
ON THE EXISTENCE OF CLOSED GEODESICS AND

UNIQUENESS OF WEAKLY HARMONIC MAPS

by

Longzhi Lin

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

April, 2011

c©Longzhi Lin 2011

All rights reserved



Abstract

The aim of this dissertation is threefold and it records three distinct results that the

author proved, along with his collaborators, during his time as a graduate student at

The Johns Hopkins University. Firstly, with L. Wang, in [30] we studied the existence of

good sweepouts by curves on closed (i.e., compact and without boundary) Riemannian

manifolds via the harmonic map heat flow. This can be thought of as a continuous ver-

sion of Colding and Minicozzi’s width-sweepout construction of closed geodesics in [14]

where the discrete local linear (geodesic) replacement was used. Secondly, in [29] the au-

thor extended Colding and Minicozzi’s width-sweepout construction of closed geodesics

on closed manifolds to the case of closed Alexandrov spaces of curvature bounded from

above. Finally, together with T. Lamm, in [26] we give an alternate proof, via a new ap-

proach that involves Rivière’s gauge decomposition technique, to Colding and Minicozzi’s

energy convexity and uniqueness of weakly harmonic maps with small energy on the two

dimensional unit disc B1 ⊂ R2. This is part of a project of generalizing Colding and

Minicozzi’s energy convexity for harmonic maps to the case of biharmonic maps.

Readers: William P. Minicozzi II (Advisor), Joel Spruck and Chikako Mese.
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Chapter 1

Introduction

The study of closed geodesics was initiated by Hadamard [21], Poincaré [37] and

Birkhoff [4]. Closed geodesics have been investigated mainly in the case of closed (i.e., com-

pact and without boundary) Riemannian manifolds, while various results were obtained

for Finsler manifolds and in the more general case of metric spaces with certain special

properties (such as Busemann G-spaces, see [8]). In the Riemannian case, Hadamard

proved that the shortest curves in a nontrivial conjugacy class of the fundamental group

π1 are closed geodesics. In [19] Grayson showed that there exist simple closed geodesics

in each nontrivial π1 homotopy class on closed non-simply-connected surfaces (e.g. a

torus) by the curve shortening flow. On the 2-sphere whose π1 homotopy group is trivial,

Birkhoff used the curve shortening map and sweepouts to find non-trivial closed geodesics.

Birkhoff’s argument works equally well on other closed Riemannian manifolds and it goes

back to 1917: one pulls each curve in a sweepout on the manifold as tight as possible, in

a continuous way and preserving the sweepout; see [4], [5], [13], [16], [14], [29], [30] and

Part of the material in this thesis was first published in [30] Existence of good sweepouts on closed
manifolds in Proceedings of the American Mathematical Society, 138 (2010), No. 11, 4081-4088 and
in [29] Closed geodesics in Alexandrov spaces of curvature bounded from above in Journal of Geometric
Analysis, Vol. 21, Issue 2 (2011), 429-454.
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section 2 in [17] about Birkhoff’s idea.

In [14], Colding and Minicozzi introduced the geometric invariant of closed Riemannian

manifolds that they call the width. They succeeded in using the local linear (geodesic)

replacement as Birkhoff’s curve shortening map to explicitly construct good sweepouts by

curves that produce at least one closed geodesic, which realizes the width as its energy. In

particular, there exist closed geodesics on any closed Riemannian manifold. The argument

only produces non-trivial closed geodesics when the width is positive. Their local linear

(geodesic) replacement process is a discrete gradient flow (for the length functional of

curves), and it depends solely on a local energy convexity for geodesic segments sharing

the same end points (see Lemma 4.2 of [14]), which controls the distance of curves in

the tightened sweepout from closed geodesics explicitly. Another crucial role the energy

convexity plays is that it gives “discrete Palais-Smale condition C” which leads to the

convergence to closed geodesics. There are several other applications of the existence

of good sweepouts by curves on closed manifolds besides producing close geodesics. For

instance, in [14], Colding and Minicozzi showed that the rate of change of the width for

a one-parameter family of convex hypersurfaces that flows by mean curvature is bounded

from above by a negative constant. The estimate is sharp and leads to a sharp estimate for

the extinction time. In [15] a similar bound for the rate of change for the two dimensional

width (defined by sweepouts by 2-spheres) is shown for homotopy 3-spheres evolving

by Hamilton’s Ricci flow, from which the finite time extinction result follows; see also

Perelman’s work in [36].

However, it requires some work to show the local linear (geodesic) replacement or the

discrete shortening process preserves the homotopy class of sweepouts in Colding and

Minicozzi’s construction of closed geodesics. Therefore in the first part of this thesis,

instead of the local linear replacement, we use a continuous method, i.e. the harmonic

map heat flow, to tighten sweepouts, which meanwhile provides a natural homotopy of
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sweepouts. We show that the tightened sweepout has the following good property: each

curve in the tightened sweepout whose energy is close to the maximal energy of curves in

the sweepout is itself close to a closed geodesic. In particular, this implies that the width

is the energy of some closed geodesic. This can be thought of as a continuous version

(or heat flow version) of Colding and Minicozzi’s width-sweepout construction of closed

geodesics in closed Riemannian manifolds. As an immediate corollary of the existence of

good sweepouts, we have the following theorem. Throughout we let (N , g) be a general

closed Riemannian manifold with metric tensor g which can be isometrically embedded

into (Rn, 〈, 〉).

Theorem 1.0.1. Suppose that the k0-th homology group Hk0(N ) is nonzero for some

k0 ≥ 1, then N admits at least one non-trivial closed geodesic.

One sees that this is a variant of Birkhoff’s existence theorem of closed geodesics on

simply-connected manifolds.

Recently, Alexandrov spaces re-emerged into prominence and have attracted a lot of

attention. Yet the existence of non-trivial closed geodesics in general Alexandrov spaces

remained unknown. In the second part of this thesis, we extend Colding and Minicozzi’s

width-sweepout construction of closed geodesics into the case of closed Alexandrov spaces

of curvature bounded from above. We will use the same local linear (geodesic) replace-

ment as Birkhoff’s curve shortening map to find good sweepouts by curves in Alexandrov

spaces. As mentioned, the local energy convexity is crucial in the width-sweepout con-

struction of closed geodesics. Therefore it is reasonable that if we can find a similar

local energy convexity for maps into Alexandrov spaces, we could perhaps extend Colding

and Minicozzi’s width-sweepout construction to produce closed geodesics in any closed

Alexandrov space of curvature bounded from above by K, which is locally a CAT (K)

space (also known as an RK domain, see [6] or subsection 2.1 below). In theorem 2.2 of

[25] (see equation (2.2iv) of [25]), Korevaar and Schoen provided an energy convexity of
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W 1,2 maps from a compact Riemannian domain into a nonpositively curved space (i.e., in

the case of K = 0) for which the model space∗ is R2. Since the model space for the case of

K > 0 is the standard Euclidean 2-hemisphere SK , which is locally R2, it is perhaps not

surprising that a similar energy convexity should also hold locally. In fact, we are able to

show that, with a small image assumption, the Korevaar and Schoen’s energy convexity

still holds (up to a constant) for W 1,2 maps into a CAT (K) space with K > 0 .

Theorem 1.0.2. Let Σ be a compact Riemannian domain and (X, d ) be an Alexandrov

space of curvature bounded from above by K. In an RK domain of x ∈ X, there exists

ρ = ρ(x,K) > 0 such that for u, v ∈ W 1,2(Σ, X) with images staying in Bρ(x) ⊂ RK , the

following holds:

(1.1)
1

4

∫
Σ

|∇d (u, v)|2 ≤ Eu + Ev − 2Ew.

Here Bρ(x) is the geodesic ball centered at x with radius ρ , w = u+v
2

is the mid-point map

and E is the 2-energy of maps into metric spaces (see section 2.2) .

We shall remark that Theorem 1.0.2 provides a stronger (quantitative) version of a

result of Burago, Burago and Ivanov [6, Proposition 9.1.17]. Theorem 1.0.2 allows us to

use Colding and Minicozzi’s width-sweepout construction of closed geodesics to produce

closed geodesics in another class of general metric spaces, namely, the (closed) Alexan-

drov spaces of curvature bounded from above. Moreover, as an immediate corollary of

the existence of good sweepouts by curves, we obtain the following generalized Birkhoff-

Lyusternik theorem on the existence of non-trivial closed geodesics, cf. [32], [31]. This is a

generalization of Theorem 1.0.1 if one recalls that any compact smooth Riemannian man-

ifold is an Alexandrov space of curvature bounded from above by some K (see Theorem

2.1.1).

∗Also known as the K-plane, see footnote †.
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Theorem 1.0.3. (Generalized Birkhoff-Lyusternik theorem) Let (X, d) be a closed Alexan-

drov space of curvature bounded from above by K. Suppose that the k0-th homology group

Hk0(X) is nonzero for some k0 ≥ 1, then (X, d) admits at least one non-trivial closed

geodesic.

Similar to the width-sweepout construction of closed geodesics, in [15] Colding and

Minicozzi used the local harmonic map replacement to construct good 2-sweepouts by

2-spheres on a closed 3-manifold and proved the finite extinction time of Hamilton’s Ricci

flow. Again, an energy convexity for weakly harmonic maps with small energy on B1

(see Theorem 3.1 in [15]) plays a critical role in the construction. This energy convexity

can be thought of as the two dimensional analogue of the energy convexity for (one

dimensional) geodesic segments in the width-sweepout construction of closed geodesics

mentioned above.

The theory of harmonic maps between Riemannian manifolds has been an intensely

researched field over the years. This is not only because harmonic maps have rich display

of both differential geometric and analytic phenomena, but also their important applica-

tions to other research fields such as minimal surfaces (i.e. conformal harmonic maps)

and deformations of Riemannian surfaces. The existence, regularity, and uniqueness the-

ories of weakly harmonic maps have been active topics for mathematicians, and various

important and interesting results have been obtained under different conditions, such as

the dimension of the source manifold, the curvature of the target manifold, its topology

and the type of definition chosen for a weak solution, see [24] and the references therein.

Above all, harmonic maps in the critical “conformal” dimension, i.e. on surfaces, are

of particular interest because of their special features. In [23], Hélein proved the entire

interior regularity of weakly harmonic maps on surfaces with the help of the Coulomb

moving frame, and Qing showed in [38] continuity up to the boundary in the case of con-

tinuous boundary data. More recently, in contrast to Hélein’s moving frame technique, in
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[40] Rivière provided a new approach to the regularity of a more general 2-dimensional

conformally invariant non-linear system of elliptic PDEs (which includes the harmonic

maps on surfaces), using gauge decomposition techniques and Wente’s lemma.

Regarding the uniqueness of the weakly harmonic maps on surfaces, however, it was

not until two years ago that Colding and Minicozzi showed in [15] an energy convexity for

W 1,2 weakly harmonic maps on B1 ⊂ R2 and hence the uniqueness, namely, they proved:

Theorem 1.0.4. ([15], [26]) For u, v ∈ W 1,2(B1,N ) with u being weakly harmonic, the

Dirichlet energy E(u) = 1
2

∫
B1
|∇u|2 ≤ ε for some small positive constant ε and u|∂B1 =

v|∂B1, we have

1

2

∫
B1

|∇v −∇u|2 ≤
∫
B1

|∇v|2 −
∫
B1

|∇u|2 .

An immediate corollary of Theorem 1.0.4 is the uniqueness of solutions to the Dirichlet

problem for weakly harmonic maps with small energy on B1.

Corollary 1.0.5. ([15]) Let ε > 0 be as in Theorem 1.0.4. If u1 and u2 are W 1,2 weakly

harmonic maps from B1 to N , both with Dirichlet energy at most ε, and they agree on

∂B1, then u1 = u2 .

In the last part of this thesis, by revealing some special Jacobian structures that

only hold for the weakly harmonic maps on surfaces and by adapting Rivière’s gauge

decomposition technique introduced in [40], we will give a new proof of the Colding and

Minicozzi’s energy convexity and uniqueness results stated above for weakly harmonic

maps with small energy on B1, namely, Theorem 1.0.4.

This thesis is organized as follows. In Chapter 2, we collect some needed background

material. In Chapter 3, we first derive estimates for the harmonic map heat flow from

the unit circle S1 and then use the flow to construct good sweepouts on closed manifolds.

In Chapter 4, we show an energy convexity of W 1,2 maps into CAT (K) spaces and then

use Colding and Minicozzi’s width-sweepout construction to show the existence of closed

6



geodesics in closed Alexandrov space of curvature bounded from above. In Chapter 5, we

give a new proof to the energy convexity and uniqueness of weakly harmonic maps with

small energy on B1.
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Chapter 2

Background

We begin by providing some necessary background material on Alexandrov space, energy

of maps into general metric spaces, the sweepout by curves and the width of closed

Riemannian manifolds and closed Alexandrov spaces, and the weakly harmonic maps.

We are then in the position where we can formally focus on the two main problems in

this work: existence of closed geodesics and uniqueness of 2-dimensional weakly harmonic

maps.

2.1 Alexandrov space of curvature ≤ K

In the 1950’s, Alexandrov introduced spaces of curvature bounded from above in his

papers [1], [2]. The terminology CAT (K) spaces was then coined by Gromov in 1987.

The initials are in honor of Cartan, Alexandrov and Toponogov. To make this thesis

self-contained, we will recall some basic definitions here.

A metric d of the metric space (X, d ) is called intrinsic if for every P,Q ∈ X

d (P,Q) = inf
L
{Length (L) } ,
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where the inf is taken over all rectifiable curves L joining the points P and Q, and

Length(L) is the length of L measured in the metric d.

A curve L in a metric space (X, d ) joining a pair of points A,B is called a shortest

arc if its length is equal to d (A,B) .

A metric space is said to be geodesically connected or a length space if each pair of

points in it can be joined by a shortest arc.

An RK domain (also known as a CAT (K) space) of the metric space (X, d ) is a metric

space with the following properties:

(i) RK is a geodesically connected metric space.

(ii) If K > 0, then the perimeter of each triangle in RK is less than 2π/
√
K.

(iii) K-convexity: Each triangle 4ABC ⊂ RK and its comparison triangle 4ABC in

the K-plane† have the CAT (K)-inequality: d (B,D) ≤ dK-plane(B,D), where D is

the point in the arc AC such that d (A,D) = dK-plane(A,D) .

A metric space (X, d ) is an Alexandrov space of curvature bounded from above by K

if each point of X is contained in some neighborhood that is an RK domain.

To see some examples of such Alexandrov spaces of curvature bounded from above

and relate the curvature in the sense of Alexandrov and the sectional curvature of a

Riemannian manifold, we have the following theorem due to Alexandrov and Cartan.

Theorem 2.1.1. ([1], [9]) A smooth Riemannian manifold M is an Alexandrov space of

curvature bounded from above by K if and only if the sectional curvature of M is ≤ K .

†The K-plane is the 2-dimensional model space of constant Gaussian curvature K, i.e., R2 if K = 0,
the standard Euclidean 2-hemisphere SK of radius 1/

√
K if K > 0 and the hyperbolic plane of curvature

K if K < 0 . The comparison triangle means 4ABC has the same length of corresponding side as
4ABC , measuring in respective metric. See [6].
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2.2 Energy of maps into metric spaces

Let (Σ, g) be a n-dimensional compact Riemannian domain, dΣ be the distance function

on Σ induced by g and (X, d ) be any complete metric space. A Borel measurable map

f : Σ→ X is said to be in L2(Σ, X) if

∫
Σ

d2(f(x), Q)dµ <∞

for some Q ∈ X. By the triangle inequality, this definition is independent of the choice of

Q.

For ε > 0, let Σε = {η ∈ Σ : dΣ(η, ∂Σ) > ε} and Sε(η) = {ξ ∈ Σ : dΣ(η, ξ) = ε}

and dση,ε(ξ) be the (n − 1)-dimensional surface measure on Sε(η) and wn be the area

form of the unit sphere. For u ∈ L2(Σ, X), construct an ε-approximate energy function

eε : Σ→ R by setting

(2.1) eε(η) =


1

wn

∫
Sε(η)

d2(u(η), u(ξ))

ε2
dση,ε(ξ)

εn−1
for η ∈ Σε,

0 for η ∈ Σ− Σε.

Define a linear functional Eε : Cc(Σ) → R on the set of continuous functions with

compact support in Σ by setting

Eε(f) =

∫
Σ

feεdµ.

Definition 2.2.1. ([25], 1.3ii) The map u ∈ L2(Σ, X) is said to have finite energy or

equivalently u ∈ W 1,2(Σ, X) if

(2.2) Eu = sup
0≤f≤1,f∈Cc(Σ)

lim sup
ε→0+

Eε(f) <∞.
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The quantity Eu is defined to be the energy of the map u. It is shown in [25] that if u

has finite energy, then in fact there exists a function e(η) ∈ L1(Σ) so that eε(η)dµg(η)→

e(η)dµg(η) as measures. The function e(η) is called the energy density of u and we write

it as |∇u|2 ( |u′|2 when n = 1) as an analogue of the Riemannian case. In particular

Energy(u) = Eu =

∫
Σ

|∇u|2dµ ( =

∫
Σ

|u′|2dµ when n = 1).

Remark 2.2.2. By definition, if u, v ∈ W 1,2(Σ, X) then the pointwise distance func-

tion d (u, v) ∈ W 1,2(Σ,R) (see also theorem 1.12.2 of [25]). For closed curves α, β ∈

W 1,2(S1, X), the fact that d (α, β) ∈ W 1,2(S1,R) allows us the define the distance between

α and β in W 1,2(S1, X). Note that the Sobolev embedding C0(S1,R) ↪→ W 1,2(S1,R) im-

plies two W 1,2 curves that are W 1,2 close are also C0 close (cf. (4.11)) .

2.3 Sweepout by curves and width

2.3.1 For closed Riemannian manifolds

In [14], Colding and Minicozzi introduced the crucial geometric concepts: sweepout (by

curves) and width. We will next recall the definitions.

Definition 2.3.1. A continuous map σ : S1× [−1, 1] −→ N is called a sweepout in N , if

σ(·, s) ∈ W 1,2(S1,N ) for each s ∈ [−1, 1], the map s −→ σ(·, s) is continuous from [−1, 1]

to W 1,2(S1,N ) and σ maps S1 × {−1}× and S1 × {1} to points.

Denote by Ω the set of sweepouts by curves on N . The homotopy class Ωσ̂ of

σ̂ ∈ Ω is the path connected component of σ̂ in Ω, where the topology is induced from

C0([−1, 1],W 1,2(S1,N )).

Definition 2.3.2. The width W = W (Ωσ̂) of the homotopy class Ωσ̂ is defined by taking

11



the infimum of the maximum of the energy of each slice. That is, set

(2.3) W = inf
σ∈Ωσ̂

max
s∈[−1,1]

E(σ(·, s)),

where E(σ(·, s)) is the usual Dirichlet energy for the closed curve σ(·, s) : S1 → N defined

by

(2.4) Energy(σ(·, s)) = E(σ(·, s)) =
1

2

∫
S1

|∂θγ(θ, s)|2dθ

We shall see that the sweepout σ induces a map σ̃ from the sphere S2 to N and the

width is always non-negative and is positive if σ̂ is in a non-trivial homotopy class‡ . To

see this, assume that W (Ωσ̂) = 0 and σ ∈ Ωσ̂ is such that the energy of each slice of σ is

sufficiently small. Then each slice, σ(·, s), is contained in a strictly convex neighborhood

of σ(θ0, s) and note that s −→ σ(θ0, s) is a continuous curve in N . Hence a geodesic

homotopy connects σ to a path of point curves and thus σ is homotopically trivial.

2.3.2 For Alexandrov spaces

Throughout the rest of this thesis, we will let (X, d ) be a closed Alexandrov space of

curvature bounded from above by some K > 0. We will next extend the definitions of

sweepout and width to a closed Alexandrov space of curvature bounded from above.

Definition 2.3.3. A continuous map σ : S1 × [−1, 1] → X is called a sweepout in X,

if for each s the map σ(·, s) is in W 1,2(S1, X), the map s → σ(·, s) is continuous (in the

induced topology as in Remark 2.2.2) from [−1, 1] to W 1,2(S1, X), and finally σ maps

S1 × {−1} and S1 × {1} to points.

‡A particularly interesting example is when X is a topological 2-sphere with π1(X) = {0} and the
map induced by a sweepout from S2 to X has degree one. In this case, the width is positive and realized
by a non-trivial closed geodesic with index 1 , see footnote 2 of [14].
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Let Ω be the set of sweepouts in X. Given a map σ̂ ∈ Ω, the homotopy class Ωσ̂ is

defined to be the set of maps σ ∈ Ω that are homotopic to σ̂ through maps in Ω.

Definition 2.3.4. The width W = W (σ̂) associated to the homotopy class Ωσ̂ is defined

by

(2.5) W = inf
σ∈Ωσ̂

max
s∈[−1,1]

Energy (σ(·, s)) ,

where the energy is the energy of maps into metric spaces given in section 2.2, namely,

Energy(σ(·, s)) =(2.6)

sup
f∈Cc(S1)

0≤f≤1

lim sup
ε→0+

∫
S1

f

(
d2 (σ(η − ε, s), σ(η, s)) + d2 (σ(η, s), σ(η + ε, s))

2ε2

)
dη .

We write Energy(σ(·, s)) = E(σ(·, s)) =
∫
S1 |σ′(x, s)|2dx (cf. (2.4): these two defini-

tions differ only by a constant 1
2
, but this makes no essential difference). Again, we shall

see that a sweepout in X induces a map from the sphere S2 to X and the width is always

non-negative and is positive if σ̂ is in a non-trivial homotopy class .

Remark 2.3.5. The ε-approximate length function of σ converges to a L1 function, which

coincides with the speed function of σ, as ε→ 0+, namely (see lemma 1.9.3 of [25]),

lim
ε→0+

d (σ(η − ε), σ(η)) + d (σ(η), σ(η + ε))

2ε
= |σ′|(η) a.e. η ∈ S1 .

Throughout the rest of this thesis we will use |σ′| to denote the speed function of a curve

σ in X.
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2.4 Weakly harmonic maps

Let (N , g) be a general closed Riemannian manifold that can be isometrically embedded

into (Rn, 〈, 〉) as stated above, we define the Dirichlet energy of a sufficiently smooth map

u : B1 → N from the unit 2-disc B1 ⊂ R2 to be

(2.7) E(u) =
1

2

∫
B1

|∇u|2dx1dx2 .

By definition, harmonic maps from B1 to N are the (regular) stationary points of E. In

terms of local coordinates {yi} onN , they necessarily satisfy the Euler-Lagrange equations

(which is a semilinear second-order elliptic system of partial differential equations):

(2.8) −∆ui = Γikl(u)∇uk · ∇ul ,

where ∆ =
∑2

i=1
∂2

∂x2i
is the Laplacian in R2 and Γikl are the Christoffel symbols of the

metric g on N (with (gij) = (gij)
−1):

Γikl =
1

2
gij (gkj,l + glj,k − gkl,j) .

Here and in the sequel we adopt the Einstein summation convention where summation

over repeated subscript-superscript pairs is understood.

In the following we will use the short-hand notation

(2.9) −∆u = A(u)(∇u,∇u) ,

where A(u) is the second fundamental form of the fixed isometric embedding N ↪→ Rn .

The weak solutions of (2.9) in the class of maps W 1,2(B1,N ) are critical points of the

Dirichlet energy E(u) in the distribution sense and they are also called weakly harmonic
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maps. That is, u ∈ W 1,2(B1,R
n) takes values almost everywhere in N and solves (2.9)

weakly. Moreover, one sees that equation (2.9) is equivalent to the following intrinsic

harmonic map equation:

(2.10) ∆u ⊥ TuN or (∆u)T = 0 (zero tension field) ,

where TuN is the tangent plane of N at the point u and the superscript T means the

projection onto TuN .
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Chapter 3

Closed geodesics in closed manifolds

3.1 Harmonic map heat flow from S1

Throughout this chapter, we use the subscripts θ and t to denote taking partial derivatives

of maps with respect to θ and t; u satisfies the harmonic map heat flow equation, which

is defined in (3.1). Given a closed curve γ ∈ W 1,2(S1,N ), define the Dirichlet energy

functional E(γ) = 1
2

∫
S1 |γθ|2dθ. The harmonic map heat flow from S1 into N starting

with the initial closed curve u0 ∈ W 1,2(S1,N ) is the negative L2 gradient flow of the

energy functional E:

(3.1)


ut = uθθ − A(u)(uθ, uθ) on (0,∞)× S1 ;

lim
t−→0+

u(t, ·) = u0 in W 1,2(S1,N ) ,

where A(u) is the second fundamental form of N in Rn at point u. We study the long

time existence and uniqueness of the solution of (3.1), c.f. Struwe’s fundamental paper

[46] for relevant results of harmonic map heat flow from surfaces. See also Ottarsson’s

work in [35], where Theorem 3.1.1 was proved under the stronger assumption of C1 initial
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data (and thus the C1 continuity at t = 0)§.

Theorem 3.1.1. Given u0 ∈ W 1,2(S1,N ), there exists a unique solution u(t, θ) ∈ C∞((0,∞)×

S1,N ) of (3.1).

The following is devoted to the proof of Theorem 3.1.1. First, by theorems 10B and

10A in [18] (or see theorems 6D and 6E in [35]), given any initial data u0 ∈ C∞(S1,N ),

there exists T0 > 0 and a unique solution u ∈ C∞([0, T0) × S1,N ) of (3.1). We show

that the solution u can be extended smoothly beyond T0. First, note that the energy is

non-increasing under the harmonic map heat flow:

Lemma 3.1.2. For 0 ≤ t1 ≤ t2 < T0 ,

(3.2) E(u(t1, ·))− E(u(t2, ·)) =

∫ t2

t1

∫
S1

|ut|2dθdt .

Proof. Multiply the first equation of (3.1) by ut and integrate over [t1, t2]× S1,

∫ t2

t1

∫
S1

|ut|2dθdt =

∫ t2

t1

∫
S1

〈uθθ, ut〉dθdt = −
∫ t2

t1

∫
S1

〈uθ, uθt〉dθdt

= E(u(t1, ·))− E(u(t2, ·)) .

This shows (3.2) .

We will next derive a global gradient bound of u.

Lemma 3.1.3. Suppose that u is a solution of (3.1) in C∞((0,∞)× S1,N ). Then

(3.3) (∂t − ∂2
θ )|uθ|2 ≤ 0 .

§In our setting, the C1 continuity at t = 0 may not be true. For our purpose that the harmonic
map heat flow preserves the homotopy class of sweepouts, we use a different argument to show the W 1,2

continuity at t = 0.
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Proof.

∂t|uθ|2 = 2〈uθ, uθt〉 = 2〈uθ, uθθθ〉 − 2〈uθ, (A(u)(uθ, uθ))θ〉

= 2〈uθ, uθθθ〉+ 2〈uθθ, A(u)(uθ, uθ)〉

= ∂2
θ |uθ|2 − 2|uθθ|2 + 2|A(u)(uθ, uθ)|2 ≤ ∂2

θ |uθ|2 .

Since u ∈ C∞((0, T0) × S1,N ), it follows from Lemma 3.1.2 and the local maximum

principle (see Theorem 2.1 in [20] or Theorem 7.36 in [28]) that for any τ > 0 and

(t, θ) ∈ [τ, T0)× S1 we have

(3.4) |uθ|2(t, θ) ≤ C0 max{1, τ−1/2}E(u0) ,

where C0 is a positive constant. Furthermore, by Proposition 7.18 in [28], |uθθ| and |ut|

are bounded on [2τ, T0)×S1. And by induction, for any τ > 0, the higher order derivatives

of u on [2τ, T0) × S1 are bounded uniformly by constants depending only on N , E(u0),

τ and T0. Hence u can be extended smoothly to a solution of (3.1) beyond T0. In other

words, there exists a unique solution u ∈ C∞([0,∞)×S1,N ) of (3.1), if u0 ∈ C∞(S1,N ).

Now given u0 ∈ W 1,2(S1,N ), we can find a sequence of um0 ∈ C∞(S1,N ) approaching

u0 in the W 1,2 topology. Let um be the solution of the harmonic map heat flow with initial

data um0 . Then by (3.4) and the discussion above, for any τ > 0 and T0 > τ , um’s and

all their derivatives are bounded uniformly (for all m). By the Arzela-Ascoli Theorem

and a diagonalization argument, there exists a map u ∈ C∞((0,∞)× S1,N ) solving the

harmonic map heat flow with E(u(t, ·)) ≤ E(u0). And it follows from the next lemma

that t −→ u(t, ·) is a continuous map from [0,∞) −→ W 1,2(S1,N ).

Lemma 3.1.4. Given ε > 0, there exists δ > 0, depending on N , u0 and ε, so that if
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0 ≤ t1 < t2 and t2 − t1 < δ, then

(3.5) ‖u(t2, ·)− u(t1, ·)‖W 1,2(S1) ≤ ε .

Proof. First note that

∫
S1

|u(t2, θ)− u(t1, θ)|2dθ ≤
∫
S1

∣∣∣∣∫ t2

t1

utdt

∣∣∣∣2 dθ ≤ (t2 − t1)

∫ t2

t1

∫
S1

|ut|2dθdt .

And by Lemma 3.1.2 and the Cauchy-Schwarz inequality, we have

∫
S1

|uθ(t2, θ)− uθ(t1, θ)|2dθ

=

∫
S1

|uθ(t1, θ)|2dθ −
∫
S1

|uθ(t2, θ)|2dθ − 2

∫
S1

〈uθ(t2, θ), uθ(t1, θ)− uθ(t2, θ)〉dθ

= 2

∫ t2

t1

∫
S1

|ut|2dθdt+ 2

∫
S1

〈uθθ(t2, θ), u(t1, θ)− u(t2, θ)〉dθ

≤ 2

∫ t2

t1

∫
S1

|ut|2dθdt+ 2

(∫
S1

|uθθ(t2, θ)|2dθ
) 1

2
(∫

S1

|u(t2, θ)− u(t1, θ)|2dθ
) 1

2

≤ 2

∫ t2

t1

∫
S1

|ut|2dθdt+ 2(t2 − t1)
1
2

(∫
S1

|uθθ(t2, θ)|2dθ
) 1

2
(∫ t2

t1

∫
S1

|ut|2dθdt
) 1

2

.

If C2
0 (t2 − t1) < 1, then by Lemma 3.1.2, (3.1) and (3.4) we get

(3.6)

∫
S1

|uθθ(t2, θ)|2dθ ≤
∫
S1

|ut(t2, θ)|2dθ + (t2 − t1)−1 sup
N
|A|2 · E(u0)2 .

We next derive the evolution equation for |ut|2 .

∂t|ut|2 = 2〈ut, utt〉 = 2〈ut, uθθt〉 − 2〈ut, (A(u)(uθ, uθ))t〉

= ∂2
θ |ut|2 − 2|utθ|2 + 2〈utt, A(u)(uθ, uθ)〉

= ∂2
θ |ut|2 − 2|utθ|2 + 2〈A(u)(ut, ut), A(u)(uθ, uθ)〉.
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Thus by (3.4), if t > t3 = t1 + (t2 − t1)/2 there holds

(3.7) (∂t − ∂2
θ )|ut|2 − 4(t2 − t1)−1 sup

N
|A|2 · E(u0)2 · |ut|2 ≤ 0 .

Hence

∫
S1

|ut|2(t2, θ)dθ ≤ inf
t3≤t≤t2

∫
S1

|ut|2(t, θ)dθ + C(t2 − t1)−1

∫ t2

t1

∫
S1

|ut|2dθdt

≤ (C + 2)(t2 − t1)−1

∫ t2

t1

∫
S1

|ut|2dθdt ,(3.8)

where C depends only on N and E(u0). Combining (3.8), (3.6) and Lemma 3.1.2, there

exists δ > 0 so that (3.5) holds.

Given (3.4) and Lemma 3.1.4, one sees that there exists R0 > 0, depending only on N

and u0, so that for t ≥ 0, 2π · supN |A|2 ·
∫
{t}×IR0

|uθ|2dθ < 1/64 , where IR0 is any segment

on the unit circle of length 2R0. To prove the uniqueness of the solution of (3.1), we will

need the following estimate, c.f. lemma 6.7 on page 225 of [47].

Lemma 3.1.5. Suppose that u is a solution of (3.1) in C∞((0,∞)× S1,N ). Then

(3.9)

∫ T

0

∫
S1

|uθθ|2dθdt ≤
T

4R2
0

E(u0) + 2 [E(u0)− E(u(T, ·))] .

Proof. Fix (t1, θ1) ∈ (0,∞) × S1. Let IR(θ1) denote the arc segment on the unit circle

centered at θ1 with length 2R. And let φ be identically one on IR0/2(θ1) and it cuts off
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linearly to zero on IR0(θ1) \ IR0/2(θ1). Then

|uθ|4(t1, θ1) = φ2|uθ|4(t1, θ1)

≤
(∫

S1

2|φ||uθ||uθθ|(t1, θ)dθ +

∫
S1

|φθ||uθ|2(t1, θ)dθ

)2

≤ 8

(∫
S1

|φ||uθ||uθθ|(t1, θ)dθ
)2

+ 2

(∫
S1

|φθ||uθ|2(t1, θ)dθ

)2

≤ 8

∫
IR0

(θ1)

|uθ|2(t1, θ)dθ ·
∫
S1

|uθθ|2(t1, θ)dθ +
8

R2
0

(∫
IR0

(θ1)

|uθ|2(t1, θ)dθ

)2

,

where the last inequality follows from Hölder’s inequality and that φ is supported in

IR0(θ1) with |φθ| ≤ 2/R0. Hence, for 0 < t0 ≤ T we have

∫ T

t0

∫
S1

|uθ|4dθdt ≤ 16π · ε(R0) ·
(∫ T

t0

∫
S1

|uθθ|2dθdt+R−2
0

∫ T

t0

∫
S1

|uθ|2dθdt
)
,

where

(3.10) ε(R0) = sup
t≥0, θ1∈S1

∫
{t}×IR0

(θ1)

|uθ|2dθ.

Then it follows from (3.1) and Lemma 3.1.2 that

∫ T

t0

∫
S1

|uθθ|2dθdt ≤
∫ T

t0

∫
S1

|ut|2dθdt+ sup
N
|A|2 ·

∫ T

t0

∫
S1

|uθ|4dθdt

≤ [E(u0)− E(u(T, ·))] +
1

2

∫ T

t0

∫
S1

|uθθ|2dθdt+
T

8R2
0

E(u0).

Absorbing the righthand side into the lefthand side and noting that the estimate is inde-

pendent of t0, we see that (3.9) follows immediately.

Now we are ready to show the uniqueness of the solution of the harmonic map heat

flow (3.1).
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Lemma 3.1.6. Given u0 ∈ W 1,2(S1,N ), let u and ũ be solutions of (3.1) in C∞((0,∞)×

S1,N ). Then u = ũ.

Proof. Define v = u− ũ, we have

(3.11) vt = vθθ − Au(uθ, uθ) + Aũ(ũθ, ũθ) .

Multiplying both sides of (3.11) by v and integrate over [0, t0]× S1, we get

∫
{t0}×S1

|v|2dθ + 2

∫ t0

0

∫
S1

|vθ|2dθdt

= 2

∫ t0

0

∫
S1

〈Aũ(ũθ, ũθ)− Au(uθ, uθ), v〉dθdt

≤ C(N )

∫ t0

0

∫
S1

|v|2(|ũθ|2 + |uθ|2)dθdt+ C(N )

∫ t0

0

∫
S1

|v||vθ|(|ũθ|+ |uθ|)dθdt

≤ C(N )

∫ t0

0

∫
S1

|v|2(|ũθ|2 + |uθ|2)dθdt+

∫ t0

0

∫
S1

|vθ|2dθdt

≤ C(N )

∫ t0

0

(
‖uθ‖2

C0({t}×S1) + ‖ũθ‖2
C0({t}×S1)

)∫
S1

|v|2dθdt+

∫ t0

0

∫
S1

|vθ|2dθdt.

By Lemmas 3.1.2, 3.1.5 and the Sobolev embedding theorem, there exists δ > 0 depending

on N and u0, so that if t0 ≤ δ then

C(N )

∫ t0

0

‖ũθ‖2
C0({t}×S1) + ‖uθ‖2

C0({t}×S1) dt

≤ C(N )

∫ t0

0

∫
S1

|ũθθ|2 + |uθθ|2dθdt

≤ C(N )

[
E(u0)

t0
2R2

0

+ 4E(u0)− 2E(u(t0, ·))− 2E(ũ(t0, ·))
]
≤ 1

2
.

Absorbing the righthand side into the lefthand side then gives

(3.12) sup
0≤t≤δ

∫
{t}×S1

|v|2dθ + 2

∫ δ

0

∫
S1

|vθ|2dθdt ≤ 0 .

Since [0, T ] is compact, the lemma follows by iteration.
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3.2 Good sweepouts via harmonic map heat flow

Let W be the width of the closed manifold N which is defined in Definition 2.3.2. For

fixed α ∈ (0, 1), let γ : S1 −→ N be a smooth closed curve and G be the set of closed

geodesics in N . Define distα(γ,G) = inf γ̃∈G ‖γ − γ̃‖C1,α(S1). Our aim in this section is to

prove the following theorem.

Theorem 3.2.1. Given 0 < α < 1, t0 > 0 and ε > 0, there exists δ > 0 so that if j > 1/δ

and s ∈ [−1, 1] satisfies E(Φj(t0, ·, s)) ≥ W − δ, then distα(Φj(t0, ·, s), G) < ε.

Remark 3.2.2. Such s exists since W ≤ maxs∈[−1,1]E(Φj(t0, ·, s)) ≤ W + 1/j .

We next prove a useful proposition for the solution of (3.1), which is also the key to

the proof of Theorem 3.2.1.

Proposition 3.2.3. Given 0 < α < 1, W0 ≥ 0, t0 > 0 and ε > 0, there exists δ0 > 0 so

that if W0 − δ0 ≤ E(u(t0, ·)) ≤ E(u0) ≤ W0 + δ0, then distα(u(t0, ·), G) < ε .

Proof. Suppose this fails, then there exist 0 < α < 1, W0 ≥ 0, t0 > 0, ε > 0 and a sequence

of solutions uj of the harmonic map heat flow satisfying W0−1/j ≤ E(uj(t0, ·)) ≤ E(uj0) ≤

W0 + 1/j and distα(uj(t0, ·), G) ≥ ε for all j. It follows from the evolution equation of

|ujt |2 (see (3.7)), (3.4), Lemma 3.1.2 and the local maximum principle that

(3.13) sup
θ∈S1

|ujt |2(t0, θ) ≤ C
[
E(uj(t0/2, ·))− E(uj(t0, ·))

]
,

where C depends on N , t0 and W0. This shows supθ∈S1 |ujt |(t0, θ) → 0 as j → ∞.

On the other hand, the uniform energy bound and (3.4) imply that ‖uj(t0, ·)‖C2(S1) is

uniformly bounded by constants depending only on N , t0 and W0. Therefore by the

Arzela-Ascoli’s Theorem, there exists a subsequence (relabeled) of uj(t0, ·) converging to

u∞ in C1,α(S1,N ) and u∞ is a closed geodesic in N . This is a contradiction.
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Proof. (of Theorem 3.2.1) Let σ be a sweepout on N and σj be a minimizing sequence

of sweepouts in Ωσ, that is

(3.14) W ≤ max
s∈[−1,1]

E(σj(·, s)) ≤ W + 1/j .

Applying the harmonic map heat flow to each slice of σj, we get a map Φj : [0,∞) ×

S1× [−1, 1] −→ N and for each s ∈ [−1, 1] fixed, Φj(t, θ, s) solves (3.1) with Φj(0, θ, s) =

σj(θ, s). It follows from the proof of the long time existence and uniqueness of the solution

of (3.1) that for any t0 ≥ 0, the map s −→ Φ(t0, ·, s) is continuous from [−1, 1] to

W 1,2(S1,N ) and therefore Φj(·, t0, ·) is still a sweepout on N . Since [−1, 1] is compact,

for any ε > 0, there exists δ > 0 so that if 0 ≤ t1 < t2 ≤ t0 and t2 − t1 < δ, then∫ t2
t1

∫
S1 |Φj

t(t, θ, s)|2dθdt < ε for any s ∈ [−1, 1]. Hence by Lemma 3.1.4, for any t0 > 0,

Φj(·, t0, ·) is homotopic to σj. Then it follows from Proposition 3.2.3 that the Φj(·, t0, ·)’s

are good sweepouts on N .

Since G is closed in the W 1,2(S1,N ) topology, we have

Corollary 3.2.4. If N is a closed Riemannian manifold and π2(N ) 6= {0}, then there

exists at least one non-trivial closed geodesic in N .

3.3 Parameter spaces

Instead of using the interval [−1, 1] as parameter space for the circles in the definition

of sweepout (see Definition 2.3.1) and assuming that the curves start and end in point

curves, one could have use any compact set P and require that the curves are constant on

∂P (or that ∂P = ∅). Then we let ΩP be the set of continuous maps σ : S1 ×P → N so

that for each s ∈ P the curve σ(·, s) is in W 1,2(S1,N ), the map s→ σ(·, s) is continuous

from P to W 1,2(S1,N ) and finally σ maps ∂P to point curves. Given a map σ̂ ∈ ΩP , the
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homotopy class ΩPσ̂ ⊂ ΩP is defined to be the set of maps σ ∈ ΩP that are homotopic to

σ̂ through maps in ΩP . Finally the width W = W (σ̂) is

(3.15) W = inf
σ∈ΩPσ̂

max
s∈P

E(σ(·, s)) .

Theorem 3.2.1 holds for these general parameter spaces and the proof is virtually the

same as when P = [−1, 1].

Proof. (of Theorem 1.0.1) We will divide our proof into two cases. In the case of the

fundamental group π1(N ) 6= 0, we can choose a non-contractible closed curve σ0 : S1 →

N . Then by the definition of width we see that W > 0. It follows immediately from

Theorem 3.2.1 that there exists at lease one non-trivial closed geodesic in N if we apply

the harmonic map heat flow to the minimizing sequence of sweepouts as shown in the

proof of Theorem 3.2.1.

In the case of π1(N ) = 0, i.e., N is simply-connected (or 1-connected), then it is well

known that H1(N ) ∼= π1(N )/[π1(N ), π1(N )] (see e.g. [22, Theorem 2A.1], page 166) and

thus H1(N ) = 0. Then by the assumption of the theorem, there exists the first nonzero

k1-th homology group Hk1(N ) 6= 0 for some integer k1 with 2 ≤ k1 ≤ k0. Therefore by the

Hurewicz theorem which states that the first nonzero homotopy and homology groups of

a simply-connected space occur in the same dimension and are isomorphic (see e.g. [22,

Theorem 4.32], page 366), we have

πk1(N ) ∼= Hk1(N ) 6= 0 .

Thus there is a non-contractible map

ω0 : Sk1 → N
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from the k1-sphere Sk1 to N for k1 ≥ 2 . Note that Sk1 is equivalent to S1 × B̄k1−1/ ∼,

where ∼ is the equivalence relation (θ1, y) ∼ (θ2, y) where θ1, θ2 ∈ S1 and y ∈ ∂B̄k1−1.

Here B̄k1−1 is the closed unit ball in Rk1−1 . We use this decomposition of Sk1 to define

the width of N .

Take P = B̄k1−1 as the parameter space as in subsection 3.3 and define the width W

as in (4.14). We see directly from the fact that ω0 is non-contractible that W > 0. Again,

it follows immediately from Theorem 3.2.1 that there exists at lease one non-trivial closed

geodesic in N .
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Chapter 4

Closed geodesics in closed

Alexandrov spaces of curvature

bounded from above

4.1 Local energy convexity in CAT (K) spaces

This section is devoted to the proof of Theorem 1.0.2. Equation (2.2iv) of [25] already

gave the case of K = 0 (with any ρ > 0). Our idea then follows from [25] to prove the

case of K > 0. We first provide a local distance convexity in the standard Euclidean 2-

hemisphere SK and then apply Reshetnyak’s majorization theorem to get the local energy

convexity for W 1,2 maps into a CAT (K) space with K ≥ 0. In [3], Berg and Nikolaev

defined the so-called K-quadrilateral cosine cosqK in an Alexandrov space of curvature

≤ K which has the property that |cosqK | ≤ 1. As we shall see in the following, this

quantity is much related to the local distance convexity in SK .

Lemma 4.1.1. ([3]) Consider a quadruple Q = {A,B,C,D} of order points (see Figure

4.1), A 6= B and C 6= D, in SK (R2 if K = 0) . Let k =
√
K and dSK be the dis-
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Figure 4.1: Quadruple Q = {A,B,C,D}

tance function in SK. Let dSK (A,B) = a, dSK (C,D) = b, dSK (A,D) = x, dSK (B,C) =

y, dSK (A,C) = h and dSK (B,D) = i . Then the limit of the K-quadrilateral cosine equals

to the 0-quadrilateral cosine as K → 0, i.e.,

lim
K→0

cosqK(
−−→
DA,

−−→
CB)

= lim
K→0

cos ka+ cos ky cos kx cos kb+ cos ka cos kb− cos ky cos kh− cos kx cos ki− cos kh cos ki

(1 + cos kb) sin kx sin ky

=cosq0(
−−→
DA,

−−→
CB) =

a2 + b2 − h2 − i2

2xy
.

Based on Lemma 4.1.1, the following lemma follows directly from an elementary com-

putation (see Appendix C for the detailed computation) .

Lemma 4.1.2. For any x ∈ SK, there exists τ = τ(K) > 0 such that if {A,D,C,B} ⊂

Bτ (x) ⊂ SK is an ordered sequence and E,F are the mid-points of the shortest arcs AB

and CD respectively, we have the following distance convexity:

1

4
(dSK (A,B)− dSK (C,D))2 ≤ d2

SK
(A,D) + d2

SK
(B,C)− 2d2

SK
(E,F ).

We will next recall Reshetnyak’s majorization theorem in 1968 for an Alexandrov space of

curvature bounded from above, which is a far reaching generalization of the K-convexity

that was established by Alexandrov.

Theorem 4.1.3. ([39]) Let (X, d ) be an Alexandrov space of curvature ≤ K. In an RK
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domain of X, for every rectifiable closed curve L with length less than 2π/
√
K if K > 0,

there is a convex domain V in the K-plane and a map ϕ : V → RK such that ϕ(∂V) = L,

the lengths of the corresponding arcs coincide, and dK-plane(η, ξ) ≥ d (ϕ(η), ϕ(ξ)), for

η, ξ ∈ V .

Remark 4.1.4. In particular, for an ordered sequence of points {A,D,C,B} in an Alexan-

drov space of curvature bounded from above by K > 0, let 0 ≤ λ, ν ≤ 1 be given. Define

Aλ to be the point which is the fraction λ of the way from A to B (on the geodesic γA,B).

Let Dν be the point which is the fraction ν of the way from D to C (along the opposite

geodesic γD,C). By Theorem 4.1.3 (see also [39, lemma 1]), there exists an ordered se-

quence of points {A,D,C,B} ⊂ SK which are the consecutive vertices of a quadrilateral.

We can construct the corresponding points in SK :

Aλ = (1− λ)A+ λB, Dν = (1− ν)D + νC.

Then by Theorem 4.1.3

d (A,B) = dSK (A,B), d (C,D) = dSK (C,D),

d (A,D) = dSK (A,D), d (B,C) = dSK (B,C),

d (Aλ, Dν) ≤ dSK
(
Aλ, Dν

)
.

We call {A,D,C,B} the subembedding of {A,D,C,B}.

Lemma 4.1.5. Let (X, d ) be an Alexandrov space of curvature ≤ K. In an RK domain

of x ∈ X, there exists ρ = ρ(x,K) > 0 such that if {A,D,C,B} ⊂ Bρ(x) ⊂ RK is an

ordered sequence and E,F are the mid-points of the shortest arcs AB and CD respectively,

we have

(4.1)
1

4
(d (A,B)− d (C,D))2 ≤ d2(A,D) + d2(B,C)− 2d2(E,F ).
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Proof. Equation (2.2iii) of [25] gives the case of K = 0 (with any ρ > 0) . For K > 0, let

% = min {d (x, y) | y ∈ ∂RK } and ρ = min{τ/4, %} where τ is from Lemma 4.1.2. Let

{A,D,C,B} ⊂ SK be a subembedding of {A,D,C,B}. We see first of all that A,D,C

and B have to be in a geodesic ball of radius at most 4ρ ≤ τ in SK and thus satisfy the

condition of Theorem 4.1.3. Then by Theorem 4.1.3 and Remark 4.1.4, letting λ = ν = 1
2
,

we obtain

1

4
(d (A,B)− d (C,D))2 =

1

4
(dSK (A,B)− dSK (C,D))2

≤ d2
SK

(A,D) + d2
SK

(B,C)− 2d2
SK

(A 1
2
, D 1

2
)

≤ d2(A,D) + d2(B,C)− 2d2(A 1
2
, D 1

2
) ,(4.2)

completing the proof .

Remark 4.1.6. For general λ, ν ∈ [0, 1], a similar distance convexity still holds with

coefficients in terms of λ and ν .

Proof. (of Theorem 1.0.2) For u, v ∈ W 1,2(Σ, X) with images staying in Bρ(x), set

{A = u(ξ), B = v(ξ), C = v(η), D = u(η)} as in Lemma 4.1.5 , we have:

(4.3)
1

4
(d (u(η), v(η))−d (u(ξ), v(ξ)))2 ≤ d2(u(ξ), u(η))+d2(v(ξ), v(η))−2d2(w(ξ), w(η)),

where w(ξ) = u+v
2

(ξ) is the mid-point of the geodesic connecting u(ξ) and v(ξ) .

Multiplying (4.3) by f(η) (where 0 ≤ f ≤ 1 and f ∈ Cc(Σ)), averaging on the subset

{|η − ξ| < ε} of Σ× Σ and integrating over Σ (as in 1.3 of [25] and see (2.1)), then first

of all we conclude that w ∈ W 1,2(Σ, X). By theorem 1.6.2 and theorem 1.12.2 of [25] we

obtain that for any f ∈ Cc(Σ), 0 ≤ f ≤ 1:

1

4

∫
Σ

f |∇d (u, v)|2 ≤
∫

Σ

f |∇u|2 +

∫
Σ

f |∇v|2 − 2

∫
Σ

f |∇w|2.
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Hence by definition (2.2), we have an analogue to (2.2iv) of [25]:

(4.4)
1

4

∫
Σ

|∇d(u, v)|2 ≤ Eu + Ev − 2Ew.

Remark 4.1.7. An immediate corollary of (4.4) is the uniqueness of the solution to the

Dirichlet problem into a CAT (K) (with K > 0) space with small image assumption, cf.

[45], [33] and theorem 2.2 of [25].

Corollary 4.1.8. ([45]) Let (Σ, g) be a Lipschitz Riemannian domain and (X, d ) be an

Alexandrov space of curvature bounded from above by K > 0. Fix a point Q ∈ X, Let

φ ∈ W 1,2(Σ, X) with φ(Σ) ⊂ Bρ(Q) where ρ = ρ(Q,K) is given by Theorem 1.0.2. Define

W 1,2
φ = {u ∈ W 1,2(Σ, X)

∣∣ u(Σ) ⊂ Bρ(Q) and tr(u) = tr(φ)}.

Then there exists a unique u ∈ W 1,2
φ which satisfies

Eu =

∫
Σ

|∇u|2dµ = E0 = inf
v∈W 1,2

φ

Ev.

4.2 Existence of good sweepouts by curves

Throughout the rest of this chapter, we will let (X, d ) be a closed Alexandrov space of

curvature bounded from above by some K > 0. Using the compactness of X, we let

(4.5) ρ = inf
x∈X
{ ρ(x,K) } > 0 ,

where ρ(x,K) is as in Theorem 1.0.2. Fix a large positive integer L and let Λ denote the

space of piecewise linear maps (constant speed geodesics) from S1 to X with exactly L2

breaks (possibly with unnecessary breaks) such that the length of each geodesic segment

is at most ρ defined by (4.5), parametrized by a (constant) multiple of arclength and
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with Lipschitz bound L (note that a W 1,2 curve is also a C1/2 curve but not necessarily

Lipschitz continuous, here the Lipschitz bound denotes the bound of the speed, see (4.11)).

Let G ⊂ Λ denote the set of (possibly self-intersecting) closed geodesics in X of length at

most ρL2. (The constant speed of a curve in Λ is equal to its length divided by 2π; and

its energy is equal to its length squared divided by 2π. In other words, energy and length

are essentially equivalent, see (2.6) and (4.11)) .

4.2.1 Curve shortening map Ψ

The curve shortening is a map Ψ : Λ→ Λ so that (see also section 2 of [17])

(1) Ψ(γ) is homotopic to γ and Length(Ψ(γ)) ≤ Length(γ).

(2) Ψ(γ) depends continuously on γ.

(3) There is a continuous function φ : [0,∞)→ [0,∞) with φ(0) = 0 so that

(4.6) dist2(γ,Ψ(γ)) ≤ φ

(
Length2(γ)− Length2(Ψ(γ))

Length2(Ψ(γ))

)
.

(4) Given ε > 0, there exists δ > 0 so that if γ ∈ Λ with dist(γ,G) ≥ ε, then

Length (Ψ(γ)) ≤ Length (γ)− δ.

We will use local linear replacement to define the curve shortening map Ψ which is

identical to [14]: fix a partition of S1 by choosing 2L2 consecutive evenly spaced points

(note that this is not necessarily where the piecewise linear maps have breaks).

(4.7) x0, x1, x2, . . . , x2L2 = x0 ∈ S1 , so that |xj − xj+1| =
π

L2
≤ ρ

2L
.

Ψ(γ) is given in the following three steps:
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Step 1: Replace γ on each even interval, i.e., [x2j, x2j+2], by the linear map with the

same endpoints to get a piecewise linear curve γe : S1 → X. Namely, for each j, we let

γe
∣∣
[x2j ,x2j+2]

be the unique shortest (constant speed) geodesic from γ(x2j) to γ(x2j+2).

Step 2: Replace γe on each odd interval by the linear map with the same endpoints to get

the piecewise linear curve γo : S1 → X.

Step 3: Reparametrize γo (fixing γo(x0)) to get the desired constant speed curve Ψ(γ) :

S1 → X.

It is easy to see that Ψ maps Λ to Λ and has property (1); cf. section 2 of [17]. The

proof of properties (2), (3) and (4) for Ψ is virtually the same as [14]. We shall remark

that there is a difficulty in the proofs of these properties: the second fundamental form

(smoothness) of the manifold is used in the Riemannian case in [14], while we don’t have

the smoothness in an Alexandrov space of curvature bounded above. But note that the

local energy convexity in Theorem 1.0.2 requires only that the two curves both stay in

a small region, while the key lemma 4.2 in [14] requires that the two curves have the

same endpoints. This fact allows us to get around this difficulty (see (A.6)). For the

completeness of this thesis, we include the proofs of properties (3) and (4) in Appendix

A and the proof of property (2) in Appendix B. Throughout the rest of this section, we

will assume these properties of Ψ and use them to prove the main theorem.

Combining properties (3) and (4) of Ψ, we have the following key lemma, which is

crucial in producing the desired sequence of good sweepouts.

Lemma 4.2.1. Given W ≥ 0 and ε > 0, there exists δ > 0 so that if γ ∈ Λ and

(4.8) 2π (W − δ) < Length2 (Ψ(γ)) ≤ Length2 (γ) < 2π (W + δ) ,

then dist(Ψ(γ), G) < ε.

Proof. If W ≤ ε2/6, then δ = ε2/6 gives Length (Ψ(γ)) ≤ 2ε . This tells us the bound on
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distance of Ψ(γ) to a point curve (e.g., its mid-point) which is a trivial closed geodesic in

G.

Assume next that W > ε2/6. The triangle inequality gives

(4.9) dist(Ψ(γ), G) ≤ dist(Ψ(γ), γ) + dist(γ,G) .

Since Ψ does not decrease the length of γ by much by the assumption, property (4) of

Ψ bounds dist(γ,G) by ε/2 as long as δ is sufficiently small. Similarly, property (3) of Ψ

allows us to bound dist(Ψ(γ), γ) by ε/2 as long as δ is sufficiently small.

4.2.2 Defining good sweepouts

Choose a sequence of maps σ̂j ∈ Ωσ̂ with

(4.10) max
s∈[−1,1]

Energy (σ̂j(·, s)) < W +
1

j
.

Observe that (4.10) and the Cauchy-Schwarz inequality imply a uniform bound for the

length and uniform C1/2 continuity for the slices, that are both independent of j and s.

They follow immediately from the following: for any small δ > 0, [x, y] ⊂ [0, 2π] we pick

f ∈ Cc([0, 2π]), 0 ≤ f ≤ 1, with f = 1 on (x, y) and supp (f) ⊂ [x − δ, y + δ] ⊂ [0, 2π],

then

d2
(
σ̂j(x, s) , σ̂j(y, s)

)
≤ Length2

(
σ̂j(·, s)|[x,y]

)(4.11)

= lim
δ→0+

lim sup
ε→0+

(∫ y+δ

x−δ
f
d (σ̂j(η − ε, s), σ̂j(η, s)) + d (σ̂j(η, s), σ̂j(η + ε, s))

2ε
dη

)2

≤ |y − x| lim
δ→0+

lim sup
ε→0+

∫ y+δ

x−δ
f 2

(
d2 (σ̂j(η − ε, s), σ̂j(η, s)) + d2 (σ̂j(η, s), σ̂j(η + ε, s))

2ε2

)
dη

= |y − x|Energy
(
σ̂j(·, s)|[x,y]

)
≤ |y − x| (W + 1) .
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In order to get started and be able to use the properties of Ψ, we would like all the

initial curves to be in Λ. We will replace the σ̂j’s by sweepouts σj that, in addition to

satisfying (4.10), also satisfy that the slices σj(·, s) are in Λ. We will do this by using local

linear replacement similar to the construction of Ψ. Namely, the uniform C1/2 bound for

the slices allows us to fix a partition of points y0, . . . , yN = y0 in S1 so that each interval

[yi, yi+1] is always mapped to a geodesic ball in X of radius at most ρ. Next, for each s and

each j, we replace σ̂j(·, s)
∣∣
[yi,yi+1]

by the linear map (geodesic) with the same endpoints

and call the resulting map σ̃j(·, s). Reparametrize σ̃j(·, s) to have constant speed to get

σj(·, s). It is easy to see that each σj(·, s) satisfies (4.10). Furthermore, the length bound

for σj(·, s) also gives a uniform Lipschitz (speed) bound for the linear maps; let L be this

bound and N ≤ L2.

We can see from the proof of property (2) for Ψ in Appendix B that σj is continuous

in the transversal direction (i.e. with respect to s) and homotopic to σ̂ in Ω, cf. [4], [5],

section 2 of [17] and appendix B of [14].

Finally, applying the replacement map Ψ to each σj(·, s) gives a new sequence of

sweepouts γj = Ψ(σj). (Ψ depends continuously on s and preserves the homotopy class

Ωσ̂; it is clear that Ψ fixes the constant maps at s = ±1.)

4.2.3 Almost maximal implies almost critical

We will show that the sequence γj = Ψ(σj) of sweepouts is tight in the sense of the

Introduction. Namely, we have the following main theorem.

Theorem 4.2.2. Given W ≥ 0 and ε > 0, there exists δ > 0 so that if j > 1/δ and for

some s0

(4.12) 2π Energy (γj(·, s0)) = Length2 (γj(·, s0)) > 2π (W − δ) ,
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then for this j we have dist (γj(·, s0) , G) < ε.

Proof. Let δ be given by Lemma 4.2.1. By (4.12), (4.10), and using that j > 1/δ, we get

(4.13) 2π (W − δ) < Length2 (γj(·, s0)) ≤ Length2 (σj(·, s0)) < 2π (W + δ) .

Thus, since γj(·, s0) = Ψ(σj(·, s0)), Lemma 4.2.1 gives dist(γj(·, s0) , G) < ε.

4.3 Generalized Birkhoff-Lyusternik theorem

As in Section 3.3, instead of using the interval [−1, 1] as parameter space for the circles in

the definition of sweepout (see Definition 2.3.3) and assuming that the curves start and

end in point curves, one could have use any compact set P and require that the curves

are constant on ∂P (or that ∂P = ∅). Then we let ΩP be the set of continuous maps

σ : S1 × P → X so that for each s ∈ P the curve σ(·, s) is in W 1,2(S1, X), the map

s → σ(·, s) is continuous from P to W 1,2(S1, X) and finally σ maps ∂P to point curves.

Given a map σ̂ ∈ ΩP , the homotopy class ΩPσ̂ ⊂ ΩP is defined to be the set of maps

σ ∈ ΩP that are homotopic to σ̂ through maps in ΩP . Finally the width W = W (σ̂) is

(4.14) W = inf
σ∈ΩPσ̂

max
s∈P

Energy(σ(·, s)) .

Theorem 4.2.2 holds for these general parameter spaces and the proof is virtually the

same.

Proof. (of Theorem 1.0.3) The proof is virtually the same as the proof of Theorem 1.0.1

in Section 3.3 .
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Chapter 5

Uniqueness of weakly harmonic

maps from B1

5.1 2-dimensional conformally invariant variational pro-

belm

As mentioned in the Introduction, more recently, Rivière [40] succeeded in writing in

divergence form of the following 2-dimensional conformally invariant non-linear system of

elliptic PDEs (which includes the harmonic map equation (2.9)):

(5.1) −∆ui = Ωi
j · ∇uj i = 1, 2, ..., n or −∆u = Ω · ∇u ,

with Ω = (Ωi
j)1≤i,j≤n ∈ L2(B1, so(n)⊗R2) and Ωi

j = −Ωj
i and thus provided a conservation

law for this system (see (5.11) below). Here and throughout this chapter, the Einstein

summation convention is used. Based on this conservation law he proved the (interior)

continuity and therefore the regularity of anW 1,2 solution u to (5.1), cf. [41]. In particular,
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the harmonic map equation (2.9) can be written in the form of (5.1) if we set

(5.2) Ω := (Ωi
j)1≤i,j≤n where Ωi

j := [Ai(u)j,l − Aj(u)i,l]∇ul .

We shall remark that in a recent paper [27], Lamm and Rivière followed the same approach

developed in [40] to show an analogous conservation law for some fourth order system,

which includes the extrinsic and intrinsic biharmonic map equations, in 4 dimensions, and

thus the continuity of the weak solutions to this system.

Next let us explore a little bit more on Rivière’s approach to the regularity problem

of the 2-dimensional conformally invariant variational problems (5.1) in [40]. Following

the strategy of Uhlenbeck in [48], Rivière used the algebraic feature of Ω, namely Ω

being antisymmetry, to construct ξ ∈ W 1,2
0 (B1, so(n)) and a gauge transformation P ∈

W 1,2(B1, SO(n)) which pointwise almost everywhere is an orthogonal matrix in Rn×n

satisfying

(5.3) ‖∇P‖L2 + ‖∇P T‖L2 + ‖ξ‖W 1,2 ≤ C‖Ω‖L2 ,

such that in B1 we have

(5.4) ∇⊥ξ = P T∇P + P TΩP .

Here and in what follows ∇ = (∂x1 , ∂x2) is the gradient and ∇⊥ = (−∂x2 , ∂x1) denotes the

orthogonal gradient. The superscript T denotes the transpose of a matrix.

Equivalently, we have

(5.5) ∇P = P∇⊥ξ − ΩP ,
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or with indices (and 1 ≤ m, z ≤ n)

(5.6) ∇P i
j = P i

m∇⊥ξmj − Ωi
z P

z
j , 1 ≤ i, j ≤ n .

Here and in what follows, 1 ≤ m, z ≤ n and the Einstein summation convention is

understood.

Remark 5.1.1. Besides Uhlenbeck’s method to construct the gauge transformation matrix

P , another nice way to construct P is to minimize the energy functional

(5.7) E(R) =

∫
B1

∣∣RT∇R +RTΩR
∣∣2 , R ∈ W 1,2(B1, SO(n)) .

See Schikorra’s recent results in [43] for this way of construction of P , and cf. [10].

Remark 5.1.2. The higher dimensional version of this fact was also used in the recent

paper of Rivière and Struwe [42] in proving the partial regularity of harmonic maps in

dimensions greater than two.

Moreover, by solving the following system of PDEs ([40, equation (II.5)]),

(5.8)



∆Â = ∇⊥B · ∇P +∇Â · ∇⊥ξ in B1;

∆B = −∇⊥Â · ∇P T − curl ((Â+ I)∇⊥ξ P T ) in B1;

∂Â

∂ν
= 0 and B = 0 on ∂B1;

and

∫
B1

Â = 0 ,

where I = Idn is the n × n identity matrix and ν is the unit normal to ∂B1, Rivière

constructed matrices Â ∈ W 1,2 ∩ C0(B1, Gln(R)), A ∈ L∞ ∩ W 1,2(B1, Gln(R)) and

B ∈ W 1,2
0 (B1,Mn(R)) such that

(5.9) ‖Â‖W 1,2 + ‖Â‖L∞ + ‖B‖W 1,2 ≤ C‖Ω‖L2 and A = (Â+ I)P T ,
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which gives (see [40, Theorem I.4])

(5.10) ∇A− AΩ = ∇⊥B

and the conservation law (using the harmonic map equation (5.1))

(5.11) div (A∇u+B∇⊥u) = 0 .

This conservation law makes a perfect analog to the “almost holomorphic” equation (4.38)

of [23] (see Proposition 5.2.4 below which says this conservation law implies an “almost

divergence free” structure for weakly harmonic maps) . Then by an extension argument

and the results of Coifman, Lions, Meyer and Semmes [12], he showed that u lies locally

in W 2,1 which embeds in C0 in two dimensions (see e.g. [7]) . In particular, the following

theorem holds.

Theorem 5.1.3. ([40, theorem 1.2]) Let N k be a C2 submanifold of Rn with 1 ≤ k ≤ n.

Let ω be a C1 2-form on N k such that the L∞ norm of dω is bounded on N k. Then every

critical point in W 1,2(B1,N k) of the Lagrangian

(5.12) F (u) =

∫
B1

[
|∇u|2 + ω(u)(∂x1u, ∂x2u)

]
dx1 ∧ dx2

satisfies an equation of the form (5.1) for some Ω in L2(B1, so(n)⊗R2) and is therefore

continuous.

5.2 Energy convexity

We point out that the key ingredient in Colding and Minicozzi’s proof of the energy

convexity for weakly harmonic maps with small energy on B1, namely, Theorem 1.0.4, is

to show a special jacobian structure of the norm square of the holomorphic function that
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Hélein constructed in [23] (see page 182 of [23]) where the moving frame was involved and

then appeal to the following Wente’s lemma.

Lemma 5.2.1. ([49], [23, theorem 3.3.8], [12]) If a, b ∈ W 1,2(B1) and w be the solution

of

(5.13)


∆w =

∂a

∂x2

∂b

∂x1

− ∂a

∂x1

∂b

∂x2

= ∇a · ∇⊥b in B1 ,

w = 0 or
∂w

∂ν
= 0 on ∂B1 .

Then w ∈ C0(B1) and the following estimates hold

(5.14) ‖w‖L∞(B1) + ‖∇w‖L2(B1) ≤ ‖∇a‖L2(B1)‖∇b‖L2(B1) ,

where we choose
∫
B1
w = 0 for the Neumann boundary data.

This special jacobian structure of the norm square of the holomorphic function in

particular implied directly that |∇u|2 actually lies in the local Hardy space h1(B1) (a

strict subspace of L1(B1)), which we will recall next.

Definition 5.2.2. ([34], cf. [44, Definition 1.90]) Choose a Schwartz function φ ∈ C∞0 (B1)

such that
∫
B1
φ dx = 1 and let φt(x) = t−2φ

(
x
t

)
. For a measurable function f defined in

B1 we say that f lies in the local Hardy space h1(B1) if the radial maximal function of f

(5.15) f ∗(x) = sup
0<t<1−|x|

∣∣∣∣∫
Bt(x)

1

t2
φ

(
x− y
t

)
f(y)dy

∣∣∣∣ (x) = sup
0<t<1−|x|

|φt ∗ f | (x)

belongs to L1(B1) and we define

(5.16) ‖f‖h1(B1) = ‖f ∗(x)‖L1(B1) .

It follows immediately that h1(B1) is a strict subspace of L1(B1) and ‖f‖L1(B1) ≤ ‖f‖h1(B1).
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In fact, the (local) Hardy space already illustrated its nice distribution features and

played important roles in many interesting applications, see e.g. [49],[12],[23] and [40].

Inspired by the results of Rivière [40], in this chapter, we aim to, instead of the use of

Hélein’s moving frame technique (see the estimate [14, (C.13)] used by Colding-Minicozzi),

revisit and understand in more detail Colding and Minicozzi’s proof of Theorem 1.0.4,

via Rivière’s gauge decomposition technique. We will do this by showing that the energy

density |∇u|2 is in the local Hardy space h1(B1) directly using Rivière’s approach. And

the main idea is to re-exam Rivière’s gauge decomposition and the estimates in [40], and

to reveal some more special Jacobian structures that hold only for the weakly harmonic

maps on surfaces.

The next proposition plays a crucial role in Colding and Minicozzi’s proof of Theorem

1.0.4. The rest of the chapter is devoted to a new approach to a proof of this proposition.

Proposition 5.2.3 ([15]). There exists a constant ε0 > 0 (depending on N ) so that if

u : B1 → N is a weakly harmonic map with energy at most ε0, then for any h ∈ W 1,2
0 (B1),

we have

(5.17)

∫
B1

h2 |∇u|2 ≤ C

(∫
B1

|∇h|2
) (∫

B1

|∇u|2
)
.

for some constant C > 0.

Our observations in this section are the two hidden jacobian structures that ∆B and

∆P have. Based on these facts we will be able to obtain an almost jacobian structure

for the energy density |∇u|2 and show that it is in the local Hardy space h1(B1). To

see the connection between Rivière’s gauge decomposition method and Hélein’s moving

frame method, we could think of the gauge transformation matrix P as a real analogue of

Hélein’s gauge transformation matrix in the construction of the adapted moving frame.

Most importantly, both transformation matrices enjoy the “compensated compactness”
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phenomenon which helps to show the improved regularity of the gradient of the weak

solution.

To get to the main estimate in Proposition 5.2.3, we first present the two main ob-

servations about the matrices B and P . Throughout the rest of this chapter, ε > 0 is

assumed to be sufficiently small and C denotes a universal constant that depends only on

N unless otherwise stated.

Proposition 5.2.4. Suppose u is an W 1,2 weakly harmonic map satisfying (2.9) with

E(u) ≤ ε, then we have

‖B‖L∞(B1) ≤ C‖∇u‖2
L2(B1) ≤ Cε .

Proof. Let us impose the fact that Ω = A(u)∇u if u is a weakly harmonic map, where

(A(u))l = Ai(u)j,l − Aj(u)i,l

denotes the second fundamental form as in (5.2). And taking the curl on both sides of

equation (5.10) yields

(5.18) ∆B = −curl(AA(u)∇u) = −∇⊥(AA(u)) · ∇u .

Combing the jacobian structure of the right-hand side of (5.18) with the zero bound-

ary condition of B and Lemma 5.2.1 yields the desired estimate. Here we also use the

smoothness and compactness of N , (5.3) and (5.9) .

Lemma 5.2.5. Suppose u is an W 1,2 weakly harmonic map satisfying (2.9) with E(u) ≤ ε,
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then there exists η ∈ W 1,2(B1,R
n) such that for any 1 ≤ i, j ≤ n

∆P i
j = ∇P i

m · ∇⊥ξmj −∇
[
(Ai(u)z,l − Az(u)i,l)P

z
j (A−1)lk

]
· ∇⊥ηk

+∇
[
(Ai(u)z,l − Az(u)i,l)P

z
j (A−1B)lk

]
· ∇⊥uk .(5.19)

Proof. By the conservation law (5.11) and Poincaré lemma, there exists η ∈ W 1,2(B1,R
n)

such that

(5.20) ∇⊥η = A∇u+B∇⊥u .

Moreover, by Proposition 5.2.4, (5.3) and (5.9) we have

(5.21) ‖∇η‖L2(B1) ≤ C‖∇u‖L2(B1) ≤ C
√
ε .

Multiplying both sides of equation (5.20) by A−1 from the left gives (with indices)

(5.22) ∇ul = (A−1)lk∇⊥ηk − (A−1B)lk∇⊥uk , l = 1, 2, ..., n .

Taking divergence on both sides of equation (5.6) yields

(5.23) ∆P i
j = ∇P i

m · ∇⊥ξmj − div (Ωi
z P

z
j ) , 1 ≤ i, j ≤ n .

Now since Ωi
z = (Ai(u)z,l−Az(u)i,l)∇ul (see equation (5.2)), combining (5.22) and (5.23)
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gives

∆P i
j = ∇P i

m · ∇⊥ξmj − div (Ωi
z P

z
j )

=∇P i
m · ∇⊥ξmj − div

(
(Ai(u)z,l − Az(u)i,l)

[
(A−1)lk∇⊥ηk + (A−1B)lk∇⊥uk

]
P z
j

)
=∇P i

m · ∇⊥ξmj −∇
[
(Ai(u)z,l − Az(u)i,l)P

z
j (A−1)lk

]
· ∇⊥ηk

+∇
[
(Ai(u)z,l − Az(u)i,l)P

z
j (A−1B)lk

]
· ∇⊥uk .

Next we prove a local estimate on the oscillation of the transformation matrix P based

on Lemma 5.2.5.

Lemma 5.2.6. Suppose u is an W 1,2 weakly harmonic map satisfying (2.9) with E(u) ≤ ε,

then for any x ∈ B1, any r > 0 such that B2r(x) ⊂ B1 and any y ∈ Br(x) we have

(5.24) |P (y)− P (x)| ≤ C
√
ε .

Proof. Let P̃ ∈ W 1,2(B1,Mn(R)) be the weak solution of (for any 1 ≤ i, j ≤ n)

(5.25)


∆P̃ i

j = ∇P i
m · ∇⊥ξmj −∇

[
(Ai(u)z,l − Az(u)i,l)P

z
j (A−1)lk

]
· ∇⊥ηk

+∇
[
(Ai(u)z,l − Az(u)i,l)P

z
j (A−1B)lk

]
· ∇⊥uk , in B1

P̃ i
j = 0 on ∂B1 .

Then by Lemma 5.2.1 we have P̃ ∈ C0(B1,Mn(R)) and

(5.26) ‖P̃‖L∞(B1) + ‖∇P̃‖L2(B1) ≤ Cε .

Since ∆(P − P̃ ) = 0 in B1, we know that V = P − P̃ ∈ C∞(B1,Mn(R)) is harmonic.
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Now for any x ∈ B1 and any r > 0 such that B2r(x) ⊂ B1, we have

|V (y)− V (x)| ≤ Cr‖∇V ‖L∞(Br(x))

≤Cr 1

πr2

∫
B2r(x)

|∇V | ≤ C

πr

(√
πr‖∇V ‖L2(B2r(x))

)
(5.27)

≤C
(
‖∇P‖L2(B2r(x)) + ‖∇P̃‖L2(B2r(x))

)
≤ C
√
ε ,

where we have used the mean value property of V and (5.26), (5.3). Combining (5.26)

and (5.27) yields that for any x ∈ B1, any r > 0 such that B2r(x) ⊂ B1 and any y ∈ Br(x)

we have

(5.28) |P (y)− P (x)| ≤ C
√
ε ,

which gives the desired estimate (5.24).

We will next show

Lemma 5.2.7. Suppose u is a W 1,2 weakly harmonic map satisfying (2.9) with E(u) ≤ ε,

then we have

(5.29) |∇u|2 ∈ h1(B1) and ‖|∇u|2‖h1(B1) ≤ C

∫
B1

|∇u|2 ≤ Cε .

Proof. Using (5.3)-(5.11) and Proposition 5.2.4, for any x ∈ B1, any r > 0 such that

B2r(x) ⊂ B1 and any y ∈ Br(x) we have (choosing ε sufficiently small)

0 ≤ 1

2
|∇u|2(y) ≤

(
A∇u+B∇⊥u

)
· (P T∇u)(y)

=
(
A∇u+B∇⊥u

)
·
[(
P T (x) +

(
P T − P T (x)

))
∇u
]

(y) ,(5.30)
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and therefore by Lemma 5.2.6 and (5.20)

∇⊥η ·
(
P T (x)∇u

)
(y) =

(
A∇u+B∇⊥u

)
·
(
P T (x)∇u

)
(y)

≥ 1

2
|∇u|2(y)−

(
A∇u+B∇⊥u

)
·
[(
P T − P T (x)

)
∇u
]

(y) ≥ 1

4
|∇u|2(y) .(5.31)

Now we choose a function

(5.32) φ ∈ C∞0 (B1) with φ ≥ 0, spt(φ) ⊆ B 1
2

and

∫
B1

φ dx = 1 .

Moreover, we additionally assume that ‖∇φ‖L∞(B1) ≤ 100. Using (5.31), one verifies

directly that (using Definition 5.2.2)

‖|∇u|2‖h1(B1) =

∫
B1

sup
0<t<1−|x|

φt ∗ |∇u|2dx

≤ 4

∫
B1

sup
0<t<1−|x|

φt ∗
(
∇⊥η · (P T (x)∇u)

)
dx

= 4

∫
B1

sup
0<t<1−|x|

φt ∗
[
(P T (x))ij

(
∇⊥ηi · ∇uj

)]
dx

≤C
n∑

i,j=1

‖∇⊥ηi · ∇uj‖h1(B1)

≤C‖∇⊥η‖L2(B1)‖∇u‖L2(B1) ≤ C

∫
B1

|∇u|2,

where we have used the fact

∇⊥ηi · ∇uj ∈ h1(B1) and ‖∇⊥ηi · ∇uj‖h1(B1) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1)

for all i, j = 1, 2, ..., n. To see this, we first extend ηi− 1
|B1|

∫
B1
ηi and uj − 1

|B1|

∫
B1
uj from

B1 to R2 which yields the existence of η̃i, ũj ∈ W 1,2
c (R2) such that

(5.33)

∫
R2

|∇η̃i|2 ≤ C

∫
B1

|∇ηi|2 and

∫
R2

|∇ũj|2 ≤ C

∫
B1

|∇uj|2
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and

(5.34) ∇η̃i = ∇ηi and ∇ũj = ∇uj a.e. in B1 .

Then by the results of [12] we know that

‖∇⊥η̃i · ∇ũj‖H1(R2) : =

∫
R2

sup
φ∈T

sup
t>0

∣∣∣∣∫
Bt(x)

1

t2
φ

(
x− y
t

)(
∇⊥η̃i · ∇ũj

)
(y)dy

∣∣∣∣ dx
≤ C‖∇η̃i‖L2(R2)‖∇ũj‖L2(R2) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1) ,(5.35)

where T = {φ ∈ C∞(R2) : spt(φ) ⊂ B1 and ‖∇φ‖L∞ ≤ 100}. By (5.34), (5.35) and

Definition 5.2.2, it is clear that

‖∇⊥ηi · ∇uj‖h1(B1) = ‖∇⊥η̃i · ∇ũj‖h1(B1)

≤ ‖∇⊥η̃i · ∇ũj‖H1(R2) ≤ C‖∇η‖L2(B1)‖∇u‖L2(B1).(5.36)

This completes the proof of the theorem.

Ware now prepared to present the proof of Proposition 5.2.3. We first recall a regularity

result for boundary value problems in the local Hardy space h1(B1), which can be thought

of as a generalization of Lemma 5.2.1. For a more general version, one can refer [11].

Theorem 5.2.8 (Theorem A.4 of [26], cf. [11]). Suppose f ∈ h1(B1) and f ≥ 0, then

there exists ψ ∈ L∞ ∩W 1,2(B1) which solves the following Dirichlet problem

(5.37)


∆ψ = f in B1 ,

ψ = 0 on ∂B1 .
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Moreover, there exists constant C > 0 such that

(5.38) ‖ψ‖L∞(B1) + ‖∇ψ‖L2(B1) ≤ C ‖f‖h1(B1) .

Lemma 5.2.9. Suppose u is a W 1,2 weakly harmonic map with E(u) ≤ ε sufficiently

small, then there exists a function ψ ∈ L∞ ∩W 1,2
0 (B1) such that ∆ψ = |∇u|2 ≥ 0 with

(5.39) ‖ψ‖L∞(B1) + ‖∇ψ‖L2(B1) ≤ C‖∇u‖2
L2(B1) ≤ Cε .

Proof. This is a direct consequence of Lemma 5.2.7 and Theorem 5.2.8.

Proof. (of Proposition 5.2.3) This proof is taken from [14]. Applying Stokes’ theorem to

div(h2∇ψ) and using Cauchy-Schwarz inequality and Lemma 5.2.9 gives

∫
B1

h2|∇u|2 =

∫
B1

h2∆ψ ≤
∫
B1

|∇h2||∇ψ| ≤ 2‖∇h‖L2

(∫
B1

h2|∇ψ|2
)1/2

.(5.40)

Applying Stokes’ theorem to div(h2ψ∇ψ), using that ∆ψ ≥ 0 and (5.40) gives

(5.41)(∫
B1

h2|∇ψ|2
)
≤
∫
B1

|ψ|(h2∆ψ + |∇h2||∇ψ|) ≤ 4‖ψ‖L∞‖∇h‖L2

(∫
B1

h2|∇ψ|2
)1/2

,

so that

(5.42)

(∫
B1

h2|∇ψ|2
)1/2

≤ 4‖ψ‖L∞‖∇h‖L2 .

Finally, substituting the bound in (5.42) back into (5.40) and combining with (5.39) gives

the proposition.

Proof. (of Theorem 1.0.4) Let h(x) = v(x)− u(x) ∈ W 1,2
0 (B1). Use Stokes’ theorem and
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that u and v are equal on ∂B1 to get

∫
B1

|∇v|2 −
∫
B1

|∇u|2 −
∫
B1

|∇(v − u)|2

= − 2

∫
B1

〈v − u,∆u〉 = 2

∫
B1

〈h,Ω · ∇u〉 ≡ Ψ .(5.43)

Note that there exists a constant C depending only on N so that

(5.44) |(x− y)N | ≤ C|x− y|2 ,

where the superscript N denotes the normal part of a vector (see (C.17) of [14]) . Since

u and v both map to N , we can apply (5.44) to get
∣∣hN ∣∣ ≤ C|h|2 . Therefore, using the

fact that the harmonic map equation (2.9) implies

∆u ⊥ TuN and |∆u| ≤ |∇u|2 sup
N
|A(u)| ,

we have

|Ψ| = 2

∫
B1

〈hN ,Ω · ∇u〉 ≤ C

∫
B1

|h|2|∇u|2

≤ C

∫
B1

|∇h|2
∫
B1

|∇u|2 ≤ Cε

∫
B1

|∇(v − u)|2,(5.45)

where we used Proposition 5.2.3 already.

Combing (5.43) and (5.45), and taking ε sufficiently small so that Cε ≤ 1
2
, we get the

desired energy convexity in Theorem 1.0.4.
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Appendix A

Establishing properties (3) and (4)

of Ψ

To prove property (3) of Ψ, we will use the following equivalent way to construct Ψ(γ) :

(A1) Follow Step 1 to get γe.

(B1) Reparametrize γe (fixing the image of x0) to get the constant speed curve γ̃e. This

reparametrization moves the points xj to new points x̃j (i.e., γe(xj) = γ̃e(x̃j)).

(A2) Do linear replacement on the odd x̃j intervals to get γ̃o.

(B2) Reparametrize γ̃o (fixing the image of x0) to get the constant speed curve Ψ(γ).

One sees easily that this gives the same curve since γ̃o is just a reparametrization of γo.

We also see that each of the four steps is energy non-increasing¶. Thus property (3)

follows from the triangle inequality once we bound dist(γ, γe) and dist(γe, γ̃e) in terms of

the decrease in length (as well as the analogs for steps (A2) and (B2)).

The bound on dist(γ, γe) follows directly from the next corollary of Theorem 1.0.2 .

¶This is obvious for the linear replacements, since linear maps minimize energy. It follows from (4.11)
for the reparametrizations, since for a curve σ : S1 → X we have Length2(σ) ≤ 2πEnergy(σ) , with
equality if and only if its speed is a constant = Length(σ)/(2π) almost everywhere.
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Corollary A.0.10. There exists C so that if I is an interval of length at most ρ/L,

σ1 : I → X is a curve with Lipschitz bound L, and σ2 : I → X is the minimizing geodesic

with the same endpoints, then

dist2(σ1, σ2) ≤ C (Eσ1 − Eσ2) .

Proof. Let Σ = I ⊂ S1 and note that w = σ1+σ2
2

has the same end points as σ1 and σ2.

Since d (σ1, σ2) ∈ W 1,2
0 (I,R) (see theorem 1.12.2 of [25]) and from Theorem 1.0.2, the

Poincaré inequality and (4.4) imply

dist2(σ1, σ2) ≤ C(I)

∫
I

|∇d (σ1, σ2)|2dµ ≤ C (Eσ1 − Eσ2) ,

where we used the minimality of σ2 .

Applying Corollary A.0.10 on each of L2 intervals in step (A1), we get that

(A.1) dist2(γ, γe) ≤ C (Eγ − Eγe) ≤ C

2π

(
Length2(γ)− Length2(Ψ(γ))

)
.

This gives the desired bound on dist(γ, γe) since Length(Ψ(γ)) ≤ ρL2.

To bound dist(γe, γ̃e), we will use that γe is just the composition γ̃e ◦ P , where P :

S1 → S1 is a monotone piecewise linear map‖ and let L be its Lipschitz bound as well.

Using that the (piecewise constant) speed of γe is |γ′e| = |(γ̃e ◦ P )′| = |γ̃′e ◦ P | · |P ′| ≤ L2

(Note: |γ̃′e ◦ P |(x) denotes the speed of γ̃e at point P (x)) and the (constant) speed of

γ̃e = |γ̃′e| = Length(γ̃e)/(2π) ≤ L (away from the breaks), and also that the integral of

‖The map P is Lipschitz, but the inverse map P−1 may not be if γe is constant on an interval.
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P ′ is 2π, we have

∫
S1

(P ′ − 1)
2

=

∫
S1

(P ′)2 − 2π =

∫
S1

(
|γ′e|
|γ̃′e ◦ P |

)2

− 2π =
4π2

Length2(γ̃e)

∫
S1

|γ′e|2 − 2π

= 2π
Energy(γe)− Energy(γ̃e)

Energy(γ̃e)
≤ 2π

Energy(γ)− Energy(Ψ(γ))

Energy(Ψ(γ))
.(A.2)

Now divide S1 into two sets, S1 and S2, where S1 is the set of points within distance

(π
∫
S1 |P ′ − 1|2)1/2 of a break point for γ̃e. Since P (x0) = x0, we have |P (x) − x| ≤

(π
∫
S1 |P ′− 1|2)1/2. Since γe and γ̃e agree at x0 = x2L2 , the Wirtinger inequality∗∗ bounds

dist2(γe, γ̃e) in terms of

(A.3)

∫
S1

|∇d (γ̃e ◦ P, γ̃e)|2 ≤
∫
S1

(
| (γ̃e ◦ P )′|+ | γ̃′e |

)2
+

∫
S2

|∇d (γ̃e ◦ P, γ̃e)|2 ,

where we used that the fact (3) in the proof of Lemma 4.1.2 (see last part of Appendix

C) implies

(A.4)

∫
S1

|∇d (γ̃e ◦ P, γ̃e)|2 ≤
∫
S1

(| (γ̃e ◦ P )′|+ | γ̃′e |)
2
.

We will bound both terms on the right hand side of (A.3) in terms of
∫
S1 |P ′− 1|2 and

then appeal to (A.2) . To bound the first term, we have

(A.5)

∫
S1

(
| (γ̃e ◦ P )′|+ | γ̃′e |

)2 ≤ (L2 + L)2 Length(S1) ≤ 8L6

(
π

∫
S1

|P ′ − 1|2
)1/2

.

We see that if (π
∫
S1 |P ′ − 1|2)1/2 ≥ π

2L2 =
|xj−xj+1|

2
, we are done since in this case

S2 = ∅ .

On the other hand, suppose (π
∫
S1 |P ′−1|2)1/2 < π

2L2 ; note that if x ∈ S2, then γ̃e(x)

and γ̃e ◦P (x) stay within the ρ-neighborhood between two break points (although γ̃e and

∗∗The Wirtinger inequality is just the usual Poincaré inequality which bounds the L2 norm in terms of

the L2 norm of the derivative; i.e.,
∫ 2π

0
f2dt ≤ 4

∫ 2π

0
(f ′)2dt provided f(0) = f(2π) = 0.
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γ̃e ◦ P might not have the same endpoints) and |γ̃′e ◦ P | = |γ̃′e| ≤ L in this neighborhood.

Thus, we can bound the second term by applying Theorem 1.0.2. Namely, by summing

up the integral over each piece of S2, we have

1

4

∫
S2

|∇d (γ̃e ◦ P, γ̃e)|2

≤ Energy ((γ̃e ◦ P )|S2) + Energy (γ̃e|S2)− 2Energy

((
γ̃e ◦ P + γ̃e

2

) ∣∣
S2

)
=

∫
S2

|(γ̃′e ◦ P )P ′|2 +

∫
S2

|γ̃′e|2 − 2

∫
S2

(
|(γ̃′e ◦ P )P ′|+ |γ̃′e|

2

)2

=

∫
S2

(|γ̃′e ◦ P | · |P ′| − |γ̃′e|)2

2
≤ L2

2

∫
S1

|P ′ − 1|2 ,(A.6)

completing the proof of property (3).

To prove property (4) of Ψ, suppose it is not true, namely, there exist ε > 0 and a

sequence γj ∈ Λ with Energy(Ψ(γj)) ≥ Energy(γj) − 1/j and dist(γj, G) ≥ ε > 0; note

that the second condition implies a positive lower bound for Energy(γj). Observe next

that the space Λ is compact†† and, thus, a subsequence of the γj’s must converge to some

γ ∈ Λ. Since property (3) implies that dist(γj,Ψ(γj)) → 0, the Ψ(γj)’s also converge to

γ. The continuity of Ψ, i.e., property (2) of Ψ, then implies that Ψ(γ) = γ. However, this

implies that γ ∈ G since the only fixed points of Ψ are (possibly self-intersected) closed

geodesics. This last fact follows immediately from Corollary A.0.10 and (A.2). However,

this would contradict that the γj’s remain a fixed distance from any such closed geodesic,

completing the proof of (4).

††Compactness of Λ follows since σ ∈ Λ depends continuously on the images of the L2 break points in
the compact metric space X.
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Appendix B

Continuity of Ψ

Lemma B.0.11. Let γ : S1 → (X, d ) be a W 1,2 map with Energy(γ) ≤ ρL. If γe and γ̃e

are given by applying (A1) and (B1) to γ, then the map γ → γ̃e is continuous from W 1,2

to Λ equipped with the W 1,2 norm as in Remark 2.2.2.

Proof. It follows from (4.11) and the energy bound that d (γ(x2j), γ(x2j+2)) ≤ ρ for each

j, and thus we can apply step (A1). Now suppose that γ1 and γ2 are non-constant curves

in Λ (continuity at the constant maps is obvious). For i = 1, 2 and j = 0, 1, 2, ..., L2−1, let

aij = d (γi(x2j), γ
i(x2j+2)). Let Si = 1

2π

∑L2−1
j=0 aij be the speed of γ̃ie, so that |(γ̃ie)′| = Si

except at the L2 break points. Since, by Remark 2.2.2, W 1,2 close curves are also C0 close,

it follows that the points γe(x2j) = γ(x2j) (identity map) are continuous with respect to the

W 1,2 norm. Thus the aij’s are continuous functions of γi, and so is each Si. Moreover, the

local energy convexity in Theorem 1.0.2 implies that the γie’s are indeed W 1,2 close on each

interval [x2j, x2j+2] if the γi’s are (since γie
∣∣
[x2j ,x2j+2]

’s also stay within a ρ-neighborhood

and the right-hand side of the energy convexity for them is just a continuous function of

Si’s). Thus, we have shown γ → γe is continuous.

To show γe → γ̃e is also continuous, it suffices to show that the γ̃ie’s are close when the

γie’s are. Since the point x0 = x2L2 is fixed under the reparametrization, this will follow

from applying Wirtinger’s inequality to d (γ̃1
e , γ̃

2
e ) − d (γ̃1

e (x0), γ̃2
e (x0)) once we show that
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∫
S1 |∇d (γ̃1

e , γ̃
2
e )|2 can be made small.

The piecewise linear curve γ̃ie is linear on the intervals

(B.1) I ij =

[
1

Si

∑
`<j

ai` ,
1

Si

∑
`≤j

ai`

]
.

Set Ij = I1
j ∩ I2

j . Observe first that since the intervals I ij in (B.1) depend continuously on

γie, the measure of the complement S1 \
[
∪L2−1
j=0 Ij

]
can be made small, so that

(B.2)

∫
S1\[∪Ij ]

∣∣∇d (γ̃1
e , γ̃

2
e )
∣∣2 ≤ ∫

S1\[∪Ij ]

(
|(γ̃1

e )
′|+ |(γ̃2

e )
′|
)2 ≤ 4L2 Length

(
S1 \ [∪Ij]

)
can also be made small. We will divide the Ij’s into two groups, depending on the size

of a1
j . Fix some ε > 0 and suppose first that a1

j < ε; by continuity, we can assume that

a2
j < 2ε. For such j, we get

(B.3)

∫
Ij

∣∣∇d (γ̃1
e , γ̃

2
e )
∣∣2 ≤ 2

∫
I1j

∣∣(γ̃1
e )
′∣∣2 + 2

∫
I2j

∣∣(γ̃2
e )
′∣∣2 ≤ 2L

(
a1
j + a2

j

)
≤ 6 ε L .

Since there are at most L2 breaks, summing over these intervals contributes at most 6ε L3.

On the other hand, suppose now a1
j ≥ ε; by continuity we can assume that a2

j ≥ ε/2. In

this case, γ̃ie can be written on Ij as the composition γie ◦P i
j where

∣∣(P i
j )
′
∣∣ = 2π Si/(L2aij).

Furthermore, P 1
j and P 2

j both map Ij into [x2j, x2j+2] and arguing as (A.6) we have

1

4

∫
Ij

∣∣∇d (γ̃1
e , γ̃

2
e )
∣∣2 =

1

4

∫
Ij

∣∣∇d (γ1
e ◦ P 1

j , γ
2
e ◦ P 2

j )
∣∣2

≤ 1

2

∫
Ij

(
|(γ1

e )
′| · |(P 1

j )′| − |(γ2
e )
′| · |(P 2

j )′|
)2
.

This can be made small since the speed
∣∣(P i

j )
′
∣∣ is continuous in γi and the (piecewise con-

stant) speeds |(γie)′|’s are close when γie’s are. Therefore, the integral over these intervals

can also be made small since there are at most L2 of them.
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Appendix C

Proof of Lemma 4.1.2

If (X, d ) has curvature bounded from above by K > 0 in the sense of Alexandrov, then

(X,
√
Kd√
ε

) has curvature bounded from above by ε, so that the local distance convexity in

Lemma 4.1.2 is homogenous w.r.t. K . Hence, it suffices to assume the metric space has

curvature bounded from above by ε which is sufficiently small.

Suppose nowK > 0 is sufficiently small. Let dSK (A,B) = a, dSK (C,D) = b, dSK (A,D) =

x, dSK (B,C) = y, dSK (E,F ) = g, dSK (E,D) = c, dSK (A,F ) = d, dSK (B,F ) = e and

dSK (E,C) = f (see Figure 4.1). In the rest of this section we aim to prove the following

that gives Lemma 4.1.2: for a, b, x, y small enough (i.e., under small region assumption),

we have the following inequality:

(C.1)
1

4
(a− b)2 ≤ x2 + y2 − 2g2 .

Based on Lemma 4.1.1, we first provide three key observations.

Lemma C.0.12. For x, y sufficiently small and some α, β ∈ R , we have:

W (x2 + y2 − 2g2) = Sx2 + Ty2 + U + V −Rg2 +O(x2g2) +O(y2g2) +O(g4 + x4 + y4),
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where

(1) W = k4

6
(2 + cos k

2
a+ cos k

2
b)
(
c2 + d2 + e2 + f 2 − 1

4
(a2 + b2)− 2αxg − 2βyg

)
+ 2k2(cos k

2
a+ cos k

2
b)− k2

2
(cos kc+ cos kd+ cos ke+ cos kf) ,

(2) R = k4

2
(2 + cos k

2
a+ cos k

2
b)
(
c2 + d2 + e2 + f 2 − 1

3
(a2 + b2)− 2αxg − 2βyg

)
+ 6k2(cos k

2
a+ cos k

2
b)− 2k2(cos kc+ cos kd+ cos ke+ cos kf) ,

(3) S = k4

6
(2+cos k

2
a+cos k

2
b)(e2 +f 2−2βyg)+k2(cos k

2
a+cos k

2
b)+ k2

2
(cos kc+cos kd−

cos ke− cos kf) ,

(4) T = k4

6
(2+cos k

2
a+cos k

2
b)(c2 +d2−2αxg)+k2(cos k

2
a+cos k

2
b)− k2

2
(cos kc+cos kd−

cos ke− cos kf) ,

(5) U = k2(2 + cos k
2
a+ cos k

2
b)
(
c2 + d2 + e2 + f 2 − 1

2
(a2 + b2)− 2αxg − 2βyg

)
,

(6) V = 8(cos k
2
a+ 1)(cos k

2
b+ 1)− 4(cos kc+ 1)(cos kd+ 1)− 4(cos ke+ 1)(cos kf + 1) .

Proof. Apply Lemma 4.1.1 to {A,E, F,D}, we can choose K sufficiently small to be
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determined later so that for some α (with k =
√
K, |α| sufficiently small)

α + (
1

4
a2 +

1

4
b2 − c2 − d2)

/
(2xg) = cosqK(

−−→
AD,

−→
EF ) = cosqK(

−−→
DA,

−→
FE)

(C.2)

=
cos k

2
a+ cos kg cos kx cos k

2
b+ cos k

2
a cos k

2
b− cos kg cos kd− cos kx cos kc− cos kc cos kd

(1 + cos k
2
b) sin kx sin kg

(C.3)

=
cos k

2
b+ cos kg cos kx cos k

2
a+ cos k

2
a cos k

2
b− cos kx cos kd− cos kg cos kc− cos kc cos kd

(1 + cos k
2
a) sin kx sin kg

.

(C.4)

By Taylor series expansions for sine and cosine (in x and g) and using (C.2)-(C.3), we

have

[
1

4
(a2 + b2)− c2 − d2 + 2αxg

]
(1 + cos

k

2
b)(kx− 1

6
(kx)3 +O(x5))(kg − 1

6
(kg)3 +O(g5))

=2xg
[
(cos

k

2
a)(1 + cos

k

2
b) + (cos

k

2
b)(1− 1

2
(kx)2 +

1

24
(kx)4 +O(x6))(1− 1

2
(kg)2 +

1

24
(kg)4

+O(g6))− (cos kd)(1− 1

2
(kg)2 +

1

24
(kg)4 +O(g6))− (cos kc)(1− 1

2
(kx)2 +

1

24
(kx)4

+O(x6))− cos kc cos kd
]
.

Combining the terms in x2 and g2 yields

[
k4

6
(1 + cos

k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg)− k2 cos kd+ k2 cos

k

2
b

]
g2

=−
[
k4

6
(1 + cos

k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg)− k2 cos kc+ k2 cos

k

2
b

]
x2

+k2(1 + cos
k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg) + 2(1 + cos

k

2
a)(1 + cos

k

2
b)

−2(1 + cos kc)(1 + cos kd) +O(x2g2) +O(x4 + g4) .
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Similarly, using (C.2)-(C.4), we have

[
k4

6
(1 + cos

k

2
a)(c2 + d2 − 1

4
(a2 + b2)− 2αxg)− k2 cos kc+ k2 cos

k

2
a

]
g2

=−
[
k4

6
(1 + cos

k

2
a)(c2 + d2 − 1

4
(a2 + b2)− 2αxg)− k2 cos kd+ k2 cos

k

2
a

]
x2

+k2(1 + cos
k

2
a)(c2 + d2 − 1

4
(a2 + b2)− 2αxg) + 2(1 + cos

k

2
a)(1 + cos

k

2
b)

−2(1 + cos kc)(1 + cos kd) +O(x2g2) +O(x4 + g4) .

Therefore,

[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg) + k2(cos

k

2
a+ cos

k

2
b

− cos kc− cos kd)
]
g2

=−
[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg) + k2(cos

k

2
a+ cos

k

2
b

− cos kc− cos kd)
]
x2 + k2(2 + cos

k

2
a+ cos

k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg)

+4(1 + cos
k

2
a)(1 + cos

k

2
b)− 4(1 + cos kc)(1 + cos kd) +O(x2g2) +O(x4 + g4) .

Similarly, in {B,E, F, C} we have for some β (with |β| sufficiently small)

[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(e2 + f 2 − 1

4
(a2 + b2)− 2βyg) + k2(cos

k

2
a+ cos

k

2
b

− cos ke− cos kf)
]
g2

=−
[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(e2 + f 2 − 1

4
(a2 + b2)− 2βyg) + k2(cos

k

2
a+ cos

k

2
b

− cos ke− cos kf)
]
y2 + k2(2 + cos

k

2
a+ cos

k

2
b)(e2 + f 2 − 1

4
(a2 + b2)− 2βyg)

+4(1 + cos
k

2
a)(1 + cos

k

2
b)− 4(1 + cos ke)(1 + cos kf) +O(y2g2) +O(y4 + g4) .

60



Adding up the above two equations then yields

[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(c2 + d2 + e2 + f 2 − 1

2
(a2 + b2)− 2αxg − 2βyg)

+k2(2 cos
k

2
a+ 2 cos

k

2
b− cos kc− cos kd− cos ke− cos kf)

]
g2

=−
[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(c2 + d2 − 1

4
(a2 + b2)− 2αxg) + k2(cos

k

2
a+ cos

k

2
b

− cos kc− cos kd)
]
x2

−
[k4

6
(2 + cos

k

2
a+ cos

k

2
b)(e2 + f 2 − 1

4
(a2 + b2)− 2βyg) + k2(cos

k

2
a+ cos

k

2
b

− cos ke− cos kf)
]
y2

+k2(2 + cos
k

2
a+ cos

k

2
b)(c2 + d2 + e2 + f 2 − 1

2
(a2 + b2)− 2αxg − 2βyg)

+8(1 + cos
k

2
a)(1 + cos

k

2
b)− 4(1 + cos kc)(1 + cos kd)− 4(1 + cos ke)(1 + cos kf)

+O(x2g2) +O(y2g2) +O(g4 + x4 + y4) .

The lemma follows immediately by rearranging the terms above and using the definitions

of W,R, S, T, U .

Remark C.0.13. For fixed a, as x, y → 0 (and thus g → 0, b→ a, and c, d, e, f → 1
2
a), we

have S
W
→ 1 and T

W
→ 1.

Lemma C.0.14. For a, b, x, y, k small enough, we have

U −Rg2 ≥ k2

2
g2 − 4k2(2|α|xg + 2|β|yg) .

Proof. Let | · | denote the Euclidean distance in R3 and ∠EF ′D = θ (see Figure C.1).

Then

|FF ′| = 1

k
(1− cos

k

2
b), |FF ′′| = 1

k
(1− cos kg) =

2

k
sin2

(
k

2
g

)
, |EF ′′| = 1

k
sin kg,
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and

|EF ′|2 = |F ′F ′′|2 + |EF ′′|2 =
1

k2

(
1− cos

k

2
b− 2 sin2

(
k

2
g

))2

+
1

k2
sin2(kg).

Thus,

|CE|2 + |DE|2 − (|CF |2 + |DF |2)

= (|CF ′|+ |EF ′| cos θ)2 + (|EF ′| sin θ)2

+(|CF ′| − |EF ′| cos θ)2 + (|EF ′| sin θ)2 − 2|CF ′|2 − 2|FF ′|2

= 2(|EF ′|2 − |FF ′|2)(C.5)

=
2

k2

[(
1− cos

k

2
b− 2 sin2

(
k

2
g

))2

+ sin2(kg)−
(

1− cos
k

2
b

)2
]

=
2

k2

[
sin2(kg)− 4

(
1− cos

k

2
b

)
sin2

(
k

2
g

)
+ 4 sin4

(
k

2
g

)]
= 2

(
cos

k

2
b

)
g2 +O(g4) >

(
cos

k

2
b

)
g2 ,

for b, g small, which also implies |EF ′| ≥ |FF ′| .

Similarly, for n ≥ 2,

|CE|2n + |DE|2n − (|CF |2n + |DF |2n)

=
[
(|CF ′|+ |EF ′| cos θ)2 + (|EF ′| sin θ)2

]n
+
[
(|CF ′| − |EF ′| cos θ)2 + (|EF ′| sin θ)2

]n − 2
[
|CF ′|2 + |FF ′|2

]n
(C.6)

≥ 2
[
(|CF ′|2 + |EF ′|2)n − (|CF ′|2 + |FF ′|2)n

]
≥ 0.

Now, note that

c =
2

k
arcsin

(
k|DE|

2

)
, f =

2

k
arcsin

(
k|CE|

2

)
,
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F ′

g
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O
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F ′′

F
E
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FF ′ = 1− cos(b/2), FF ′′ = 2 sin2(g/2), EF ′′ = sin(g)

Figure C.1: Angle ∠EF ′D

and

1

2
b =

2

k
arcsin

(
k|CF |

2

)
=

2

k
arcsin

(
k|DF |

2

)
.

The Taylor series expansion

(
2 arcsin

(x
2

))2

= x2 +
∑
n=2

Cnx
2n (Cn ≥ 0)

and (C.5), (C.6) then imply: for x, y small enough (thus g is small enough) ,

c2 + f 2 − 1

2
b2

= |CE|2 + |DE|2 − (|CF |2 + |DF |2) +
∑
n=2

Cnk
2n−2

(
|CE|2n + |DE|2n − (|CF |2n + |DF |2n)

)
>

(
cos

k

2
b

)
g2 .

Similarly, d2 + e2 − 1
2
a2 > (cos k

2
a) g2 .

Therefore,

(C.7) c2 + d2 + e2 + f 2 − 1

2
(a2 + b2) >

(
cos

k

2
a+ cos

k

2
b

)
g2.

Recall the facts that as x, y → 0
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(1) c2 + d2 + e2 + f 2 − 1
3
(a2 + b2) → 1

6
(a2 + b2) ,

(2) cos kc+ cos kd+ cos ke+ cos kf → 2(cos k
2
a+ cos k

2
b) .

One observes that in a small geodesic ball Bτ (thus a, b, x, y are small enough), we have:

(1) cos k
2
a+ cos k

2
b > 15

8
,

(2) c2 + d2 + e2 + f 2 − 1
3
(a2 + b2)− 2αxg − 2βyg < 1

2
,

(3) cos kc+ cos kd+ cos ke+ cos kf > 3
2

(
cos k

2
a+ cos k

2
b
)
.

Therefore, using (C.7) and the definition of R, we obtain that for a, b, x, y small and k ≤ 1

:

U −Rg2

= k2

(
2 + cos

k

2
a+ cos

k

2
b

)(
c2 + d2 + e2 + f 2 − 1

2
(a2 + b2)− 2αxg − 2βyg

)
−Rg2

≥ 15k2

8

(
2 + cos

k

2
a+ cos

k

2
b

)
g2 −

(
k4

4

(
2 + cos

k

2
a+ cos

k

2
b

)
+ 3k2

(
cos

k

2
a+ cos

k

2
b

))
g2

−k2

(
2 + cos

k

2
a+ cos

k

2
b

)
(2αxg + 2βyg)

≥k2

(
13

4
− 11

8

(
cos

k

2
a+ cos

k

2
b

))
g2 − 4k2(2|α|xg + 2|β|yg)

≥ k
2

2
g2 − 4k2(2|α|xg + 2|β|yg) .

Lemma C.0.15. V ≥ 0 for a, b, x, y small enough.

Proof. By the triangle inequality, we know 1
2
(a+ b) < c+ d < 1

2
(a+ b) +x+ g , 1

2
(a+ b) <

e+ f < 1
2
(a+ b) + y+ g , c+ f > b , and d+ e > a . If c ≥ 1

2
b , f ≥ 1

2
b and d ≥ 1

2
a , e ≥ 1

2
a

then one easily sees V ≥ 0. Now without loss of generality we suppose that there exists

ς > σ > 0 such that

c =
1

2
b− σ, d =

1

2
a+ ς, e >

1

2
a− ς, f >

1

2
b+ σ.
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Assume now k = 1, then for a, b small:

V =8(cos
1

2
a+ 1)(cos

1

2
b+ 1)− 4(cos c+ 1)(cos d+ 1)− 4(cos e+ 1)(cos f + 1)

=8 cos
1

2
b− 4(cos c+ cos f) + 8 cos

1

2
a− 4(cos d+ cos e) + 8(cos

1

2
a)(cos

1

2
b)

−4(cos c)(cos d)− 4(cos e)(cos f)

≥8 cos
1

2
b− 4(cos(

1

2
b− σ) + cos(

1

2
b+ σ)) + 8 cos

1

2
a− 4(cos(

1

2
a+ ς) + cos(

1

2
a− ς))

+8(cos
1

2
a)(cos

1

2
b)− 4

[
cos(

1

2
b− σ) cos(

1

2
a+ ς) + cos(

1

2
b+ σ) cos(

1

2
a− ς)

]
=8(1− cosσ) cos

1

2
b+ 8(1− cos ς) cos

1

2
a+ 4(cos

a+ b

2
+ cos

a− b
2

)

−2

[
cos(

a+ b

2
+ ς − σ) + cos(

b− a
2

+ ς + σ) + cos(
a+ b

2
− ς + σ) + cos(

b− a
2
− ς − σ)

]
≥4(1− cos(ς − σ)) cos

a+ b

2
+ 4(1− cos(ς + σ)) cos

b− a
2
≥ 0 .

One sees that the above argument works for all k > 0, completing the proof.

Remark C.0.16. From the proofs of these lemmas we also see that for a, b, x, y small

enough, W,S, T,R > 0.

Proof. (of Lemma 4.1.2) Combining previous lemmas we get

W (x2+y2−2g2) ≥ Sx2+Ty2+
k2

2
g2−4k2(2|α|xg+2|β|yg)+O(x2g2)+O(y2g2)+O(g4+x4+y4).

Now using nothing but the facts that

1. 0 < k2 ≤ W ≤ 4k2 for a, b, x, y, k sufficiently small ,

2. S
W
→ 1 and T

W
→ 1 uniformly as x, y → 0 (see Remark C.0.13) ,

3. |a− b| ≤ x+ y,
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we obtain for a, b, x, y sufficiently small:

x2 + y2 − 2g2 ≥ 3

4
(x2 + y2) +

1

16
g2 − 4(2|α|xg + 2|β|yg) .(C.8)

Now choose K sufficiently small so that max{|α|, |β|} ≤ 1
128

and thus by Cauchy-Schwarz

inequality

4(2|α|xg + 2|β|yg) ≤ 1

16
(x2 + y2 + g2) ,

and therefore

x2 + y2 − 2g2 ≥ 1

2
(x2 + y2) ≥ 1

4
(x+ y)2 ≥ 1

4
(a− b)2 ,

completing the proof of Lemma 4.1.2.

66



Bibliography

[1] A.D. Alexandrov, A theorem on triangles in a metric space and some of its applications,

Trudy Mat.Inst.Steklova 38 (1951), 5–23.
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