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Abstract

We prove a formula for the expected euler characteristic of excursion sets of random

sections of powers of an ample bundle (L, h), where h is a Hermitian metric, over a

Kähler manifold (M,ω). We then prove that the critical radius of the Kodaira embedding

ΦN : M → CPn given by an orthonormal basis of H0(M,LN) is bounded below when

N →∞. This result also gives conditions about when the preceding formula is valid.

Readers: Bernard Shiffman(Advisor), Vyacheslav Shokurov.
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Chapter 1

Introduction

Random complex geometry, as a branch of mathematics, can be considered as a sub-

branch of two different fields. On one hand, it is a branch of random real geometry.

Because complex structure is much more subtle, in the setting of complex manifolds, we

can expect finer or more explicit formulas or conclusions. On the other hand, it is a

branch of complex geometry that adopts ideas from statistics. With ideas, we can get

new invariants or characterizations of complex manifolds or complex vector bundles.

Let M be a Kähler manifold of dimension m. And let L → M be an ample line

bundle with positively curved metric h. Take the induced Kähler form ω = i
2
Θh on M .

We denote by LN the Nth tensor power L⊗N of L. Take the induced metric on LN ,

by abuse of notation, also denoted by h. This induces a Hermitian inner product in

H0(M,LN) which denotes the space of holomorphic sections of LN , given by

< σ1, σ2 >=
1

m!

∫
M

h(σ1, σ2)ωm

In particular, the L2 norm of a section in s ∈ H0(M,LN) is given by

|s|2h =
1

m!

∫
M

|s(z)|2hωm
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We consider random sections in the unit sphere SNL in H0(M,LN) with probability mea-

sure given by the spherical volume normalized so that V ol(SNL ) = 1. For s ∈ SNL , the

zero locus Zs = {z ∈ M |s(z) = 0} is very well studied in [12, 13, 14, 16]. It is also

interesting to understand the excursion sets {z ∈ M ||s(z)|h > u}. In particular, what is

Eχ(|s(z)|h > u) =
∫
SN
L
χ(|s(z)|h > u)ds, the expected Euler characteristic of the excur-

sion sets, and what is the probability that the excursion set is non-empty? Here and in

the following we denote by χ(S) the Euler characteristic of a topological space S.

It turned out that it is more natural to normalize the excursion sets to be of the form

{ |s(z)|h√
ΠN (z,z)

> u}, where ΠN(z, z) is the Szegö kernel of H0(M,LN). The Szegö kernel is in

general not constant but of the form

ΠN(z, z) =
Nm

πm
(1 +O(

1

N
))

([5, 18, 19]), . By the definition of ΠN(z, z), we always have |s(z)|h√
ΠN (z,z)

≤ 1. In fact

sup|s|h=1 |s(z)|2h = ΠN(z, z)( [4] ). Therefore when u > 1, the excursion sets are empty.

In this paper, we will mainly prove two theorems.

The first theorem is interesting in itself. Also it shows that in order to have a nice

formula for the expected Euler characteristic we do not need to make u too close to 1.

Theorem 1.0.1. Let ΦN : M → CPn be an embedding given by an orthonormal basis of

H0(M,LN). Let rN be the critical radius of ΦN(M) considered as a submanifold of CPn.

Then there exists a constant ρ0(L, h) > 0 such that rN > ρ0(L, h) for all positive integer

N .

The proof of this theorem depends mainly on the approximation of the normalized

Szegö kernel defined and proved in [12]. The idea is based on the sense that the information

of the embedding ΦN : M → CPn is totally contained in the normalized Szegö kernel.

The second one is to answer the question about expected Euler characteristic of the

2



normalized excursion set.

Theorem 1.0.2. Let ΦN : M → CPn be an embedding given by an orthonormal basis of

H0(M,LN). Then there exists ρ0 > 0 independent of N , such that for 0 ≤ ρ < ρ0, the set

{z ∈M | |s(z)|h√∏
N (z,z)

> cos ρ} is either empty or contractible, therefore

Eχ(
|s(z)|h√∏
N(z, z)

> cos ρ) = Prob.{sup
z∈M

|s(z)|h√∏
N(z, z)

> cos ρ}

Hence the following formula

(1.1) Eχ(
|s(z)|h√∏
N(z, z)

> cos ρ) =

∫
M

c(M)(1−Nc1(L)) ∧ (Nc1(L) cos2 ρ+ sin2 ρ)n

Where c1(L) is the first Chern class of L and c(M)(1−Nc1(L)) is the Chern polynomial

evaluated at 1−Nc1(L)

When M is a Riemann surface, we have a more explicit formula

Theorem 1.0.3. Let M be a Riemann surface. Then, with the notations above, there

exists ρ0 > 0 such that for u > cos ρN and a random section s(z) ∈ H0(M,LN) the

expected Euler characteristic

Eχ(
s(z)√

ΠN(z, z)
> u) = (1− u2)(n−1)[N2(degL)2u2(1.2)

− N degL(gu2 − 1 + u2) + (2− 2g)(1− u2)]

for N deg(L) > 2g − 2, where n = N deg(L)− g

When M is higher dimensional, we get an estimate

Theorem 1.0.4. With the notations above, for m ≥ 1 and for N big enough

Eχ(
s(z)√

ΠN(z, z)
> u) = (1 + o(1))nm+1(1− u2)n−mu2m
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where

n = dimH0(M,LN)− 1 =

∫
M
cm1 (L)

m!
Nm +O(Nm−1)

where the second equality follows from the asymptotic Riemann-Roch formula.

Our results are complementary to results on excursion probabilities for Gaussian fields

(see [17, 11] ) where the probability of large L2 norms plays a role. Here, we consider only

sections with L2 norm 1.

Notice that by our estimation, Eχ( s(z)√
ΠN (z,z)

> u) decays to 0 very rapidly (expo-

nentially) as N goes to ∞. It is helpful to compare this observation with the following

theorem from [15], which we state using our notations

Theorem 1.0.5. (Theorem 1.1, [15])Let νN denote the measure on SNL induced by the

metric ds. For any integer k, there exist constants C > 0 depending on k, such that

νN{sN ∈ SNL : sup
z∈M
|sN(z)|h > C

√
logN} < O(

1

Nk
)

Normalizing the above formula using
√

ΠN(z, z), and by the estimation of
√

ΠN(z, z),

we have

νN{sN ∈ SNL : sup
z∈M

|sN(z)|h√
ΠN(z, z)

>
C
√

logN

Nm/2
} < O(

1

Nk
)

the term C
√

logN
Nm is very small when N is big. But the estimation we made requires u

close to 1, so in this sense our estimation is weaker, although it is more explicit.

It should be mentioned here that in the proof of Theorem 1.0.2, we make ρ0 small

enough so that the Euler characteristic of an excursion set is either 1 or 0. The proof of

Theorem 1.0.2 uses the volume of tubes formula of Gray ([8][9]), which does not hold past

the critical radius. For this case, one would need different methods. A related problem is

to find the expected Euler characteristic for excursion sets (of any height) for Gaussian

random holomorphic sections. Methods of Adler-Taylor ([17]) and [6][7] could be used for
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this problem, but this requires extensive computations.

This thesis is organized as follows: first in chapter 2 we introduce the definition of

Szegö Kernel and state several results from [14],[12],and [19]. In chapter 3 we prove the

formula in theorem 1.0.2. In chapter 4 we will analyze the critical radius, by using the

results stated in chapter 2 first in the case of Riemann surfaces and then generalizing to

the higher dimensional case.
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Chapter 2

Background

2.1 Szegö Kernel

We will follow the notations and arguments in [12] and [14]

Let L → M be a positive line bundle over a compact Kähler manifold M . The

associated principle sphere bundle is defined as follows. Let π : L∗ → M be the dual

bundle to L with dual metric h∗. And put X = {v ∈ L∗ :‖ v ‖h∗= 1}. Let rθx = eiθx(x ∈

X) denote the S1 action on X. Now X is the boundary of a pseudoconvex domain. Anti-

holomorphic tangent vectors on X are the anti-holomorphic tangent vectors of L−1 that

are tangent to X. Derivatives by vector fields with anti-holomorphic tangent vectors are

called CR-derivatives. A smooth function on X that vanishes under CR-derivatives is

called CR-holomorphic.

Now any section s ∈ H0(M,LN) is lifted to an equivariant function ŝ on the circle

bundle π : X →M with respect to h by the rule

ŝ(λ) = (λ⊗N , s(z)), λ ∈ Xz

where λ⊗N = λ⊗· · ·⊗λ. Notice that ŝ satisfies ŝ(eiθx) = eNiθŝ(x). We denote by H2
N(X)
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the space of CR-holomorphic functions satisfying this homogeneous property. The Szegö

projector is the orthogonal projection L2(X) → H2
N(X). Let (sNj ) ⊂ H0(M,LN) be an

orthonormal basis. The Szegö kernel, which gives the Szegö projector, is given by

ΠN(x, y) =
n∑
i=0

ŝNj (x)ŝNj (y) (x, y ∈ X)

The normalized Szegö kernel is defined as

PN(z, w) :=
|
∏

N(z, w)|∏
N(z, z)1/2

∏
N(w,w)1/2

where

(2.1) |ΠN(z, w)| := |ΠN(x, y)|, z = π(x), w = π(y) ∈M.

This is independent of the choice of x and y, since for different choices of preimages,

ΠN(x, y) would only be different by some eiθ.

On the diagonal we have

ΠN(z, z) =
n∑
i=0

‖ sNj (z) ‖2
h, z ∈M

The following theorems were proved in [19]

Theorem 2.1.1 ([19]). Let M be a compact complex manifold of dimension m(over C)

and let (L, h)→M be a positive hermitian holomorphic line bundle. Let g be the Kähler

metric on M corresponding to the Kähler form ωg := πRic(h). For each N ∈ N, h

induces a hermitian metric hN on L⊗N . Let {SN0 , · · · , SNdN} be any orthonormal basis

of H0(M,L⊗N), with respect to the inner product < s1, s2 >hN =
∫
M
hN(s1(z), s2(z))dVg.

Here, dVg = 1
m!
ωmg is the volume form of g. Then there exists a complete asymptotic
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expansion:
dN∑
i=0

‖ SNi (z) ‖2
hN
∼ a0N

m + a1(z)Nm−1 + · · ·

for certain smooth coefficients aj(z) with a0 = 1
πm . More precisely, for any k

|
dN∑
i=0

‖ SNi (z) ‖2
hN
−
∑
j<R

aj(x)Nm−j|Ck ≤ CR,kN
m−R

At a point z0 ∈M , we choose a neighborhood U of z0, a local normal coordinate chart

ρ : U, z0 → Cm, 0 centered at z0, and a preferred local frame at z0, which was defined in

[14] to be a local frame eL such that

|eL(z)|h = 1− 1/2|ρ(z)|2 + · · · .

The following theorem was proved in [12]

Theorem 2.1.2 ([12], Proposition 2.7). Let (L, h) → (M,ω) be a positive Hermitian

holomorphic line bundle over a compact m-dimensional Kähler manifold M . We give

H0(M,LN) the Hermitian Gaussian measure induced by h and the Kähler form ω = i
2
Θh.

And let PN(z, w) be the normalized Szegö kernel for H0(M,LN) and let z0 ∈ M For

b, ε > 0, j ≥ 0, there is a constant Cj = Cj(M, ε, b), independent of the point z0, such that

PN(z0 +
u√
N
, z0 +

v√
N

) = e−
1
2
|u−v|2 [1 +RN(u, v)](2.2)

| 5j RN(u, v)| ≤ CjN
−1/2+ε for |u|+ |v| < b

√
logN

As a corollary we have
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Theorem 2.1.3 ([12], Proposition 2.8). The remainder RN in the above theorem satisfies

|RN(u, v)| ≤ C2

2
|u− v|2N−

1
2

+ε, | 5RN(u, v)| ≤ C2|u− v|N−
1
2

+ε,(2.3)

for |u|+ |v| < b
√
logN.

Theorem 2.1.4 ([12], Proposition 2.6). With the notations above, for b >
√
j + 2k,

j, k ≥ 0, we have

5jPN(z, w) = O(N−k) uniformly for dist(z, w) ≥ b

√
logN

N
.

Remark: This theorem implies that the distance between the images of any two points

in M that are not very close to each other is close to π/2. Therefore, when estimating

the critical radius of the Kodaira embedding ΦN : M → CPN we need only to consider

only points that are very close to each other.

2.2 Geometry of complex projective spaces

For any integer n ≥ 0, the complex projective space CPn is the space consisting of all

complex lines in Cn+1 passing through the origin. Points in CPn can be described in

homogeneous coordinates [Z0, Z1, · · · , Zn] with (Z0, Z1, · · · , Zn) ∈ Cn+1\{0}. Colinear

vectors correspond to a same point, namely for 0 6= λ ∈ C

[Z0, Z1, · · · , Zn] = [λZ0, λZ1, · · · , λZn]

9



Consider the unit sphere S2n+1 ⊂ Cn+1. The unit circle S1 ⊂ C acts naturally as rotations

on S2n+1 by multiplication. Then CPn is identified as the quotient space

CPn = S2n+1/S1

The well-known Fubini-Study metric dFS on CPn is the Riemannian metric ds2
FS induced

as the quotient metric of the natural round metric on S2n+1 the sphere of radius 1/2.

Considering CP n as a complex manifold, the Fubini-Study metric ds2
FS is the real part

of a Hermitian metric, which in local coordinates has the form

h =
n∑

i,j=1

hij̄dzi ⊗ dz̄j

where

hij̄ =
(1 + |z|2)δij − ziz̄j

(1 + |z|2)2

The fundamental form ω of h is a Kähler form with

ω = i∂∂̄ log |Z|2

where |Z|2 =
∑n

i=0 |Zi|2 in homogeneous coordinates.

In CPn a subset is called a linear subspace if it is the image of a linear subspace of

Cn+1 passing through the origin under the projection

π : Cn+1\{0} → CPn

It is obvious that a linear subspace of CPn can be naturally identified with CPk for some

0 ≤ k ≤ n. Now it is clear that for any two points p, q ∈ CPn, there exists an unique

linear subspace CP1, denoted by lpq connecting these two points.

10



Lemma 2.2.1. Given two distinct points p, q ∈ CPn the geodesic connecting both points

lies in lpq.

Proof. Since the distance of p and q in lpq is the same as that in CPn.

Remark: With CP1 identified with the unit sphere S2 with round metric, the pictures

of geodesics are very clear. In particular, for each point a ∈ CP1 there exists an unique

“opposite” point b such that dFS(a, b) = π/2

Recall a submanifold M in a Riemannian manifold N is called geodesic if for every

two points p, q ∈M the geodesic in N connecting p and q is contained in M

Corollary 2.2.2. All linear subspaces in CPn are geodesic.

Corollary 2.2.3. Let p, q ∈ CPn be two points with homogeneous coordinates

p = [Z0, Z1, · · · , Zn], q = [Z ′0, Z
′
1, · · · , Z ′n]

with

Z = (Z0, Z1, · · · , Zn), Z ′ = (Z ′0, Z
′
1, · · · , Z ′n) ∈ Cn+1\{0}

Then their distance under the Fubini-Study metric has the following form

cos dFS(p, q) =
|Z · Z ′|
|Z||Z ′|

where Z · Z ′ denotes the Hermitian inner product in Cn+1

Now fix a point w = [W0,W1, · · · ,Wn] ∈ CPn, the points whose distances to w are

π/2 form a hyperplane H(w) which is defined by the equation

n∑
i=0

W̄iZi = 0

11



The projection from w to H(w) defines a holomorphic map Ow from CPn\w to H(w),

which geometrically is as follows: For any z ∈ CPn\w, the complex line lzw intersects

H(w) at one unique point, which is just the image Ow(z) .

Recall that two submanifolds are said to be orthogonal to each other at their inter-

sections if their tangent spaces, considered as subspace of the tangent space of CPn are

orthogonal to each other at those points. Since two general linear subspaces of compli-

mentary dimensions intersect at exactly one point, we say that they are orthogonal to

each other if they are orthogonal at that intersection.

Proposition 2.2.4. For any point z ∈ CPn\w, the line lzw is orthogonal to H(w). Con-

versely, any line that is orthogonal to H(w) passes through w

Proof. One just needs to consider the special case when w = [1, 0, · · · , 0 and z =

[0, 1, 0, · · · , 0], since the actions of U(n+ 1) fixing w is transitive on H(w)

Now we consider a general submanifold. By a germ of a submanifold at a point z0

we will mean a complex submanifold in a neighborhood of z0 in CPn. Let (M, z0) be a

germ of submanifold of dimension m, let F : (Cm, 0)→ (M, z0) be a local parameter. In

homogeneous coordinates,

F (x) = [F0(x), F1(x), · · · , Fn(x)]

A first observation is that there exists an unique linear subspace Tz0 of CPn of dimension

m such that the tangent spaces at z0 of M and Tz0 are identical considered as subspace

of the tangent space of CPn at z0. We call Tz0 the tangent subspace of (M, z0).

Recall that the span of a set of finite points in CPn is the smallest linear subspace of

CPn that contains all these points.
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Proposition 2.2.5. Tz0 is spanned by z0 and

[
dF0

dxi
(0),

dF1

dxi
(0), · · · , dFn

dxi
(0)]

for 1 ≤ i ≤ m, where xi is the i−th coordinate in Cm

Proof. By considering one coordinate at a time, it is clear that we need only to show the

1-dimensional case.

Without lose of generality, we assume F (0) 6= 0. Then in the affine open set U0 =

{Z0 6= 0}, F is

(
F1

F0

,
F2

F0

, · · · , Fn
F0

)

Then the complex line in U0 that is tangent to M at z0 = (F1

F0
(0), F2

F0
(0), · · · , Fn

F0
(0)) is of

the form

(
F1

F0

(0),
F2

F0

(0), · · · , Fn
F0

(0)) + t(
d

dx

F1

F0

(0),
d

dx

F2

F0

(0), · · · , d
dx

Fn
F0

(0))

for t ∈ C

Since d
dx

Fi

F0
(0) =

F ′i (0)

F0(0)
− Fi(0)F ′0(0)

F 2
0 (0)

, we get that (
F ′1(0)

F ′0(0)
,
F ′2(0)

F ′0(0)
, · · · , F

′
1(0)

F ′0(0)
) is on this complex

line by letting t = F0(0)
F ′0(0)

. Switching to homogeneous coordinates, we get the conclusion.
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Chapter 3

Expected Euler Characteristic

Let sjN ∈ H0(M,LN), 0 ≤ j ≤ n, where n + 1 = dim(H0(M,LN)) be an orthonormal

basis. By the Kodaira embedding theorem, for N big enough this gives an embedding

ΦN : M → CPN , locally given by ΦN(x) = [f 0
N(x), f 1

N(x), · · · , fnN(x)], where sjN = f jNe
N
L

with eL a local frame of L. For a random section with norm 1,

s =
N∑
i=0

cis
i
n,

N∑
i=0

‖ ci ‖2= 1

Let |s(z)|h denote the norm of s at z ∈ M under the metric induced by h. Let C = (ci)

and fN(z) = (f iN(z)).Then
∑N

i=0 |siN(z)|2h = |fN(z)|2|eL(z)|2Nh

|s(z)|h = |C · fN(z)||eL|N =
C · fN(z)

|C||fN(z)|

√√√√ N∑
i=0

|siN(z)|2h

By definition ΠN(z, z) =
∑n

i=0 |siN(z)|2h is just the Szego kernel for H0(M,LN) on the

diagonal.

Therefore we have

|s(z)|h√
ΠN(z, z)

=
|C · Φn(z)|
|C||Φn(z)|

By identifying CP1 with the sphere in R3 of radius 1/2, one sees that with the Fubini-
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Study metric on CPn,

cos dFS(C,ΦN(Z)) =
|C · ΦN(Z)|
|C||Φn(Z)|

So we get

|s(Z)|h√
ΠN(z, z)

= cos dFS(C,ΦN(Z))

Lemma 3.0.6. Let M be a compact submanifold of (A, g), where (A, g) is a C∞ Reman-

nian manifold, let Bρ(P )denote the ball centered at P ∈ A with radius ρ, then for ρ > 0

small enough, Bρ(P ) ∩M is contractible if not empty.

Proof. Consider the normal bundle of π : N → M in A and the exponential map exp :

N → A. Since M is compact, there exists ρ1 > 0 such that restricted to the open

neighborhood OM(ρ1) = {(p, v)| ‖ v ‖< ρ1} ⊂ N , the exponential map is injective. Now

we claim that any ρ < ρ1 satisfies the requirement of the lemma.

Now suppose Bρ(P ) ∩ M is not empty, then P ∈ exp(OM(ρ1)) and P = exp(p, v)

with (p, v) ∈ OM(ρ1). Consider d(P,−) as a smooth function on Bρ(P ) ∩M , then by

assumption p is the only critical point of d(P,−), since the geodesic that connects p and

a critical point of Bρ(P ) ∩M is orthogonal to M . Let r = d(P, p), then Br(P ) ∩M = p.

So by Morse theory Bρ(P ) ∩M is contractible.

Remark: The proof of the lemma above implies that above a high level a section can

have at most one critical point.

Corollary 3.0.7. Let rN be the critical radius of the embedding ΦN(M) ⊂ CPn, then for

ρ < rN , the excursion set {z ∈M | |s(z)|h√
ΠN (z,z)

> cos ρ} is either contractible or empty.

By theorem 1.0.1(which will be proved in the next section), rN is bounded below by

ρ0 > 0. Therefore as a corollary, taking into account that the Fubini-Study metric on CPn
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is the quotient of the ”round metric” under the fibration S1 → S2n+1 → CPn we have

Eχ(
|s(z)|h√
ΠN(z, z)

> cos ρ) = Prob.{sup
z∈M

|s(z)|h√∏
N(z, z)

> cos ρ} =
V ol(T (ΦN(M), ρ))

V ol(CPn)

for ρ < ρ0

First we calculate the volume V (T (ΦN(M), ρ)). We use theorems and formulas from

[9](Theorem 7.20)(see also [8]).

Theorem 3.0.8. Let Mm be an embedded complex submanifold of (CPn, ωFS), and let N

be the normal bundle of M in CPn suppose that exp : {(p, v) ∈ N | ‖ v ‖< r} → T (M, r)

is a diffeomorphism. Then

VM(r) =
1

n!

∫
M

m∏
a=1

(1− ωFS
π

+ xa) ∧ (π sin2(r) + cos2(r)ωFS)n

Where xa is defined formally in the factorization of the Chern polynomial c(M)(t) =∏m
a=1(t+ xa)

As a corollary of this theorem and by plugging in Φ∗N(ωFS) = Nπc1(L),and dividing

by the Fubini-Study volume πn/n! of CPn, we get theorem 1.0.2

When M is a Riemann surface, m = 1, so x1 = c1(M), the first Chern class of M . So

VM(r) =
1

n!

∫
M

(1− ωFS
π

+ c1(M)) ∧ [(π sin2(r))n + n(π sin2(r))n−1 cos2(r)ωFS]

therefore

VM(r) =
1

n!

∫
M

[(π sin2(r))n(c1(M)− ωFS
π

) + n(π sin2(r))n−1 cos2(r)ωFS]

We know by the Gauss-Bonnet formula
∫
M
c1(M) = χ(M) = 2 − 2g and since ΦN(N)

is of degree N deg(L) in CPn,
∫
M
ωFS = N deg(L)π. Now we can write out the explicit
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formula for V (T (ΦN(M), ρ)), that is

V (T (ΦN(M), ρ)) =
1

n!
[(π sin2(ρ))n(χ(M)−N deg(L)) + nN deg(L)π(π sin2(ρ))n−1 cos2(ρ)]

=
πn

n!
(sin2(n−1) ρ)[N2(degL)2 cos2 ρ−N degL(g cos2 ρ− sin2 ρ) + (2− 2g) sin2 ρ]

where χ(M) = 2−2g and by the Riemann-Roch formula n = N deg(L)−g for N deg(L) >

2g − 2

To summarize, we have the following theorem

Theorem 3.0.9. Let M be a Riemann surface. Then, with the notations above, there

exists ρ0 > 0 such that for ρ < ρ0, NdegL > 2g − 2 and a random section s(z) ∈

H0(M,LN), the expected Euler characteristic is given by

Eχ(
s(z)√

ΠN(z, z)
> cos ρ)

= (sin2(n−1) ρ)[N2(degL)2 cos2 ρ−N degL(g cos2 ρ− sin2 ρ) + (2− 2g) sin2 ρ]

If we write u = cos ρ and plug in sin2 ρ = 1− u2, we get theorem 1.0.3

Note that when m > 1, the expansion of Eχ( s(z)√
ΠN (z,z)

> cos ρ) is complicated and the

author can not get a more intuitive formula. We can calculate the leading term to have

an estimation of formula 1.1.

Observe that the leading term in the expansion should be

1

πn

∫
M

(
n

m

)
(π sin2 ρ)n−m(cos2 ρωFS)m

Let On(1) denote the hyperplane bundle on CPn. Then ωFS is a multiple of the first

Chern class of On(1), that is ωFS = πc1(On(1)). Also the pull back Φ∗N(c1(On(1))) =
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Nc1(L). Therefore we have

∫
M

ωmFS = πmNm

∫
M

cm1 (L)

which is independent of the metric on L.

So formula 3 becomes n

m

 (sin2 ρ)n−m(cos2 ρ)mNm

∫
M

cm1 (L)

By the asymptotic Riemann-Roch formula (ref. Theorem 1.1.22[10])for N big enough

n =

∫
M
cm1 (L)

m!
Nm +O(Nm−1)

So the leading term is

nm+1(sin2 ρ)n−m(cos2 ρ)m

Therefore we have the following theorem

Theorem 3.0.10. With the notations above, for m ≥ 1 and for N big enough

Eχ(
s(z)√

ΠN(z, z)
> cos ρ) = (1 + o(1))nm+1(sin2 ρ)n−m(cos2 ρ)m

Again, plugging in u = cos ρ, we get theorem 1.0.4

Let rn = sup{ρn that satisfies the requirement of theorem 1.0.3}. we are going to show

that although rn might get smaller as n grows, there is a positive lower bound.
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Chapter 4

Critical Radius

We will first analyze the case of Riemann surfaces, then generalize the results to that of

higher dimensional smooth projective variety.

4.1 Riemann Surfaces

Let X be a compact Riemann Surface, and let (L, h) be a positive Hermitian holomorphic

line bundle over X. The curvature of (L, h) induces a Kähler metric on X with Kähler

form ω = i
2
Θh. Let s0, s1, · · · , sn be an orthonormal basis of H0(X,LN). Here we write n

instead of n(N) for short. This gives an embedding ΦN : X → CPn for N big enough by

Kodaira. If we choose a holomorphic local frame eLof L, then si = fie
N
L with fi holomor-

phic functions. So ΦN is locally given by ΦN(z) = [f0(z), f1(z), · · · , fn(z)]. We denote the

vector (f0(z), f1(z), · · · , fn(z)) ∈ Cn+1 by F (z), and the vector (f ′0(z), f ′1(z), · · · , f ′n(z)) by

F ′(z). At each point ΦN(z), the holomorphic tangent line is given by [F (z) + tF ′(z)], t ∈

C∪ {∞}. By [v] for v ∈ Cn+1, we mean the image under the projection π : Cn+1 → CPn.

Consider the normal bundle N ⊂ TCPn|ΦN (X). At any point p ∈ ΦN(X), exp(Np) is the

hyperplane Hp passing p which is orthogonal to TpΦN(X) at p. We define T∞(z) as the

19



only point on the tangent line through ΦN(z) with distance π/2 to ΦN(z) in CPN . Then

[T∞(z)] = [F ′(z)− < F ′(z), F (z) >

< F (z), F (z) >
F (z)]

We denote by Oz() the projection of CPn from T∞(z) to its orthogonal hyperplane, which

is just Hz. In particular we have

[Oz([v])] = [v − < v, T∞(z) >

|T∞(z)|2
T∞(z)]

Also by dN(, ) we mean the distance in CPn induced by the Fubini-Study metric.

Lemma 4.1.1. Let Hz∩w denote the intersection of the normal hyperplanes Hz, Hw of

ΦN(X) through ΦN(z) and ΦN(w) respectively, then

sin2(dN(ΦN(z), Hz∩w)) = cos2(dN(ΦN(z), Oz(T∞(w))))

Proof. By unitary change of coordinates, we can assume that ΦN(z) = [0, · · · , 0, 1],and

that T∞(z) = [0, · · · , 0, 1, 0]. For any q ∈ Hz∩w, let q = [v0, v1, · · · , vn] with
∑n

i=0 |vi|2 = 1.

Then cos(dN(ΦN(z), q)) = |vn|. So cos2(dN(ΦN(z), Hz∩w)) = max|vn|2. Let T∞(w) =

[c0, c1, · · · , cn]. So the vi’s satisfies the following equations

vn−1 = 0,
n∑
i=0

civ̄i = 0

So the maximum |vn| is

|vn|2 = 1− |cn|2∑
i 6=n−1 |ci|2

On the other hand it is clear that

cos2(dN(ΦN(z), Oz(T∞(w)))) =
|cn|2∑

i 6=n−1 |ci|2
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Combining the equations, we get the conclusion.

Therefore, by switching z and w, we have the following equation

sin2(dN(ΦN(w), Hz∩w)) =
| < F (w), Ow(T∞(z)) > |2

|F (w)|2|Ow(T∞(z))|2

where by abuse of notation, we consider the homogeneous coordinate of a point in CPn

as a vector in Cn+1.

Before we go on calculating the right side of the equation, we recall the normalized

Szegö kernels in [12] is defined as

PN(z, w) :=
|ΠN(z, w)|

ΠN(z, z)1/2ΠN(w,w)1/2

Since |si|2h = |fi|2hN , we have

PN(z, w) =
| < F (z), F (w) > |

< F (z), F (z) >1/2< F (w), F (w) >1/2

Now we let E(z, w) = P 2
N(z, w), then

E(z, w) =
< F (z), F (w) >< F (w), F (z) >

< F (z), F (z) >< F (w), F (w) >

Therefore

∂

∂z
E(z, w) =

< F (w), F (z) >

|F (z)|2|F (w)|2
[< F ′(z), F (w) > −< F (z), F (w) >

|F (z)|2
< F ′(z), F (z) >]

and

From now on we use the following convention, by Df(∗, ∗), where D is some differen-

tial, we always mean the the value of Df at (∗, ∗)
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∂2

∂z∂w̄
E(z, w) =

< F (w), F (z) >

|F (z)|2|F (w)|2
[< F ′(z), F ′(w) >

− < F (w), F ′(w)

|F (w)|2
< F ′(z), F (w) > −< F (z), F ′(w)

|F (z)|2
< F ′(z), F (z) >

+
< F (z), F (w) >< F (w), F ′(w) >

|F (z)|2|F (w)|2
< F ′(z), F (z) >]

We denote ∂
∂z
E(z, w) and ∂2

∂z∂w̄
E(z, w) considered as functions of (z, w) by Ez(z, w) and

Ezw̄(z, w) respectively. So in particular

Ezw̄(z, z) =
1

|F (z)|2
[< F ′(z), F ′(z) > −| < F ′(z), F (z) > |2

|F (z)|2
]

Now we calculate sin2(dN(ΦN(w), Hz∩w)).

First we have

Ow(T∞(z)) = T∞(z)− < T∞(z), T∞(w) >

|T∞(w)|2
T∞(w)

since Ow(T∞(z)) is orthogonal to T∞(w) we have

|Ow(T∞(z))|2 = |T∞(z)|2 − | < T∞(z), T∞(w) > |2

|T∞(w)|2

and since F (w) is also orthogonal to T∞(w) we also have

| < F (w), Ow(T∞(z)) > |2 = | < F (w), T∞(z) > |2

Since

< T∞(z), F (w) >=< F ′(z), F (w) > −< F ′(z), F (z) >

|F (z)|2
< F (z), F (w) >
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We get the following equation

Lemma 4.1.2. With the notations above

Ez(z, w) =
< F (w), F (z) >

|F (z)|2|F (w)|2
< T∞(z), F (w) >

Moreover,

|T∞(z)|2 =< F ′(z), F ′(z) > −| < F ′(z), F (z) > |2

|F (z)|2

and

< T∞(z), T∞(w) > = < F ′(z), F ′(w) > −< F (w), F ′(w) >

|F (w)|2
< F ′(z), F (w) >(4.1)

− < F (z), F ′(w) >

|F (z)|2
< F ′(z), F (z) >(4.2)

+
< F (z), F (w) >< F (w), F ′(w) >

|F (z)|2|F (w)|2
< F ′(z), F (z) >(4.3)

Therefore we have

Ezw̄(z, z) =
1

|F (z)|2
|T∞(z)|2

and

Ezw̄(z, w) =
< F (w), F (z) >

|F (z)|2|F (w)|2
< T∞(z), T∞(w) >

Combining these equations we have

sin2(dN(ΦN(w), Hz∩w))

=
(|F (z)|2|F (w)|2)2|Ez(z, w)|2

| < F (w), F (z) > |2|F (w)|2{|F (z)|2Ezw̄(z, z)− [|F (z)|2|F (w)|2]2|Ezw̄(z,w)|2
|F (w)|2Ezw̄(w,w)|<F (w),F (z)>|2}

=
|Ez(z, w)|2

E(z, w)[Ezw̄(z, z)− |Ezw̄(z,w)|2
E(z,w)Ezw̄(w,w)

]

So we have the following theorem
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Theorem 4.1.3. With the notations above we have the equation

sin2(dN(ΦN(w), Hz∩w)) =
|Ez(z, w)|2

E(z, w)Ezw̄(z, z)[1− |Ezw̄(z,w)|2
Ezw̄(z,z)Ezw̄(w,w)

1
E(z,w)

]

As in the last section, we choose local coordinates such z0 = 0. Then

E(z, w) = P 2
N(z, w) = e−|u−v|

2

[1 +RN(u, v)]2,

where u =
√
Nz, v =

√
Nw. So

∂

∂z
E(z, w) =

√
N
∂

∂u
e−|u−v|

2

[1 +RN(u, v)]2(4.4)

=
√
N [e−|u−v|

2

(v̄ − ū)[1 +RN(u, v)]2

+ e−|u−v|
2

2(1 +RN(u, v))
∂

∂u
RN(u, v)]

When z = 0

E(0, w) = e−N |w|
2

[1 +O(N1/2+ε|w|2)]2

∂

∂z
E(0, w) =

√
Ne−N |w|

2

(1 +O(N−1/2+ε)
√
Nw̄ +O(N ε|w|))(4.5)

= (1 + o(1))Ne−N |w|
2

w̄

where we make ε < 1/2 and use the estimation that

| ∂
∂u
RN(u, v)u=0| ≤ C2|v|N−1/2+ε
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Furthermore we can calculate

∂2

∂z∂w̄
E(z, w) = N

∂

∂v̄
{
√
N [e−|u−v|

2

(v̄ − ū)][1 +RN(u, v)]2

+ e−|u−v|
2

2(1 +RN(u, v))
∂

∂u
RN(u, v)}

= Ne−|u−v|
2

(u− v)[(v̄ − ū)(1 +RN)2) + 2(1 +RN)
∂

∂u
RN ]

+ Ne−|u−v|
2{(1 +RN)2 + (v̄ − ū)

∂

∂v̄
(1 +RN)2

+ 2
∂

∂v̄
RN

∂

∂u
RN + 2(1 +RN)

∂2

∂u∂v̄
RN}(4.6)

Therefore

Ezw̄(w,w) = N [(1 +RN)2 + 2
∂

∂v̄
RN

∂

∂u
RN ](v, v)(4.7)

= N(1 + 2
∂2

∂u∂v̄
RN(v, v))

and

Ezw̄(0, w) = Ne−N |w|
2{(1 +O(N1/2+ε|w|2))2(1−N |w|2)

+ 2(1 +O(N1/2+ε|w|2))O(N1/2+ε|w|2)

+ O(N1/2+ε|w|2)(1 +O(N1/2+ε|w|2))

+ O(N2ε|w|2) + 2(1 +O(N1/2+ε|w|2))∂u∂v̄RN(0, v))}

= Ne−N |w|
2

[1− (1 + o(1))N |w|2 + 2
∂2

∂u∂v̄
RN(0, v)]

With the notations above we have the following theorem

Theorem 4.1.4. There exist r(L, h) > 0, which is independent of N , such that

sin2(dN(ΦN(w), H0∩w)) > r(L, h)

25



for |w| < 1√
2N

Proof. Before applying theorem 4.1.3, we need the following estimations

∂2

∂u∂v̄
RN(0, v)− ∂2

∂u∂v̄
RN(0, 0) = A(v) +O(N−1/2+ε|v|2)

∂2

∂u∂v̄
RN(v, v)− ∂

∂u∂v̄
RN(0, 0) = A(v) + A(v) +O(N−1/2+ε|v|2)

where A(v) = O(N−1/2+ε|v|) .

Note first that RN(u, v) is a real analytic function, so we can write RN(u, v) as power

series in (u, ū, v, v̄). So the first equation follows directly from the theorem in [12]. Now

we prove the second equation.

We denote by g(u, v) the homogeneous part of degree 3 in the power series, since

this is the part that contribute terms of degree 1 in the second derivatives. Notice that

guv̄(0, 0) = 0,we need to show that

guv̄(0, x) + guv̄(0, x) = guv̄(x, x)

for all x ∈ C.

Since g(u, v) is real, guv̄(0, x) = gvū(0, x). We write p(x) = guv̄(x, x) − guv̄(0, x) −

gvū(0, x). So p(x) is linear in (x, x̄) and p(0) = 0. To show that p(x) ≡ 0, we just need to

show that ∂
∂x
p(x) = 0 and ∂

∂x̄
p(x) = 0. But

∂

∂x
p(x) = guuv̄(x, x) + gvuv̄(x, x)− gvuv̄(0, x)− gvvū(0, x) = 0

where the second equation follows from the fact that all terms in the middle are constant

and that g is symmetic with respect to u and v. So we have proved the second equation.

We let a = ∂2

∂u∂v̄
RN(0, 0), then a = O(N−1/2+ε) and a is real. So
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Ezw̄(0, 0) = N(1 + 2a)(4.8)

Ezw̄(0, w) = Ne−N |w|
2

[1− (1 + o(1))N |w|2 + 2a+ 2A(v) +O(N−1/2+ε|v|2)](4.9)

Ezw̄(w,w) = N [1 + 2a+ 2A(v) + 2A(v) +O(N−1/2+ε|v|2)](4.10)

Plug in these estimations together with the ones about Ez(0, w) and E(0, w) to the

expression of sin2(dN(ΦN(w), H0∩w)) in the last theorem, and use the Taylor series of

e−N |w|
2
, both the numerator and denominator is bounded by positive multiples of N |w|2,

then it is easy to see that there is a constant r > 0 independent of N and w for w < 1√
2N

such that sin2(dN(ΦN(w), H0∩w)) > r. Also since the constant in the approximation of

the normalized Szegö kernel is independent of the point z, r can be chosen independent

of z.

As a corollary, we have the following theorem

Theorem 4.1.5. Let rN be the critical radius of ΦN(X) considered as a submanifold of

CPn. There exists a constant c(X, h) > 0, such that rN > c(X, h)

Proof. We still use the preferred coordinates chosen centered at z

Let Nx(b) = {v ∈ Nx(ΦN(X)), ‖ v ‖≤ b} Notice that by theorem 2.1.2 and 2.1.3, for

w ≥ 1√
2N

, and for N big enough, dN(ΦN(z),ΦN(z + w)) ≥ cos−1[(1 + o(1))e−1/4].

Combining this fact and theorem 4.1.4, there exists a constant c > 0, which is inde-

pendent of z such that for any point q ∈ ΦN(X),

expΦN (z)(NΦN (z)(c)) ∩ expq(Nq(c)) = ∅

This implies that the critical radius is bounded below, namely rN > c(X, h)
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4.2 Higher Dimension

Actually the argument for Riemann surfaces carries directly to high dimensional Kähler

manifolds. Now use the notations in section 3, we have the following theorem

Theorem 4.2.1. Let rN be the critical radius of ΦN(M) considered as a submanifold of

CPn. There exists a constant c(M,h) > 0, such that rN > c(M,h)

Proof. We just need a high dimensional version of theorem 4.1.4.

We still choose a preferred coordinates centered at z, and let w < 1√
2N

.

In order to apply theorem 4.1.3, we let X be the complex line in the coordinates chart

connecting 0 and w, and restrict ΦN to an open set V ⊂ X. Then all the estimations we

used in proving theorem 4.1.4 hold for V . So theorem 4.1.4 can be applied to V . Notice

that the lower bounds we can get come from the approximation of the normalized Szegö

kernel of (L, h)→M , hence is independent of w

Notice that the normal space of M at ΦN(z) is contained in the normal hyperplane of

ΦN(V ) at ΦN(z), the same is true for ΦN(z + w). Therefore the intersection of the two

normal spaces N0∩w = NΦN (z)(M)∩NΦN (z+w)(M) of M is contained in the intersection of

the two normal hyperplanes. Therefore the distance from ΦN(z) to the intersection N0∩w

is also bounded below independent of z, w and N .

Now use the same argument as in theorem 4.1.5, we get the expected conclusion.
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[2] A.D. Alexandrov, Über eine Verallgemeinerung der Riemannschern Geometrie, Schr.

Forschungsinst. Math. 1 (1957), 33–84.

[3] T.H. Colding and C. De Lellis, The min-max construction of minimal surfaces, Surveys

in differential geometry, Vol. 8, Lectures on Geometry and Topology held in honor of

Calabi, Lawson, Siu, and Uhlenbeck at Harvard University, May 3–5, 2002, Sponsored

by JDG, (2003) 75–107.

[4] B. Berndtsson, Bergman kernels related to Hermitian line bundles over compact com-

plex manifolds, Contemporary mathematics, Volume 332, 2003

[5] D. Catlin, The Bergman kernel and a theorem of Tian, in: Analysis and Geometry in

Several Complex Variables, G. Komatsu and M. Kuranishi, eds., Birkhauser, Boston,

1999.

[6] M. Douglas, B. Shiffman, S. Zelditch, Critical Points and Supersymmetric Vacua I,

Commun. Math. Phys. 252, 325C358, 2004

[7] M. Douglas, B. Shiffman, S. Zelditch, Critical Points and Supersymmetric Vacua II,

J. Diff. Geometry 72, 381-427, 2006.

29



[8] A. Gray, Volumes of tubes about complex submanifolds of complex projective space.

Trans. Amer. Math. Soc. 291 (1985), no. 2, 437-449.

[9] A. Gray, Tubes, Addison-Wesley Publishing Company, 1990

[10] R.K. Lazarsfeld, Positivity in Algebraic Geometry I, Springer, 2007

[11] Jiayang Sun, The Annals of Probability, Vol. 21, No. 1, 34-71, Institute of Mathe-

matical Statistics, 1993

[12] B. Shiffman, S. Zelditch, Number variance of random zeros on complex manifolds,

Geom. funct.anal. Vol.18(2008),1422-1475

[13] B. Shiffman, S. Zelditch, Distribution of Zeros of Random and Quantum Chaotic

Sections of Positive Line Bundles,Commun. Math. Phys. 200(1999), 661 C 683

[14] B. Shiffman, S. Zelditch, Asymptotics of almost holomorphic sections of ample line

bundles on symplectic manifolds, J. Reine Angew. Math. 544 (2002), 181C222.

[15] B. Shiffman, S. Zelditch, Random polynomials of high degree and Levy concentration

of measure, Asian J. Math. 7 (2003), no. 4, 627C646.

[16] B. Shiffman, S. Zelditch, Convergence of random zeros on complex manifolds. (En-

glish summary), Sci. China Ser. A 51 (2008), no. 4, 707C720.

[17] J.E. Taylor, R.J. Adler, Euler characteristics for Gaussian fields onmanifolds. Ann.

Probab. 31 533C563, 2003.

[18] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential

Geom. 32 (1990), 99C130.
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