [Me2], [Me3]. (This differs substantially from the approach pursued in [N].)
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To tackle the Plateau Problem when the ambient space has a lower curvature

bound, we will develop the relevant two-dimensional harmonic map theory. More

specifically, we study the Dirichlet problem for maps into an Alexandrov space X.

The difficulty here is that we do not have the nice convexity properties of the energy

functional. Hence, we cannot mimic the techniques developed for maps into spaces

with an upper curvature bound. In fact, for higher dimensional domains, we do not

expect that the solution of the Dirichlet problem to be even continuous in general.

On the other hand, we will show that, assuming an additional condition on X which

we describe below, we can develop a two-dimensional theory suitable for the harmonic

map approach to the Plateau Problem in X. In particular, we prove the following:

Regularity Theorem (cf. Theorem 3.1.1, Theorem 3.2.1) Let X be an Alexan-

drov space satisfying Perel’man’s conjecture. A Dirichlet solution u : D → X is

Hölder continuous in the interior of D and continuous up to ∂D.

Using the theorem above, we solve the Plateau Problem by using the Dirichlet so-

lution as a means to obtain an area minimizing disk. One fundamental point we need

to clarify is the notion of area associated to a map into an Alexandrov space. Note

that the area functional given by (1.1) for maps into Euclidean space is the integral of

the area element of the pull-back metric. The notion of the pull-back metric for maps

into non-positively curved metric spaces was given in [KS1] and for metric spaces of

general upper curvature bound in [Me2]. We prove that this notion also makes sense

for maps into Alexandrov spaces (cf. Theorem 4.1.1). Using the pull-back metric,

we define the area functional for maps into X and formulate the Plateau Problem

analogously to the statement of the Plateau problem in Euclidean space. The proof of

the existence of the solution of the Plateau Problem parallels a well-known argument

3



for the Euclidean case [L]. Combined with the regularity theorem for the Dirichlet

problem, this gives us:

Theorem (cf. Theorem 4.2.1 and Theorem 4.2.6) Let X be a Alexandrov space

satisfying Perel’man’s conjecture and Γ ⊂ X be a Jordan curve. Suppose there exists

a continuous map u0 : D → X of finite energy whose restriction to ∂D monotonically

parameterizes Γ. Then there exists a continuous map u : D → X which minimizes

area amongst all other continuous maps whose restriction of ∂D monotonically param-

eterizes Γ. Furthermore, u is conformal, energy minimizing and Hölder continuous

in the interior of D.

We now discuss the space X in the theorems above in more detail. Recall that an

Alexandrov space with curvature bounded above by κ is one in which geodesic trian-

gles are thicker than comparison triangles in the two-dimensional simply connected

surface of constant curvature κ. This notion of curvature bounds in metric space

seems to be due to A. Wald [W] in the 1930’s and was developed by a Russian school

of mathematicians led by A.D. Alexandrov starting in the 1940’s. More recently,

Alexandrov spaces re-emerged into prominence as they are the limiting spaces of a

sequence of certain Riemannian manifolds under the Gromov-Hausdorff convergence.

Perel’man’s Stability Theorem [P] states that if two Alexandrov spaces of the same

dimension are sufficiently close in the Gromov-Hausdorff distance, they are actually

homeomorphic. In fact, Perel’man asserts something more - the homeomorphism

between the two spaces can be chosen to be bi-Lipschitz. The proof of Perel’man’s

claim in its full generality is not yet available to our knowledge. For a good discussion

on the Stability Theorem and related issues, we refer to Kapovitch [K1]. We note

the following two properties of an Alexandrov space; first, the tangent cone TP X
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at a point of an n-dimensional Alexandrov space X is a cone C(ΠP ) over the space

of directions ΠP at P which is itself an (n − 1) Alexandrov space, and second, the

Hausdorff-Gromov distance between a neighborhood around P in X and a neigh-

borhood around the vertex of C(ΠP ) at this point can be made arbitrarily small by

taking the neighborhoods sufficiently small. Thus, Perel’man’s claim implies that if

X is an n-dimensional Alexandrov space, then X satisfies the property that X is

locally bi-Lipschitz equivalent to a cone over a (n−1)-dimensional Alexandrov space.

Furthermore, this (n− 1)-dimensional Alexandrov space is locally bi-Lipschitz equiv-

alent to a cone over an (n − 2)-dimensional Alexandrov space and so forth. This

motivates us to say that an Alexandrov space X satisfies the Perel’man conjecture if

it has this property.

The outline of this dissertation is as follows. In chapter 2, we give definitions of

Alexandrov spaces and other related concepts. We also recall Korevaar and Schoen’s

Sobolev space theory into metric spaces. Chapter 3 contains the two dimensional

harmonic map theory. In particular, we discuss the existence of the solution to the

Dirichlet problem and prove its interior and boundary regularity. In chapter 4, the

solution of the Plateau Problem is shown. Finally, chapter ?? contains the proof of

the existence of the pull-back inner product that allows us to make sense of the area

functional.

Because the interior regularity proven in 3 is central to this paper and because

of the technical nature of its proof, we conclude this introduction by illustrating the

ideas behind this argument. The main step of the proof is to establish that, for

any Dr(x0) ⊂ D, we have a good bound on the energy of a map u
∣∣
Dr(x0)

in terms

of the energy of u
∣∣
∂Dr(x0)

. This in turn implies an energy decay estimate which, by

Morrey’s Energy Decay Lemma, implies the Hölder continuity. If the image Γ0 ⊂ X

of the boundary map u
∣∣
∂Dr(x0)

is long, then its energy is large and thus we restrict our
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attention to the case when Γ0 is short. Hence, we can assume that Γ0 is contained

in a neighborhood that is bi-Lipshitz equivalent to a neighborhood of the vertex of

the cone C(ΠP ) for some P ∈ X. Since the ratio of the energy of a given map and

the energy of this map composed with a bi-Lipschitz map is bounded from above and

below by a constant depending on the bi-Lipschitz constant, we can further assume

for the sake of simplicity that u
∣∣
Dr(x0)

maps into this cone. We now consider the

following two cases: (1) the length of Γ0 is short relative to its distance from the

vertex V of the cone and (2) the length of Γ0 is long relative to its distance from the

vertex. In case (1), we extend the map u|∂Dr(x0) to a map ϕ defined on Dr(x0) by

setting ϕ(x0) = V and linearly mapping the radial ray from x0 to a point ξ ∈ ∂Dr(x0)

to a ray from V to u(ξ). By the construction, the energy of ϕ is bounded in terms

of the energy of u
∣∣
∂Dr(x0)

. The main step follows immediately since u
∣∣
Dr(x0)

is energy

minimizing and has the same boundary values as ϕ. In case (2), Γ0 is contained in

a neighborhood U far away from the vertex and hence U is bi-Lipschitz equivalent

to product of ΠP × I for some interval I ⊂ R. We construct a map ϕ by separately

considering the Dirchlet problem in ΠP and in I. Therefore, if we have a good energy

bound for the Dirichlet problem in ΠP , then we are done. Since the dimension of

ΠP is one less than that of X, we are able to prove the main step by an inductive

argument on the dimension of X.
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Chapter 2

Definitions and Background

Material

2.1 Alexandrov Spaces

Definition 2.1.1. We say a complete metric space (X, d) (or more simply X) is an

Alexandrov space of curvature bounded from below by κ if it satisfies the following

conditions:

(1) X is a length space; i.e. for any two points P, Q ∈ X, there exists a curve

γPQ between P and Q with length equal to d(P, Q).

(2) Let Sκ be a simply connected surface of constant curvature κ. Denote the dis-

tance function of Sκ by d̄ and the geodesic between P̄ , Q̄ ∈ Sκ by P̄ Q̄. Given a triple

P, Q,R ∈ X, let 4(PQR) be a geodesic triangle. Then there exists a geodesic triangle

4(P̄ Q̄R̄) in Sκ such that d(P, Q) = d̄(P̄ , Q̄) , d(P, R) = d̄(P̄ R̄) , d(R, Q) = d̄(R̄, Q̄)

and if we take two points S̄ ∈ P̄ Q̄ and T̄ ∈ P̄ R̄ with d(P, S) = d̄(P̄ , S̄) , d(P, T ) =
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d̄(P̄ , T̄ ), then d(S, T ) ≥ d̄(T̄ , S̄). The triangle 4(P̄ Q̄R̄) ⊂ Sκ will be called a com-

parison triangle of 4(PQR) ⊂ X.

For simplicity, will say that X is an Alexandrov space if there exists some κ0 so

that X is an Alexandrov space of curvature bounded from below by κ. In this paper,

it is not important whether κ is positive, zero or negative; we only use the fact that

there exists some lower bound on curvature. Hence, we may as well assume κ < 0.

Let α(s) : [0, a] → X and β(t) : [0, b] → X be arclength parameterizations of

two geodesics emanating from a point P ∈ X and let θ(t, s) be the angle at P̄ of a

comparison triangle 4α(t)P̄ β(s) in Sκ. In particular, if X is an Alexandrov space of

curvature bounded from below by κ = −1 then θ(t, s) ∈ [0, π] is given by the equality

cosh d̄(ᾱ(t), β̄(s)) = cosh t cosh s− sinh t sinh s cos θ(t, s).

Condition (2) implies that t 7→ θ(t, s) and s 7→ θ(t, s) are monotone non-increasing.

The angle between geodesics α and β is defined to be

∠(α, β) = lim
t,s→0

θ(t, s).

We will need the following geometric fact:

Lemma 2.1.2. Let X be an Alexandrov space. For any ρ > 0, there exists δ = δ(ρ)

sufficiently small so that if

(i) P, R, T ∈ X with P 6= R, dPR < δ and

(2.1) |1
2
dPR − dPT | < δ2dPR , |1

2
dPR − dRT | < δ2dPR,

(ii) γTR is a geodesic from T to R and R′ ∈ γTR with

(2.2) dRR′ = δdPR
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(iii) γPR′ is a geodesic from P to R′ with T ′ as its midpoint,

then

(2.3) dTT ′ < ρdPR.

Remark . The idea behind Lemma 2.1.2 is as follows. One of the distinguishing

features of a space X with a lower curvature bound is the non-uniqueness of geodesics

between two given points. Related to this non-uniqueness statement is the following

fact: given two points P, R ∈ X, any point T whose distances to P and to R are both

approximately half of dPR as in (i) may be far away from the midpoint of a geodesic

γPR. For example, let P be the north pole and R be the south pole on the standard

2-sphere and T be a point on the equator; There exists a geodesic γPR from P and R

whose midpoint is the antipodal point of T . In a smooth Riemannian manifold, the

point T satisfying (i) is close to the midpoint of γPR if P and R are contained in a

sufficiently small neighborhood, but in an Alexandrov space, such a neighborhood does

not generally exist. On the other hand, Lemma 2.1.2 says that we can choose a point

R′ close to R as in (ii) so that T is close to a midpoint T ′ of a geodesic γPR′.

Proof. We assume that X is an Alexandrov space of curvature bounded from below

by −1. (Given an Alexandrov space of curvature bounded from below by κ < 0, we

can rescale the distance function by a factor of 1
|κ| to construct an Alexandrov space

of curvature bounded from below by −1. Since the assumption and the conclusion of

the lemma is scale invariant, the condition that the curvature is bounded from below

by −1 is without a loss of generality.) Fix δ > 0 and let P,R, T, γTR, R′, γPR′ , T
′

satisfy (i), (ii) and (iii) above. Since

dTR′ = dTR − dRR′ , dT ′R′ =
1

2
dPR′ , dPR − dRR′ ≤ dPR′ ≤ dPR + dRR′ ,
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(2.1) and (2.2) imply

(2.4) dTR′ , dT ′R′ =

(
1

2
+ O(δ)

)
dPR.

Define α by setting

cosh dTT ′ = cosh dTR′ cosh dT ′R′ − sinh dTR′ sinh dT ′R′ cos α.

Using Taylor expansion, we obtain

d2
TT ′ = d2

TR′ + d2
T ′R′ − 2dTR′dT ′R′ cos α + O(d3

PR)

= (dTR′ − dT ′R′)
2 + 2dTR′dT ′R′(1− cos α) + O(d3

PR).

Furthermore, apply (2.4) to obtain

d2
TT ′ = O(δ2)d2

PR +

(
1

2
+ O(δ)

)2

(1− cos α)d2
PR + O(d3

PR).

Thus, if we can show that α can be made arbitrarily small by taking δ (and there-

fore dPR) sufficiently small, then we obtain O(δ) +
(

1
4

+ O(δ)
)
(1 − cos α) < ρ2

2
for

sufficiently small δ and hence

d2
TT ′ ≤

ρ2

2
d2

PR + O(d3
PR) < ρ2d2

PR

for δ sufficiently small. Thus, we are left to show that α is small if δ is chosen to be

small. To see this, we let γTR′ ⊂ γTR be a geodesic from T to R′ and γRR′ ⊂ γTR be

a geodesic from R to R′. Next, let α0 be the angle between γPR′ and γTR′ and β0 the

angle between γPR′ and γRR′ . Lastly, let β be the angle defined by

cosh dPR = cosh dPR′ cosh dRR′ − sinh dPR′ sinh dRR′ cos β.

By construction, α0 + β0 = π, and by the monotonicity property of angles in Alexan-

drov space, α0 ≥ α and β0 ≥ β. Hence

cosh dPR ≤ cosh dPR′ cosh dRR′ − sinh dPR′ sinh dRR′ cos β0

= cosh dPR′ cosh dRR′ + sinh dPR′ sinh dRR′ cos α0

≤ cosh dPR′ cosh dRR′ + sinh dPR′ sinh dRR′ cos α.
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Expanding by Taylor series, we obtain

d2
PR ≤ d2

PR′ + d2
RR′ + 2dPR′dRR′ cos α + O(d3

PR)

≤ (dPR′ + dRR′)
2 + 2dPR′dRR′(cos α− 1) + O(d3

PR).

By the triangle inequality along with (2.1), we have

dPR′ ≤ dPT + dTR′

= dPT + dTR − dRR′

≤ dPR + 2δ2dPR − dRR′ .

Furthermore, the triangle inequality and (2.2) gives

dPR′ ≥ dPR − dRR′ = (1− δ)dPR.

Combining the last three inequalities, we obtain

d2
PR ≤ d2

PR(1 + O(δ2))2 + d2
PR(δ − δ2)(cos α− 1) + O(d3

PR).

Dividing by d2
PR and δ and rearranging terms, we get

(1− δ)(1− cos α) ≤ 4δ + 4δ2 + O(dPQ).

Hence, we see that α is small if δ is sufficiently small.

Definition 2.1.3. The space of directions ΣP at P ∈ X is the closure of the set of

equivalence classes of geodesics emanating from P endowed with the distance function

dΣP
([α], [β]) = ∠(α, β). Here, α is said to be equivalent to β if and only if ∠(α, β) = 0.

Definition 2.1.4. The tangent cone TP is defined to be the set

ΣP × [0,∞)/ ∼

11



where ∼ identifies all element of the form ([α], 0) along with a distance function dTP

defined by

d2
TP

(([γ], s), ([σ], t)) = s2 + t2 − 2st cos dΣP
([γ], [σ]).

The equivalence class of ([α], 0) will be called the vertex of TP .

In this paper, we will usually assume an Alexandrov space X is of finite Hausdorff

dimension. In fact, under this condition, Hausdorff dimension can be shown to be

always integer-valued (cf. [B1]). The space of directions is also a compact Alexan-

drov space of curvature bounded below by 1 with diameter less than or equal to π

and dimension 1 less than that of X. The tangent cone, in turn, is an Alexandrov

space of curvature bounded below by 0 (cf. [B1]). Finally, we define the notion of an

Alexandrov spaces satisfying the Perel’man conjecture given by the following induc-

tive definition.

Definition 2.1.5. Let X be a Alexandrov space. We say that a 1-dimensional Alexan-

drov space is said to satisfy the Perel’man conjecture if and only if it is a finite interval

or a circle. Assuming that we have given the definition an (n−1)-dimensional compact

Alexandrov space X satifying the Perel’man conjecture, we say that an n-dimensional

compact Alexandrov space satisfies the Perel’man conjecture if every point P ∈ X has

a neighborhood UP (hereafter referred to as a conic neighborhood) which is bi-Lipschitz

homeomorphic to a neighborhood of the vertex of a cone over an (n− 1)-dimensional

compact Alexandrov space which satisfies the Perel’man conjecture.

Let X be a n-dimensional compact Alexandrov space satisfying the Perel’man

conjecture. For each P ∈ X, let UP be a conic neighborhood of P . Because of

the assumption that X is compact, there exists a finite set of point F ⊂ X so that

{UP}P∈F is a covering of X. We will refer to {UP} as a finite cover of X by conic
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neighborhoods. A number λ > 0 is a Lebesgue number of a finite cover {UP}P∈F if

A ⊂ UP for some P ∈ F whenever the diameter of A is ≤ λ.

Perel’man Stability Theorem is the following:

Theorem (cf. [P], [K1]) Let X be a compact n-dimensional Alexandrov space of

curvature bounded from below by κ. There exists ε = ε(X) > 0 so that if Y is

an n-dimensional Alexandrov space of curvature bounded from below by κ with the

Hausdorff-Gromov distance between X and Y less than ε, then there exists a homeo-

morphism between X and Y .

Perel’man asserts that there actually exists a bi-Lipschitz homeomorphism be-

tween X and Y above. A consequence of Perel’man’s claim is that the condition

that an n-dimensional Alexandrov space satisfies Perel’man’s conjecture is actually

redundant. This follows immediately from the fact that, for any point P in a n-

dimensional Alexandrov space X, the pointed Hausdorff limit of the scaling (λX; P )

of X is isometric to (TP (X); V ). In other words, a small neighborhood around P is

close in Hausdorff-Gromov distance to a small neighborhood around V in TP which

is a cone over a (n− 1)-dimensional space of directions.

2.2 Sobolev Space W 1,2(Ω, X)

We summarize Korevaar and Schoen’s Sobolev space theory of [KS1]. Let Ω be a

compact Riemannian domain and (X, d) a complete metric space. A Borel measurable

map u : Ω → X is said to be in L2(Ω, X) if for P ∈ X,

∫

Ω

d2(u(x), P )dµ < ∞.
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This condition is independent of P ∈ X by the triangle inequality. For ε > 0, set

Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} and let S(x, ε) denote the sphere of radius ε centered

at x in Ω. Construct the ε-approximate energy function eε(x) : Ωε → R by

eε(x) =
1

ωn

∫

S(x,ε)

d2(u(x), u(y))

ε2

dσ

εn−1

where ωn is the volume of the unit sphere in Rn. Let ν be any Borel measure on the

interval (0, 2) satisfying

ν ≥ 1 , ν((0, 2)) = 1,

∫ 2

0

λ−2dν(λ) < ∞.

Consider an averaged approximate energy density function defined by

νeε(x) =





∫ 2

0

eλε(x)dν(λ) for x ∈ Ω2ε

0 for x ∈ Ω− Ω2ε.

Since νeε(x) ∈ L1(Ω), we can define a functional Eu
ε : Cc(Ω) → R by setting

Eu
ε (f) =

∫

Ω

f(x)νeε(x)dµ.

We will say that u is a finite energy map or u ∈ W 1,2(Ω, X) if

Eu = sup
f∈Cc(Ω),0≤f≤1

lim sup
ε→0

Eu
ε (f) < ∞.

If u ∈ W 1,2(Ω, X), the measures νeε(x)dµ converge weakly independently of the choice

of ν to a measure which is absolutely continuous with respect to the Lebesgue measure

(cf. Theorems 1.5.1 and 1.10 of [KS1]). Hence, there exists a function |∇u|2, called

the energy density, so that eεdµ ⇀ |∇u|2dµ.

Let Γ(TΩ) be the set of Lipschitz tangent vector fields on Ω. The directional

energy density |u∗(Z)|2 for Z ∈ Γ(TΩ) is defined similarly. We denote x + εZ to be
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the flow along Z at time ε with initial point x. Define

Zeε(x) =
d2(u(x), u(x + εZ))

ε2
.

If u ∈ W 1,2(Ω, X), then Zeεdµ ⇀ |u∗(Z)|2dµ (cf. Theorems 1.8.1 and 1.9.6 of [KS1]).

We set

|u∗(Z)| =
√
|u∗(Z)|2.

and note that this notation is justified by Theorem 1.9.6 of [KS1]. For almost every

x ∈ Ω,

|∇u|2(x) =
1

ωn

∫

Sn−1

|u∗(ω)|2dσ(ω)

where Sn−1 ⊂ TxΩ is the unit sphere (cf. (1.10v) of [KS1]). Lastly,

|u∗(hZ)|2 = |h|2|u∗(Z)|2

for h ∈ C0,1(Ω) (cf. Theorem 1.11 of [KS1]).

If Ω is a Lipschitz domain and u ∈ W 1,2(Ω, X), then there exists a well-defined

notion of a trace of u, denoted Tr(u), which is an element of L2(∂Ω, X). Two

maps u, v ∈ W 1,2(Ω, X) have the same trace (i.e. Tr(u) = Tr(v)) if and only if

d(u(x), v(x)) ∈ W 1,2
0 (Ω) (cf. Theorem 1.12.2 of [KS1]).

We will also need the following lemmas. For notational simplicity, we set

Dε(Z, W ) =
d(u(x + εZ), u(x + εW ))

ε
, Z, W ∈ Γ(TΩ).

Lemma 2.2.1. Let V ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then
√

fDε(0, V ) converges

to
√

f |u∗(V )| pointwise almost everywhere, in L2 and in L2-norm, i.e.

fD2
ε (0, V ) → f |u∗(V )|2 a.e.,

(2.5)

∫

Ω

f(Dε(0, V )− |u∗(V )|)2 → 0

15



and

(2.6)

∫

Ω

fD2
ε (0, V ) →

∫

Ω

f |u∗(V )|2.

Proof. The convergence in L2-norm follows from Theorem 1.8.1 of [KS1]. To see

the pointwise a.e. convergence, first observe that (1.9 xix) of [KS1] implies that

|u∗(V )| = 0 almost everywhere on {x : V (x) = 0}. Since Dε(0, V ) = 0 on this set,

we only need to verify the convergence on {x : V (x) 6= 0}. After applying a C1,1

change of coordinates from the initial coordinate chart, we can assume that Z is a

coordinate direction. Thus Lemma 1.9.5 of [KS1] implies that D2
ε (0, V ) → |u∗(V )|2

almost everywhere. The fact that
√

fDε(0, V ) converges to
√

f |u∗(V )| in L2 follows

immediately from the other two convergence statements.

Lemma 2.2.2. Let V, U ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then as ε → 0, we have

(2.7)

∫

Ω

f(Dε(0, V )−Dε(U,U + V ))2 → 0,

(2.8)

∫

Ω

fD2
ε (U,U + V )dµ →

∫

Ω

f |u∗(V )|2dµ

and

(2.9) fD2
ε (U,U + V ) → |u∗(V )|2 a.e.

Proof. For this proof, we set Dε = Dε(0, V ), D = |u∗(V )| and Tεϕ(x) = ϕ(x+ εU) for

any function ϕ : Ω → R. To see why (2.7) is true, first note that TεDε = Dε(U,U +V )

and

√
fTεDε = Tε(T−ε

√
f)TεDε

= Tε(
√

f − (
√

f − T−ε

√
f))TεDε

= Tε(
√

fDε) + (Tε

√
f −

√
f)TεDε.
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Thus, denoting the L2 norm by ‖ · ‖2, we obtain

‖
√

fTεDε −
√

fDε‖2 ≤ ‖Tε(
√

fDε)−
√

fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2.

Furthermore, several application of the the triangle inequality yields

‖
√

fTεDε −
√

fDε‖2

≤ ‖Tε(
√

fDε)−
√

fD‖2 + ‖
√

fD −
√

fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2

≤ ‖Tε(
√

fDε)− Tε(
√

fD)‖2 + ‖Tε(
√

fD)−
√

fD‖2

+‖
√

fD −
√

fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2

≤ ‖Tε(
√

fD)−
√

fD‖2 + 2‖
√

fD −
√

fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2.

As ε → 0, the first term on the right hand side converges to 0 since
√

fD ∈ L2(Ω),

the second term by Lemma 2.2.1 and the third term since Tε

√
f → √

f uniformly.

Thus, we have established (2.7).

To see why (2.8) is true, one can use the change of coordinates method outlined

in the proof of Lemma 2.3.1 of [KS1]. The convergence of (2.9) follows immediately

from (2.7) and (2.8).

Lemma 2.2.3. Let V, U ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then for all η > 0 there

exists ε0, δ > 0 such that for all Ω̃ ⊂ Ω with µ(Ω̃) < δ and ε < ε0, we have

(2.10)

∫

Ω̃

f(x)D2
ε (0, V )dx < η and

∫

Ω̃

f(x)D2
ε (U,U + V )dx < η.

Proof. We use the notation of the proof of Lemma 2.2.2. Since fD2 is a non-negative

integrable function on Ω, there exists δ > 0 such that if µ(Ω̃) < δ then

2

∫

Ω̃

fD2 <
η

2
.

By Lemma 2.2.1, there exists ε0 > 0 such that if ε < ε0, then

2

∫

Ω̃

(
√

fDε −
√

fD)2 ≤ 2

∫

Ω

(
√

fDε −
√

fD)2 <
η

2
.
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Thus, the first inequality of (2.10) follows by observing that

∫

Ω̃

fD2
ε =

∫

Ω̃

(
√

f(D + Dε −D))2 ≤ 2

∫

Ω̃

fD2 + 2

∫

Ω̃

(
√

fDε −
√

fD)2.

The second inequality follows from

∫

Ω̃

fDεTεDε

=

∫

Ω̃

fD2
ε +

∫

Ω̃

fDε(TεDε −Dε)

≤
∫

Ω̃

fD2
ε +

(∫

Ω̃

fD2
ε

)1/2 (∫

Ω̃

f(TεDε −Dε)
2

)1/2

and the observation that the second term converges to 0 as ε → 0 by Lemma 2.2.2.
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Chapter 3

The Dirichlet Problem

We let D be a unit disk in the plane. The Dirichlet Problem for an Alexandrov space

X is formulated as follows:

The Dirichlet Problem Let ψ ∈ W 1,2(D, X) and define W 1,2
ψ = {v ∈ W 1,2(D, X) :

Tr(v) = Tr(ψ)}. Let Eψ = inf{Ev : v ∈ W 1,2
ψ }. Find u ∈ W 1,2

ψ such that Eu = Eψ.

If u ∈ W 1,2(D, X) has the property that Eu ≤ Ev for any v ∈ W 1,2(D, X) with

Tr(v) = Tr(u), then u will be referred to as a Dirichlet solution (for the boundary

data Tr(u)). We first establish the following existence result:

Theorem 3.0.4. Given any ψ ∈ W 1,2(D, X), there exists a Dirichlet solution u ∈
W 1,2

ψ (D, X).

Proof. The proof is an easy application of the results of Chapter 1 in [KS1]. We take

a sequence of maps {uk} ⊂ W 1,2
ψ (D,X) such that Euk converges to Eψ. Since our

spaces are compact, there exists C > 0 so that

∫

D

d2(uk(x), Q)dµ(x) + Euk ≤ C.
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By the precompactness theorem (Theorem 1.13 of [KS1]), there exists a subsequence

{uki
} that converges in L2(D,X) to u ∈ W 1,2(D, X). By the lower semicontinuity

of energy (Theorem 1.6.1 of [KS1]) and the trace theory (Theorem 1.12.2 of [KS1]),

Eu = Eψ and Tr(u) = Tr(ψ).

The rest of this section is devoted to the regularity issues of the Dirichlet solution.

3.1 The Interior Hölder Continuity

The goal of this subsection is to prove:

Theorem 3.1.1. Let X be a finite dimensional compact Alexandrov space satisfying

the Perel’man conjecture. Let u ∈ W 1,2(D,X) be a Dirichlet solution. Then for each

R ∈ (0, 1), there exists C and α dependent only on R, Eu and X so that

d(u(z1), u(z2)) ≤ C|z1 − z2|α, ∀z1, z2 ∈ DR(0).

Here, DR(z0) ⊂ R2 is the disk of radius R centered at z0. In particular, D1(0) = D.

Before we prove Theorem 3.1.1, we will need several preliminary lemmas. In the

following, let Π be a compact Alexandrov space. We define two metric spaces P(Π)

and C(Π) associated with Π. The first is the product of Π with R; more precisely,

P(Π) is the set

Π×R = {(P, t) : P ∈ X, t ∈ R}

endowed with the distance function dP defined by

d2
P((P, t), (Q, s)) = d2(P, Q) + (t− s)2.

For any r1, r2 ∈ [0,∞) with r1 < r2, we define the truncated product space as

P(Π, r1, r2) = {(P, t) ∈ P(Π) : r1 < t < r2}.

20



The second space is the cone over Π; more precisely, C(Π) is the set

Π× [0,∞)/ ∼ where (P, 0) ∼ (Q, 0)

endowed with the distance function dC defined by

d2
C((P, t), (Q, s)) = t2 + s2 − 2ts cos d(P,Q).

The vertex of C(Π) (i.e. any point of the form (P, 0)) will be denoted O. For any

r1, r2 ∈ [0,∞) with r1 < r2, we define the truncated cone as

C(Π, r1, r2) = {(P, t) ∈ C(Π) : r1 < t < r2}.

Given a map u ∈ W 1,2(D,P(Π)) (resp.u ∈ W 1,2(D, C(Π))) we will denote energy,

energy density function and directional energy function by Eu
P , |∇u|2P and |u∗(V )|2P

(resp. Eu
C , |∇u|2C and |u∗(V )|2C) to avoid confusion.

If 0 < r1 < r2 < ∞, then u ∈ W 1,2(D,P(Π)) if and only if u ∈ W 1,2(D, C(Π)). In

fact, a simple computation shows that there exists

(3.1) L = L(r1, r2)

so that

1√
L

dP(P, Q) ≤ dC(P, Q) ≤
√

LdP(P, Q)

and hence

1

L
Eu
P ≤ Eu

C ≤ LEu
P .

Lemma 3.1.2. Given a finite dimensional compact Alexandrov space X satisfying

Perel’man’s conjecture, a finite cover of X by conic neighborhoods and λ the Lebesgue

number of this cover, there exists κ depending only on X so that if u ∈ W 1,2(D, X)

is a Dirichlet solution, Tr(u) = γ ∈ W 1,2(∂D, X) and

(3.2)

∫

∂D

|γ∗( ∂

∂θ
)|2dθ <

λ2

2π
,
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then

(3.3) Eu ≤ κ

∫

∂D

|γ∗( ∂

∂θ
)|2dθ.

Proof. We prove this by an induction on the dimension of X. We first verify the in-

ductive step. Assume Lemma 3.1.2 is true whenever the dimension is n and suppose

that the dimension of X is n + 1. Let {Up}p∈F be a finite cover of X by conic neigh-

borhoods and λ be its Lebesgue number. By the definition of conic neighborhoods,

for each p ∈ F , there exists a bi-Lipshitz map

ϕp : Up → ϕp(Up) ⊂ C(Πp)

where we refer to Πp by an abuse of notation as the space of directions at p of X.

For each p ∈ F , let {V p
q }q∈Fp be a finite cover Πp by conic neighborhoods and λp be

its Lebesgue number. Let

ϕp
q : Up

q → ϕp
q(V

p
q ) ⊂ C(Πp

q)

be a bi-Lipschitz map where Πp
q is the space of directions at q of Πp. Let K, η be

sufficiently large so that for all p ∈ F and P, Q ∈ Up,

(3.4)
1√
K

d(P, Q) ≤ dC(ϕp(P ), ϕp(Q)) ≤
√

Kd(P,Q)

and

(3.5)

1
η

L(1− 1
η
)
≤ min

p∈F
λp and

π

η
<

1

4

where L = L(1
2
, 3

2
) as in (3.1). The assumption (3.2) implies

∫

∂D

|γ∗( ∂

∂θ
)|dθ ≤

√
2π

(∫

∂D

|γ∗( ∂

∂θ
)|2dθ

)1/2

≤ λ.

Therefore, the image of γ is contained in Up for some p ∈ F and we can let

σ = ϕp ◦ γ : ∂D → ϕp(Up) ⊂ C(Πp).
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We will write σ = (σ1, σ2) where σ1 : ∂D → Πp and σ2 : ∂D → R are the natural

projection maps. We consider two cases:

Case 1. ∃θ0 ∈ ∂D such that

(3.6) d2
C(σ(θ0),O) ≤ η

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ.

Let (r, θ) be the polar coordinates of D and define ψ = (ψ1, ψ2) : D → C(Π) by

setting

ψ(r, θ) := (σ1(θ), rσ2(θ)).

It is clear by construction that ψ ∈ W 1,2(D, C(Π)) and Tr(ψ) = σ. Furthermore, we

have

(3.7) d2
C(ψ(r1, θ), ψ(r2, θ)) = |r1 − r2|2d2

C(σ(θ),O)

and

(3.8) d2
C(ψ(r, θ1), ψ(r, θ2)) = r2d2

C(σ(θ1), σ(θ2))

by the definition of ψ and the definition of the distance function dC. If we divide (3.7)

by |r1 − r2|2 and (3.8) by |θ1 − θ2|2 and take the limit as r1 → r2, θ1 → θ2, we obtain

(cf. section 1.9 of [KS1])

(3.9)

|ψ∗( ∂

∂r
)|2C(r, θ) = d2

C(σ(θ),O) and |ψ∗( ∂

∂θ
)|2C(r, θ) = r2|σ∗( ∂

∂θ
)|2C(θ) for a.e. (r, θ).
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From the triangle inequality and (3.6), we see that

d2
C(σ(θ),O) ≤ (dC(σ(θ0),O) + dC(σ(θ), σ(θ0)))

2

≤ 2
(
d2
C(σ(θ0),O) + d2

C(σ(θ), σ(θ0))
)

≤ 2

(
η

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ +

(∫ θ

θ0

|σ∗( ∂

∂θ
)|Cdθ

)2
)

≤ 2(η + 2π)

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ.

Thus, (3.9) along with the above inequality gives us

Eψ
c =

∫

∂D

∫ 1

0

(
|ψ∗( ∂

∂r
)|2C +

1

r2
|ψ∗( ∂

∂θ
)|2C

)
rdrdθ

=

∫

∂D

∫ 1

0

(
d2
C(σ(θ),O) + |σ∗( ∂

∂θ
)|2C(θ)

)
rdrdθ

≤ Λ

∫

∂D

|σ∗( ∂

∂θ
)|2C

for some constant Λ dependent only on η.

Case 2. ∀θ ∈ ∂D,

d2
C(σ(θ),O) > η

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ.

Integrating over θ ∈ ∂D, we obtain

1

2π

∫

∂D

d2
C(σ,O)dθ > η

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ

or

1
1
2π

∫
∂D

d2
C(σ,O)dθ

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ <

1

η
.

If we define σ̃ = (σ̃1, σ̃2) : ∂D → C(Πp) by

(σ̃1(θ), σ̃2(θ)) =

(
σ1(θ),

1
1
2π

∫
∂D

d2
C(σ,O)dθ

σ2(θ)

)
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then we have

(3.10)
1

2π

∫

∂D

d2(σ̃(θ),O) = 1

and

(3.11)

∫

∂D

|σ̃∗( ∂

∂θ
)|2Cdθ <

1

η
.

Now note that σ̃ is continuous; indeed, for any θ, θ′ ∈ ∂D,

dC(σ̃(θ), σ̃(θ′)) ≤
∫ θ′

θ

|σ̃∗( ∂

∂θ
)|Cdθ ≤

(∫

∂D

|σ̃∗( ∂

∂θ
)|2Cdθ

)1/2

|θ− θ′|1/2 ≤ 1√
η
|θ− θ′|1/2.

Thus, (3.10) implies there exists θ′ ∈ ∂D so that dC(σ̃(θ′),O) = 1. Furthermore, that

fact that |θ − θ′| ≤ π implies that

dC(σ̃(θ), σ̃(θ′)) <

√
π

η
<

1

2

by choice of η in (3.5). Thus,

|1− dC(σ̃(θ),O)| = |dC(σ̃(θ′)− dC(σ̃(θ),O)| ≤ dC(σ̃(θ), σ̃(θ′)) <
1

2

which implies

1

2
< dC(σ̃(θ),O) ≤ 3

2
.

Let v1 : D → Πp be the Dirichlet solution with Tr(v1) = σ̃1 and v2 : D → R be the

Dirichlet solution with Tr(v2) = σ̃2. Since the dimension of Πp is n, the inductive

hypothesis implies that exists constant κ′ so that

Ev1
Πp
≤ κ′

∫

∂D

|(σ̃1)∗(
∂

∂θ
)|2Πp

dθ

where we have used the subscript to denote quantities associated to the metric space

Πp. If we let v = (v1, v2) ∈ P(Πp), then the definition of a product space immediately

implies that

Ev
P ≤ (κ′ + 1)

∫

∂D

|σ̃∗( ∂

∂θ
)|2Pdθ
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which in turn implies that

Ev
C ≤ L2(κ′ + 1)

∫

∂D

|σ̃∗( ∂

∂θ
)|2Cdθ.

If we define w = (w1, w2) = (v1,
1
2π

∫
∂D

dC(σ,O)dθ · v2), then Tr(w) = σ and

Ew
C ≤ L2(κ′ + 1)

∫

∂D

|σ∗( ∂

∂θ
)|2Cdθ.

Finally, using the definition of K, we see that

Eu ≤ E
ϕp◦w
P ≤ K2L2(κ′ + 1)

∫

∂D

|γ∗( ∂

∂θ
)|2dθ.

By letting κ = max{Λ, K2L2(κ′ + 1)}, we have verified the inductive step.

Now assume that that the dimension of X is 2. Then the space of direction at

any point of X is either an interval or a circle and we can follow the proof of the

inductive step to prove the base case of the inductive argument.

To summarize, we have demonstrated that if u is an energy minimizing map with

Sobolev trace map γ which is small in energy, then we have an estimate of the energy

of u in terms of its trace. We use this fact along with the Morrey’s Energy Decay

Lemma for maps into X to prove Hölder continuity. We let DR(z0) denote the disk

of radius R centered at z0 and Eu[Dr(z0)] the energy of u in the disk Dr(z0).

Lemma 3.1.3 (Morrey). Let u ∈ W 1,2(D,X) satisfy

(3.12) Eu[Dr(z0)] ≤ C2
Rr2α, 0 ≤ r < 1−R

for each z0 ∈ DR(0) ⊂ D where CR is a constant depending on R. Then there exists

a constant K so that for every z1, z2 ∈ DR(0),

d(u(z1), u(z2)) ≤ KCR|z1 − z2|α.

Proof. Using the Sobolev theory of maps into metric space targets developed in Chap-

ter 1 of [KS1], the assertion of the lemma follows from Morrey’s argument in [Mo].
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Proof of Theorem 3.1.1. Fix a finite cover of X by conic neighborhood and

let λ be its Lebesgue number. Let R ∈ (0, 1) and let z0 ∈ DR. By [KS1] Section 1.9, u

restricted to ∂Dr(z0) is absolutely continuous and W 1,2 for almost every choice of such

r ∈ (0, 1−R). Let s be the arclength parameter of ∂Dr(z0) and û be the composition

of u with the dilation and translation of the plane which takes Dr(z0) to D. If
∫

∂Dr(z0)
|u∗( ∂

∂s
)|2ds < λ

r
, then change of variables s = rθ gives

∫
∂D
|û∗( ∂

∂θ
)|2dθ < λ. By

Lemma 3.1.2 and invariance of the energy under conformal transformation, we obtain

Eu[Dr(z0)] = Eû ≤ κ

∫

∂D

|û∗( ∂

∂θ
)|2dθ ≤ rκ

∫

∂Dr(z0)

|u∗( ∂

∂s
)|2ds = r

d

dr
Eu[Dr(z0)].

If ∫

∂Dr(z0)

|u∗( ∂

∂s
)|2ds ≥ λ

r
,

then

Eu[Dr(z0)] ≤ r
Eu

λ

∫

∂Dr(z0)

|u∗( ∂

∂θ
)|2dθ.

Thus, for almost every r ∈ (0, 1−R),

Eu[Dr(z0)] ≤ max{κ,
Eu

λ
}r

∫

∂Dr(z0)

|u∗( ∂

∂θ
)|2(r, θ)dθ = max{κ,

Eu

λ
}r d

dr
Eu[Dr(z0)].

Integrating the differential inequality and letting C2
R = max{κ, Eu

λ
} gives us the esti-

mate needed to employ Lemma 3.1.3. q.e.d.

3.2 Boundary Regularity

The goal of this section is to prove:

Theorem 3.2.1. Let γ ∈ C0(∂D, X) be a continuous map and u ∈ W 1,2(D, X) be

its Dirichlet solution. Then u is continuous in D.
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To prove the boundary regularity, we need the following lemma which gives a

lower bound on the energy of a harmonic map if a point is mapped sufficiently away

from the boundary values.

Lemma 3.2.2. Let ε,M > 0. There exists η = η(ε,M) > 0 so that for any ϕ ∈
C0(∂D,X) and its Dirichlet solution v ∈ W 1,2(D, X) with d(v(0), ϕ(∂D)) > ε and

Ev ≤ M , we have

Ev[v−1(Bε(v(0)))] ≥ η.

Proof. We prove this theorem by way of contradiction. Suppose that the statement

is false. Then there exists a sequence of Dirichlet solutions vi ∈ W 1,2(D, X) with

ϕi = Tr(vi) satisfying d(vi(0), ϕi(∂D)) > ε and

(3.13) Evi [v−1
i (Bε(vi(0)))] → 0.

Since X is compact, we may assume that vi(0) → p ∈ X by taking a subsequence

if necessary. Suppose x ∈ D has the property that d(vi(x), p) < ε
2
. The triangle

inequality d(vi(x), vi(0)) ≤ d(vi(x), p) + d(vi(0), p) implies that d(vi(x), vi(0)) < ε for

sufficietly large i. Therefore, v−1
i (B ε

2
(p)) ⊂ v−1

i (Bε(vi(0))) which implies

(3.14) Evi [v−1
i (B ε

2
(p))] ≤ Evi [v−1

i (Bε(vi(0)))].

Since Evi ≤ M for all i, we can apply the precompactness theorem and the

trace theory (cf. [KS1] Theorem 1.13 and Theorem 1.12.2) to obtain a subsequence

(which we denote {vi} by an abuse of notation) so that vi → v in L2(D, X) and

ϕi = Tr(vi) → ϕ = Tr(v) in L2(∂D,X). Fix δ ∈ (0, 1) and let D1−δ be a disk of

radius 1 − δ centered at the origin. By Theorem 3.1.1, vi

∣∣
D1−δ

is Hölder continuous;

more specifically,

d(vi(z1), vi(z2)) ≤ C(X, δ) | z1 − z2 |α(X,δ) , ∀z1, z2 ∈ D1−δ.
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Note that the modulus of continuity depends only on the geometry of the target

and on the arbitrary constant δ. Hence, {vi

∣∣
D1−δ

} form an equicontinuous family

and converge uniformly to a Hölder continuous map according to the Arzela-Ascoli

Theorem. The limit map must be the restriction of v constructed above to the smaller

disk D1−δ. Consequently, v(0) = p and, since δ is arbitrary, v is continuous in D.

In particular, this implies v−1(B ε
4
(p)) is an open set. By the triangle inequality,

d(vi(z), p) ≤ d(vi(z), v(z)) + d(v(z), p), and hence if z ∈ D1−δ and d(v(z), p) < ε
4

then d(vi(z), p) ≤ ε
2

for sufficiently large i depending only on ε, X and δ and not

on the chosen z since the convergence of vi to v is uniform in D1−δ. Therefore,

v−1(B ε
4
(p)) ∩D1−δ ⊂ v−1

i (B ε
2
(p)) ∩D1−δ for sufficiently large i and

∫

v−1(B ε
4
(p))∩D1−δ

| ∇vi |2 dµ ≤
∫

v−1
i (B ε

2
(p))∩D1−δ

| ∇vi |2 dµ ≤ Evi [v−1
i (B ε

2
(p))].

By the lower semicontinuity of the energy functional (cf. [KS1] Theorem 1.6.1), (3.13)

and (3.14), we conclude that

∫

v−1(B ε
4
(p))∩D1−δ

| ∇v |2 dµ = 0.

Therefore,

Ev[v−1(B ε
4
(p))] = 0

by the Lebesgue Dominated Convergence Theorem which in turn implies that v must

be constant on each connected component of v−1(B ε
4
(p)). In particular, it must be

identically equal to p on the component K of v−1(B ε
4
(p)) containing 0. The continuity

of v implies that v−1(p) is closed and hence K is closed. Since K is both open and

closed, K = D. Therefore, v and hence ϕ is identically equal to p.

On the other hand, the triangle inequality says

d2(ϕi, p) ≤ 2d2(ϕi, ϕ) + 2d2(ϕ, p)

29



and hence

2πε ≤ 2

∫

∂D

d2(ϕi, ϕ)dθ + 2

∫

∂D

d2(ϕ, p)dθ.

Letting i → 0, we obtain

2πε ≤ 2

∫

∂D

d2(ϕ, p)dθ = 0,

a contradiction.

The proof of boundary regularity is now an easy application of Lemma 3.2.2.

Proof of Theorem 3.2.1. Suppose a Dirichlet solution u : D → X with a

continuous trace γ : ∂D → X is not continuous at some point x0 ∈ ∂D. There exists

ε > 0 and xi → x0 with

(3.15) d(u(xi), γ(x0)) > 2ε.

By the Courant-Lebesgue lemma and the continuity of γ, we may choose δi → 0 such

that u restricted to ∂Dδi
(x0) ∩D is continuous and the length of the curve

Γi := u(∂Dδi
(x0) ∩D) ∪ γ(Dδi

(x0) ∩ ∂D)

converges to 0 as i →∞. This combined with (3.15) implies that

(3.16) d(Γi, u(xi)) > ε

for sufficiently large i. By choosing subsequence if necessary, assume that xi ∈
Dδi

(x0)∩D. By the Riemann Mapping Theorem, there exists a conformal map ψi from

Dδi
(x0)∩D to D which sends xi to 0. Let vi = u◦ψ−1

i : D → X and ϕi = Tr(vi). Note

that vi(0) = ui(xi), the image of ϕi is Γi and (3.16) implies that d(vi(0), ϕ(∂D)) > ε.

Thus, Lemma 3.2.2 says there exists η > 0 such that Evi [v−1
i (Bε(vi(0)))] ≥ η for

all i. By conformal invariance of energy, Eu[Dδi
(x0) ∩ D] ≥ η. However, since
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u ∈ W 1,2(D, X), we see that Eu[Dδi
(x0) ∩ D] → 0 as i → ∞ and we arrive at

our contradiction. q.e.d.
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Chapter 4

The Plateau Problem

4.1 The area functional

Before we can properly state the Plateau Problem for an Alexandrov space, we must

formulate a notion of area. Our definition is analogous to the usual definition of

the area functional for a map from a surface into a Riemannian manifold; in other

words, it is obtained by integrating the area element of the pull-back metric. Thus,

we first need to generalize the notion of the pull-back metric in this setting. This is

accomplished by (4.1) and Theorem 4.1.1 below.

Let Ω be a Riemannian domain and X an Alexandrov space. (Note that we do

not need to assume X is finite dimensional or satisfies Perel’man’s conjecture in this

subsection.) For Z,W ∈ Γ(TΩ) (i.e. Z, W are Lipschitz vector fields on Ω), we define

(4.1) π(Z, W ) =
1

4
|u∗(Z + W )|2 − 1

4
|u∗(Z −W )|2.

If (Ω, g) has local coordinates (x1, x2, . . . , xn) and corresponding tangent basis {∂1, ∂2, . . . , ∂n},
we write

πij = π(∂i, ∂j).

We show in Theorem 4.1.1 below that π generalizes the notion of the pull-back
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metric. The analogous result for the case when X is a NPC (non-positively curved)

space is proven in [KS1] and the case when the curvature of X is bounded from above

is proven in [Me2].

Theorem 4.1.1. The operator π defined above,

π : Γ(TΩ)× Γ(TΩ) → L1(Ω, R)

is continuous, symmetric, bilinear, non-negative and tensorial; more specifically

π(Z, Z) = |u∗(Z)|2

π(Z, W ) = π(W,Z)

π(Z, hV + W ) = hπ(Z, V ) + π(Z, W ) for any h ∈ C0,1(Ω).

For Z = Zi∂i and W = W i∂j, we have

π(Z, W ) = πijZ
iW j.

If ψ : Ω1 → Ω is a C1,1 map, then writing v = u ◦ ψand πv for the corresponding

operator, we have the formula

(4.2) (πv)ij = πlm
∂ψl

∂xi

∂ψm

∂xj
.

Proof. Assuming Proposition 4.1.2 below, we can follow the proof of Theorem 2.3.2

of [KS1] to prove Theorem 4.1.1.

Proposition 4.1.2. Let Ω be a Riemannian domain and let X be an Alexandrov

space. If u ∈ W 1,2(Ω, X), then for any Z, W ∈ Γ(TΩ) the parallelogram identity

(4.3) |u∗(Z + W )|2 + |u∗(Z −W )|2 = 2|u∗(Z)|2 + 2|u∗(W )|2

holds.
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Proof of Proposition 4.1.2. Recall that for any Z, W ∈ Γ(TΩ), we denote

by x + εZ the flow along V with initial point x ∈ Ω at time ε and

Dε(Z, W ) :=
d(u(x + εZ), u(x + εW ))

ε
.

Now fix f ∈ Cc(Ω), f ≥ 0 and Z,W ∈ Γ(Ω). Let

Ω+ = {x ∈ sptf : |u∗(Z)|2, |u∗(W )|2, |u∗(Z + W )|2, |u∗(Z −W )|2 6= 0},

ΩN = {x ∈ sptf :
1

2N
< |u∗(Z)|2, |u∗(W )|2, |u∗(Z + W )|2, |u∗(Z −W )|2 <

N

2
}.

F (x, ε) := 2D2
ε (Z,

Z + W

2
) + 2D2

ε (W,
Z + W

2
) + D2

ε (0, Z + W )

−D2
ε (0, Z)−D2

ε (Z,Z + W )−D2
ε (W,Z + W )−D2

ε (0,W ).

We claim the following:

Claim 1 µ(Ω+\ΩN) → 0 as N →∞.

Claim 2 Fix N . For any ρ > 0, let δ(ρ) be as in Lemma 2.1.2. Then there

exists a function Gρ(x, ε) so that if the following three inequalities:

(4.4)

1

N
< Dε(0, Z + W ), Dε(0, Z), Dε(0,W ), Dε(Z, W ), Dε(Z,Z + W ), Dε(W,Z + W ) < N

(4.5) |1
2
Dε(0, Z + W )−Dε(0,

Z + W

2
)| < δ(ρ)2Dε(0, Z + W )

(4.6) |1
2
Dε(0, Z + W )−Dε(Z + W,

Z + W

2
)| < δ(ρ)2Dε(0, Z + W )

are satisfied for ε > 0 and x ∈ ΩN , then

(4.7) F (x, ε) ≥ Gρ(x, ε).
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Furthermore, there exists a function Gρ(x) so that

(4.8) lim
ε→0

∫

ΩN

f(x)|Gρ(x, ε)|dµ =

∫

ΩN

f(x)|Gρ(x)|dµ + O(ρ2)

and

(4.9) lim
ρ→0

∫

ΩN

f(x)|Gρ(x)|dµ = 0.

Claim 3 For x ∈ Ω− Ω+, the parallelogram identity (4.3) holds.

Assuming the validity of the three claims, we prove the parallelogram identity as

follows. Fix η > 0. By Lemma 2.2.3, there exists ε0, δ > 0 so that for any Ω̃ with

µ(Ω̃) < δ and ε < ε0, we have

∫

Ω̃

fF (x, ε) > −η.

By Lemmas 2.2.1 and 2.2.2,

Dε(0, Z + W ) → |u∗(Z + W )|, Dε(0, Z) → |u∗(Z)|, Dε(0,W ) → |u∗(W )|

Dε(Z,W ) → |u∗(Z −W )|, Dε(Z, Z + W ) → |u∗(W )|, Dε(W,Z + W ) → |u∗(Z)|

pointwise almost everywhere. By Egoroff’s Theorem, there exists set a A so that

µ(A) < δ
2

and these convergences are uniform on Ω− A. By Claim 1, there exists N

sufficiently large so that µ(Ω+\ΩN) < δ
2
. Hence,

∫

(Ω+\ΩN )∪A

f(x)F (x, ε) > −η.

For ρ > 0, the uniform convergence implies that there exists ε0 > 0 sufficiently small

so that (4.4), (4.5) and (4.6) hold for for all ε < ε0 and all x ∈ ΩN\A. Thus, by Claim
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2 (4.7),

∫

Ω+

f(x)F (x, ε)dµ =

∫

(Ω+−ΩN )∪A

f(x)F (x, ε)dµ +

∫

ΩN\A
f(x)F (x, ε)dµ

≥ −η +

∫

ΩN\A
f(x)Gρ(x, ε)dµ

≥ −η −
∫

ΩN\A
f(x)|Gρ(x, ε)|dµ.

Take ε → 0 and apply Lemma 2.2.1, Lemma 2.2.2 and Claim 2 (4.8) to obtain

∫

Ω+

f
(|u∗(Z+W )|2+|u∗(Z−W )|2−2|u∗(Z)|2−2|u∗(W )|2)dµ ≥ −η−

∫

Ω

f(x)|Gρ(x)|.

Now by taking ρ → 0, applying Claim 2 (4.9) and noting that η can be made arbi-

trarily small, we obtain

∫

Ω+

f(|u∗(Z + W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ ≥ 0.

Combined with Claim 3,

∫

Ω

f(|u∗(Z + W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ

=

∫

Ω+

+

∫

Ω−Ω+

f(|u∗(Z + W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ

≥ 0.

Replacing Z and W by Z+W
2

and Z−W
2

respectively in the above argument, we obtain

∫

Ω

f(2|u∗(Z)|2 + 2|u∗(W )|2 − |u∗(Z + W )|2 − |u∗(Z −W )|2)dµ ≥ 0.

Finally, since the choice of f is arbitrary, we obtain the parallelogram identity. q.e.d.

We are now left to prove the three claims.

Proof of Claim 1. If

Ω≤ 1
N = {x ∈ sptf : one of |u∗(Z)|2, |u∗(W )|2, |u∗(Z + W )|2, |u∗(Z −W )|2 is ≤ 1

2N
}
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and

Ω≥N = {x ∈ sptf : one of |u∗(Z)|2, |u∗(W )|2, |u∗(Z + W )|2, |u∗(Z −W )|2 is ≥N

2
},

then Ω+\ΩN = Ω≤ 1
N ∪ Ω≥N . Since

Ω< 1
N+1 ⊂ Ω< 1

N and ∩∞N=1 Ω< 1
N ∩ Ω+ = ∅,

we have that µ(Ω< 1
N ) → 0 as N → 0. Furthermore,

N

2
µ(Ω>N) ≤

∫

Ω>N

|u∗(Z)|2 + |u∗(W )|2 + |u∗(Z + W )|2 + |u∗(Z −W )|2 < ∞.

which implies µ(Ω>N) → 0 as N → 0. q.e.d.

Proof of Claim 2. For x ∈ Ω and ε > 0, assume (4.4), (4.5) and (4.6) are

satisfied and let

(4.10)

P = u(x), Q = u(x+εZ), R = u(x+ε(Z+W )), S = u(x+εW ), T = u(x+ε(
Z + W

2
)).

The inequalities (4.5) and (4.6) imply

|1
2
dPR − dPT | < δ2(ρ)dPR , |1

2
dPR − dRT | < δ2(ρ)dPR.

Let γRT be a geodesic from R to T and R′ be a point on γRT so that

(4.11) dRR′ = δ(ρ)dPR.

Let γPR′ be a geodesic from P to R′ and T ′ be its midpoint. By Lemma 2.1.2, we

have

dTT ′ < ρdPR.
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Define γ to be the curve which is the sum of geodesics from Q = u(x + εZ) to T ′ and

from T ′ to S = u(x+ εW ). Let d̄ be the distance function in the hyperbolic plane H2

and construct points P̄ , Q̄, R̄′, S̄ ∈ H2 with the property that

(4.12) dPQ = d̄P̄ Q̄, dQR′ = d̄Q̄R̄′ , dR′S = d̄R̄′S̄, dSP = d̄S̄P̄ , dPR′ = d̄P̄ R̄′

and so that geodesic triangles 4P̄ Q̄R̄′ and 4P̄ S̄R̄′ intersect only along the geodesic

γ̄P̄ R̄′ from P̄ to R̄′. If T̄ ′ is the midpoint of γ̄P̄ R̄′ ,

(4.13) d̄Q̄T̄ ′ ≤ dQT ′ d̄T̄ ′S̄ ≤ dT ′S

by the property of an Alexandrov space. Hence

d̄Q̄S̄ ≤ d̄Q̄T̄ ′ + d̄T̄ ′S̄ ≤ dQT ′ + dT ′S.

Therefore, if

E(x, ε) := d̄2
Q̄S̄ + d̄2

P̄ R̄′ − d̄2
P̄ Q̄ − d̄2

Q̄R̄′ − d̄2
R̄′S̄ − d̄2

P̄ S̄,

then

E(x, ε) ≤ L2(γ) + d2(u(x), R
′
)− d2(u(x), u(x + εZ))− d2(R

′
, u(x + εZ))

−d2(R
′
, u(x + εW ))− d2(u(x), u(x + εW )).

Dividing by ε2, we obtain

E(x, ε)

ε2
≤

(
L2(γ)

ε2
−D2

ε (0, Z)−D2
ε (0,W )

)

+

(
d2(u(x), R

′
)

ε2
− d2(R

′
, u(x + εW ))

ε2
− d2(R

′
, u(x + εZ))

ε2

)

=: (I) + (II).(4.14)

Hence, by the triangle inequality, we have,

L(γ) = dQT ′ + dT ′S

≤ dQT + dTS + 2dTT ′

≤ dQT + dTS + 2ρdPR

= d(u(x + εZ), u(x + ε
Z + W

2
)) + d(u(x + εW ), u(x + ε

Z + W

2
)) + 2ρd(u(x), u(x + (εZ + W ))
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If we square this inequality, divide by ε2 and assume that ρ << 1, we have

L2(γ)

ε2
≤ D2

ε (Z,
Z + W

2
) + D2

ε (W,
Z + W

2
) + 2D2

ε (Z,
Z + W

2
)D2

ε (W,
Z + W

2
)

+4ρDε(0, Z + W )

(
Dε(Z,

Z + W

2
) + Dε(W,

Z + W

2
)

)
+ 4ρ2D2

ε (0, Z + W )

≤ 2D2
ε (Z,

Z + W

2
) + 2D2

ε (W,
Z + W

2
)

+8ρ

(
D2

ε (0, Z + W ) + D2
ε (Z,

Z + W

2
) + D2

ε (W,
Z + W

2
)

)

which immediately implies

(I) ≤ 2D2
ε (Z,

Z + W

2
) + 2D2

ε (W,
Z + W

2
)−D2

ε (0, Z)−D2
ε (0,W )

+8ρ

(
D2

ε (0, Z + W ) + D2
ε (Z,

Z + W

2
) + D2

ε (W,
Z + W

2
)

)
.(4.15)

Furthermore, assuming ρ << 1, we also obtain

d2
PR′ ≤ (dPR + dRR′)

2 = (1 + δ(ρ))2d2
PR ≤ (1 + 3δ(ρ))d2

PR

d2
QR′ ≥ (dQR−dRR′)

2 = (dQR−δ(ρ)dPR)2 ≥ d2
QR−2δ(ρ)dQRdPR ≥ (1−δ(ρ))d2

QR−δ(ρ)d2
PR

d2
SR′ ≥ (dSR−dRR′)

2 = (dSR−δ(ρ)dPR)2 ≥ d2
SR−2δ(ρ)dSRdPR ≥ (1−δ(ρ))d2

SR−δ(ρ)d2
PR,

which immediately implies

d2(u(x), R
′
)

ε2
≤ (1 + 3δ(ρ))D2

ε (0, Z + W )

−d2(u(x + εZ), R′)
ε2

≤ −(1− δ(ρ))D2
ε (Z,Z + W )) + δ(ρ)D2

ε (0, Z + W )

−d2(u(x + εZ), R′)
ε2

≤ −(1− δ(ρ))D2
ε (W,Z + W )) + δ(ρ)D2

ε (0, Z + W ).

These combine to give

(II) ≤ D2
ε (0, Z + W )−D2

ε (Z, Z + W )−D2
ε (W,Z + W )

+5δ(ρ)(D2
ε (0, Z + W ) + D2

ε (Z, Z + W ) + D2
ε (W,Z + W )).(4.16)

39



Combining (4.14), (4.15) and (4.16), we obtain

E(x, ε)

ε2
≤ 2D2

ε (Z,
Z + W

2
) + 2D2

ε (W,
Z + W

2
) + D2

ε (0, Z + W )

−D2
ε (0, Z)−D2

ε (0,W )−D2
ε (Z, Z + W )−D2

ε (W,Z + W )

+8ρ

(
D2

ε (0, Z + W ) + D2
ε (Z,

Z + W

2
) + D2

ε (W,
Z + W

2
)

)

+5δ(ρ)(D2
ε (0, Z + W ) + D2

ε (Z, Z + W ) + D2
ε (W,Z + W ))

≤ F (x, ε) + 8ρ

(
D2

ε (0, Z + W ) + D2
ε (Z,

Z + W

2
) + D2

ε (W,
Z + W

2
)

)

+5δ(ρ)(D2
ε (0, Z + W ) + D2

ε (Z, Z + W ) + D2
ε (W,Z + W )).

Let

G1(x, ε) := −8ρ(D2
ε (0, Z + W ) + D2

ε (Z,
Z + W

2
) + D2

ε (W,
Z + W

2
)

−5δ(ρ)(D2
ε (0, Z + W )−D2

ε (Z, Z + W )−D2
ε (W,Z + W ))

Inequality (4.4) implies that

ε

N
< dPQ, dQR, dRS, dPS, dPR, dQS < Nε.

By also using the fact that dRR′ = δ(ρ)dPR ≤ ρNε, we can apply Lemma 4.3.1 of the

Appendix to obtain,

∣∣∣∣
E(x, ε)

ε2

∣∣∣∣ ≤ CN

(∣∣D2
ε (V, V + W )−D2(0, W )

∣∣ +
∣∣D2

ε (0, V )−D2(W,V + W )
∣∣

+ |Dε(V, V + W )−D(0, W )|+ |Dε(V, V + W )−D(0,W )|)

+K1ρ
2 + K2ε

for some constants K1, K2 sufficiently large. Define G2(x, ε) to be the right hand side

of the inequality above. Thus, (4.7) holds if we set Gρ(x, ε) = G1(x, ε) − G2(x, ε).

Furthermore, set

Gρ(x) := −8ρ(|u∗(Z + W )|2 +
1

2
|u∗(Z −W )|)

−5δ(ρ)|u∗(Z + W )|2 + |u∗(W )|2 + |u∗(Z)|2) + O(ρ2).
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Then (4.8) and (4.9) hold by Lemmas 2.2.1 and 2.2.2. q.e.d

Proof of Claim 3. Let Ω0 denote the set of all points in Ω so that |u∗(Z +

W )|2 = 0. If P, Q,R, T be as in (4.10). Then

d2
QT − d2

PQ = (dQT − dPQ)(dQT + dPQ) ≤ dPT (dQT + dPQ).

Thus, for any f ∈ Cc(Ω0) , 0 ≤ f ≤ 1,

∫

Ω0

f(D2
ε (Z,

Z + W

2
)−D2

ε (0, Z))dµ

≤
∫

Ω0

fDε(0,
Z + W

2
)

(
Dε(Z,

Z + W

2
) + Dε(0, Z)

)

≤
(∫

Ω0

fD2
ε (0,

Z + W

2
)

)1/2 (∫

Ω

fD2
ε (Z,

Z + W

2
) +

∫

Ω0

fD2
ε (0, Z)

)1/2

.

We take the limit as ε goes to 0 to obtain

∫

Ω0

f

(
|u∗(−Z + W

2
)|2 − |u∗(Z)|2

)

≤
(∫

Ω0

f |u∗(Z + W

2
)|2

)1/2 (∫

Ω0

f |u∗(−Z + W

2
)|2 + |u∗(Z + W )|2

)1/2

≤
(

1

4

∫

Ω0

f |u∗(Z + W )|2
)1/2 (∫

Ω0

f |u∗(−Z + W

2
)|2 + |u∗(Z + W )|2

)1/2

= 0.

Thus we arrive at

|u∗(Z −W

2
)|2 ≤ |u∗(Z)|2 a.e. x ∈ Ω0.

Similarly, using

d2
PQ − d2

QT = (dPQ − dQT )(dPQ + dQT ) ≤ dPT (dPQ + dQT ),

we obtain the opposite inequality. Hence, we conclude

|u∗(Z −W

2
)|2 = |u∗(Z)|2 a.e. x ∈ Ω0.
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Interchanging Z and W in the argument above, we also obtain

|u∗(Z −W

2
)|2 = |u∗(W )|2 a.e. x ∈ Ω0.

Therefore,

|u∗(Z+W )|2+|u∗(Z−W )|2 = 0+4|u∗(Z −W

2
)|2 = 2|u∗(Z)|2+2|u∗(W )|2 a.e. x ∈ Ω0.

Similar arguments apply when we examine points of Ω where the other directional

energy measures vanish. q.e.d

4.2 The Plateau Problem

We can define the area functional for u ∈ W 1,2(D, X) by

A(u) =

∫

D

√
det π dx1dx2 =

∫

D

√
π11π22 − π2

12 dx1dx2.

The Plateau Problem for a compact Alexandrov spaces satisfying Perel’man’s conjec-

ture is formulated as:

The Plateau Problem Let Γ be a closed Jordan curve in X, let

FΓ = {u ∈ W 1,2(D, X) ∩ C0(D,X) : u|∂D parametrizes Γ monotonically}.

Find u ∈ FΓ so that A(u) = inf{A(v) : v ∈ FΓ}.

The main result of this section is that we can solve the Plateau Problem if there ex-

ists at least one continuous finite energy map whose trace monotonically parametrizes

Γ.

Theorem 4.2.1. If FΓ 6= ∅, there exsits u ∈ FΓ so that A(u) = inf{A(v) : v ∈ FΓ}.
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We separate the proof of Theorem 4.2.1 into two claims. The first claim is that

there exists a map which minimizes the energy functional in FΓ. The second claim is

that an energy minimizing map is also an area minimizer. These claims are proved

by an extending the arguments used for the Euclidean case (cf. [L]).

In order to prove the first claim, we need Lemma 4.2.2 and 4.2.3 below.

Lemma 4.2.2. The energy functional is invariant under conformal reparametriza-

tions of the disk.

Proof. This follows by adapting a well-known computation in the smooth setting

to the current situation. This can be justified by the change of variables formula

(4.2).

Lemma 4.2.3. Fix x1, x2, x3 ∈ ∂D and P1, P2, P3 ∈ Γ. If

F ′
Γ = {u ∈ FΓ : u(xi) = Pi for i = 1, 2, 3 and Eu ≤ 2 inf

u∈FΓ

E(u)},

then

F = {u|∂D : u ∈ F ′
Γ , Eu ≤ 2 inf

u∈FΓ

E(u)}

forms an equicontinuous family of maps.

Proof. This follows from the same argument given in Proposition 6 of [L].

We now prove the first claim:

Claim 1 There exists u ∈ FΓ so that Eu = infu∈FΓ
Eu.

Proof. For any v ∈ FΓ, there exists a Möbius transformation so that v ◦ ψ(xi) = Pi.

Furthermore, Ev◦ψ = Ev by Lemma 4.2.2. Therefore,

inf
u∈FΓ

Eu = inf
u∈F ′Γ

Eu.
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which implies

inf
u∈FΓ

Eu = inf
φ∈F ′Γ

Eφ.

where

Eφ = inf{Ev : v ∈ W 1,2
φ (D,X)}.

Let {vm} ⊂ F ′
Γ be a sequence so that limm→∞ Evm = infu∈FΓ

Eu. By the equicon-

tinuity of F , there exists a subsequence {vm′} so that {vm′
∣∣
∂D
} converges uniformly

to a continuous map φ : ∂D → Γ. By the uniform convergence, we are guaranteed to

have φ(pi) = qi for i = 1, 2, 3. Let um′ be the solution to the Dirichlet Problem for

boundary data vm′ . From the precompactness theorem (cf. Theorem 1.13 of [KS1]),

we may choose a subsequence which converges in L2(D,X) to u ∈ W 1,2(D,X). By

the lower semicontinuity of the energy functional (cf. Theorem 1.6.1 of [KS1]),

(4.17) Eu ≤ lim inf
m′→∞

Eum′ ≤ lim inf
m′→∞

Evm′ = inf
v∈FΓ

Ev

Since the trace functions converge in L2 distance (cf. Theorem 1.12.2 in [KS1]), we

have Tr(u) = φ and hence u ∈ F ′
Γ ⊂ FΓ and infu∈FΓ

Eu ≤ Eu which combined with

(4.17) implies Ev = infv∈FΓ
Eu.

We now claim that u obtained above not only minimizes energy in FΓ, but also

minimizes the area functional. We need the following two lemmas.

Lemma 4.2.4. If u ∈ FΓ satisfies Eu = infu∈F ′Γ Eu, then u is weakly conformal; in

other words, u satisfies the conformality relation π11 = π22 and π12 = 0.

Proof. This follows by adapting a well-known computation in the smooth setting

to the current situation. This can be justified by the change of variables formula

(4.2).

Lemma 4.2.5. For any v ∈ FΓ and δ > 0, there exists a continuous map F : D → D

monotonically taking ∂D to ∂D such that 1
2
E(v ◦ F ) ≤ A(v) + δ.
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Proof. Consider the disk D as a subset of the complex plane C and let X ×C be the

metric space equipped with the distance function

d((P, z), (Q,w)) =
√

d2(P, Q) + |z − w|2

for P, Q ∈ X and z, w ∈ C. For v ∈ W 1,2(D,X), consider vε : D → X ×C,

vε(z) = (v(z), εz).

For V ∈ Γ(TD) and a.e. z ∈ D,

|(vε)∗(V )|2 = lim
κ→0

d
2
(vε(z), vε(z + κV ))

κ2

= lim
κ→0

d2(vε(z), vε(z + κV )) + |εz − ε(z + κV )|2
κ2

= |(vε)∗(V )|2 + ε2|V |2.

Hence, letting πε = πvε , we have

(πε)11 = (πv)11 +
ε2

4
, (πε)22 = (πv)22 +

ε2

4
, (πε)12 = (πv)12.

We now choose ε0 such that

A(vε0) ≤ A(v) + δ.

We mollify functions (πε0)ij to obtain the metric (τσ
ij) defined on D1−σ = {z ∈ D :

|z| < 1− σ}. For sufficiently small σ, we have τσ
11τ

σ
22− (τσ

12)
2 >

ε40
32

. Hence, there exist

C∞ conformal diffeomorphisms Fσ : Dσ → (Dσ, τ
σ) and

E(Fσ, τ
σ, Dσ) = 2A(Fσ, τ

σ, Dσ) = 2A(Dσ, τ
σ) = 2A(D, πε0) + O(σ)

= 2A(vε0) + O(σ) = 2A(v) + 2δ + O(σ).
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For sufficiently small σ,

(τσ)11 = (πv)11 +
ε2

8
, (τσ)22 = (πv)22 +

ε2

8
.

Therefore E(Fσ, πv) ≤ E(Fσ, τ
σ). Let σn = 1

n+1
. Since E(Fσ, πv) is uniformly

bounded independently of σ, the Courant-Lebesgue Lemma and Arzela-Ascoli Theo-

rem imply that there exists an increasing sequence of integers S1 such that {Fσk
}k∈S1

converges uniformly to a continuous map F1 in Dσ1 . Now inductively define a se-

quence Sn ⊂ Sn−1 such that {Fσk
}k∈Sn uniformly to a continuous map Fn in Dσn .

Note that by the choice of Sn, we have that Fn = Fm in Dσm for m ≤ n. Define

F : D → D by

F (z) = Fn(z) z ∈ Dσn .

For any σ, choose σn ≤ σ, hence,

1

2
E(F, πv, Dσ) ≤ 1

2
E(Fn, πv, Dσn) ≤ A(v) + δ.

Since the above is true for σ arbitrarily small, 1
2
E(v ◦ F ) ≤ 1

2
E(F, πv) ≤ A(v).

We now prove our second claim.

Claim 2 If u ∈ FΓ satisfies Eu = infv∈FΓ
Ev, then A(u) = inf{A(v) : v ∈ FΓ}.

Proof. By the Cauchy-Schwarz lemma,

√
π11π22 − (π12)2 ≤ √

π11π22 ≤ 1

2
(π11 + π22)
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with
√

π11π22 − (π12)2 =
1

2
(π11 + π22) ⇐⇒ π11 = π22 and π12 = 0.

Since u satisfies the conformality equations by Lemma 4.2.4, we deduce that A(u) =

1
2
Eu. Furthermore, if δ > 0, v ∈ FΓ and F are as in Lemma 4.2.5, then v ◦ F ∈ FΓ

and

A(u) =
1

2
Eu ≤ 1

2
Ev◦F ≤ A(u) + δ.

Since δ can be chosen arbitrarily small, we are done.

In establishing the above claims, we have also shown:

Theorem 4.2.6. The solution u of the Plateau Problem is a conformal, energy min-

imizing map. As such, u is Hölder continuous in the interior of D and continuous

up to ∂D.

4.3 Appendix

We establish the following fact about quadrilaterals in hyperbolic plane. The purpose

is to estimate the difference between the sum of the lengths of the diagonals and the

sum of the lengths of the sides.

Lemma 4.3.1. If P̄ , Q̄, R̄′, S̄ ∈ H2 so that

ε

N
≤ d̄P̄ Q̄, d̄Q̄R̄′ , d̄R̄′S̄, d̄P̄ S̄, d̄P̄ R̄′ , d̄Q̄S̄ ≤ Nε,

then

|d̄2
Q̄S̄ + d̄2

P̄ R̄′ − d̄2
P̄ Q̄ − d̄2

Q̄R̄′ − d̄2
R̄′S̄ − d̄2

P̄ S̄|

≤ CN

(
|d̄2

Q̄R̄′ − d̄2
P̄ S̄|+ |d̄2

P̄ Q̄ − d̄2
R̄′S̄|+ ε(|d̄Q̄R̄′ − d̄P̄ S̄|+ |d̄P̄ Q̄ − d̄R̄′S̄|)

)
+ O(ε3)

where CN is a constant dependent on N and O(εk) has the property that O(εk)
εk−1 → 0 as

ε → 0 .
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Proof. Let

E = d̄2
Q̄S̄ + d̄2

P̄ R̄′ − d̄2
P̄ Q̄ − d̄2

Q̄R̄′ − d̄2
R̄′S̄ − d̄2

P̄ S̄.

Define λ, δ ∈ [0, π] by

cosh d̄P̄ R̄′ = cosh d̄Q̄R̄′ cosh d̄P̄ Q̄ − sinh d̄Q̄R̄′ sinh d̄P̄ Q̄ cos λ

cosh d̄Q̄S̄ = cosh d̄Q̄R̄′ cosh d̄R̄′S̄ − sinh d̄Q̄R̄′ sinh d̄R̄′S̄ cos δ.

By Taylor series expansion, we obtain

d̄2
P̄ R̄′ = d̄2

Q̄R̄′ + d̄2
P̄ Q̄ − 2d̄Q̄R̄′ d̄P̄ Q̄ cos λ + O(ε3)

d̄2
Q̄S̄ = d̄2

Q̄R̄′ + d̄2
R̄′S̄ − 2d̄Q̄R̄′ d̄R̄′S̄ cos δ + O(ε3)

We have then

E = d̄2
Q̄R̄′ − d̄2

P̄ S̄ − 2d̄Q̄R̄′ d̄P̄ Q̄ cos λ− 2d̄Q̄R̄′ d̄R̄′S̄ cos δ + O(ε3)

= d̄2
Q̄R̄′ − d̄2

P̄ S̄ − 2d̄Q̄R̄′
(
(d̄R̄′S̄ − d̄P̄ Q̄) cos δ + d̄P̄ Q̄(cos δ + cos λ)

)
+ O(ε3).

and hence

E ≤ |d̄2
Q̄R̄′ − d̄2

P̄ S̄|+ 2Nε|d̄R̄′S̄ − d̄Q̄P̄ |+ 2N2ε2| cos δ + cos λ|+ O(ε3)

≤ CN(|d̄2
Q̄R̄′ − d̄2

P̄ S̄|+ ε|d̄R̄′S̄ − d̄Q̄P̄ |+ ε2| cos δ + cos λ|) + O(ε3).(4.18)

We now estimate | cos δ + cos λ|. Let A be the area of 4R̄′Q̄P̄ . Since the perimeter

of 4R̄′Q̄P̄ is bounded by some constant times Nε, we have A = O(ε2). Define

α, β ∈ [0, π] by

cosh d̄Q̄R̄′ = cosh d̄P̄ R̄′ cosh d̄P̄ Q̄ − sinh d̄P̄ R̄′ sinh d̄P̄ Q̄ cos α

cosh d̄P̄ S̄ = cosh d̄P̄ R̄′ cosh d̄R̄′S̄ − sinh d̄P̄ R̄′ sinh d̄R̄′S̄ cos β.(4.19)

The interior angles of the triangle 4R̄′Q̄P̄ are α, λ and δ−β. Since A = π−α−λ−
(δ − β), we see that

| cos δ + cos λ| ≤ | cos δ − cos(δ + (A + α− β))| ≤ A + |α− β| = |α− β|+ O(ε2).
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where we used the Mean Value Theorem in the second inequality. The fact that the

ratios of any two pairwise distances of P̄ , Q̄, R̄′ and S̄ are bounded from below by 1
N2

and from above by N2 implies that α and β are bounded away from 0 and π. Thus,

|α− β| ≤ L| cos α− cos β| for some constant dependent on N . Therefore, we obtain

| cos δ + cos λ| ≤ L| cos α− cos β|+ O(ε2)

which combined with (4.18) gives

(4.20) E ≤ |d̄2
Q̄R̄′ − d̄2

P̄ S̄|+ 2Nε|d̄R̄′S̄ − d̄Q̄P̄ |+ 2LN2ε2| cos α− cos β|+ O(ε3).

By (4.19), we also have

sinh(d̄P̄ R̄′) sinh(d̄R̄′S̄) sinh(d̄P̄ Q̄)| cos α− cos β|

=
∣∣ sinh(d̄P̄ Q̄)(− cosh(d̄P̄ S̄) + cosh(d̄P̄ R̄′) cosh(d̄R̄′S̄))

− sinh(d̄R̄′S̄)(− cosh(d̄Q̄R̄′) + cosh(d̄P̄ R̄′) cosh(d̄P̄ Q̄))
∣∣.

The right hand side can be estimated as

∣∣∣d̄R̄′S̄

(
d̄2

P̄ Q̄ + d̄2
P̄ R̄′ − d̄2

Q̄R̄′

)
− d̄P̄ Q̄

(
d̄2

P̄ R̄′ + d̄2
R̄′S̄ − d̄2

P̄ S̄

)∣∣∣ + O(ε5)

≤ d̄2
P̄ Q̄

∣∣d̄R̄′S̄ − d̄P̄ Q̄

∣∣ + d̄P̄ Q̄

(
d̄2

P̄ Q̄ − d̄2
R̄′S̄

)
+ d̄2

P̄ R̄′
∣∣d̄R̄′S̄ − d̄P̄ Q̄

∣∣

+d̄P̄ Q̄

(
d̄2

P̄ S̄ − d̄2
Q̄R̄′

)
+ d̄2

R̄′S̄

∣∣d̄P̄ Q̄ − d̄R̄′S̄
∣∣ + O(ε5).

Furthermore,

ε3

N3
≤ d̄P̄ R̄′ d̄R̄′S̄ d̄P̄ Q̄ ≤ sinh(d̄P̄ R̄′) sinh(d̄R̄′S̄) sinh(d̄P̄ Q̄).

Therefore, we obtain

| cos α− cos β| ≤ CN

ε2

(
ε|d̄R̄′S̄ − d̄P̄ Q̄|+ (d̄2

P̄ Q̄ − d̄2
R̄′S̄) + (d̄2

P̄ S̄ − d̄2
Q̄R̄′)

)
.

Combining this with (4.20), we obtain the desired inequality.
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