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Abstract

In this thesis, we discuss results on complete embedded minimal surfaces in R3 with

finite topology and one end. Using the tools developed by Colding and Minicozzi

in their lamination theory [4, 9, 10, 11, 12], we provide a proof of the uniqueness of

the helicoid. We then extend these techniques to show that any complete, embedded

minimal surface with one end and finite topology is conformal to a once-punctured

compact Riemann surface. Moreover, using the conformality and embeddedness, we

examine the Weierstrass data and conclude that every such surface has Weierstrass

data asymptotic to that of the helicoid. Using a result of Hauswirth, Perez, and

Romon [19], as an immediate corollary we get that these surfaces are actually asymp-

totic to a helicoid (in a C0 sense). In the final chapter, we move away from complete

surfaces and consider local results on embedded disks. We sharpen results of Colding

and Minicozzi on the shapes of embedded minimal disks in R3, giving a more precise

scale on which minimal disks are “helicoidal”.

Readers: William P. Minicozzi II (Advisor), Joel Spruck, Chikako Mese, Tobias

Colding, and David Yarkony.
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Chapter 1

Introduction

1.1 Conformality Results on Minimal Surfaces

Minimal surfaces are defined as immersed surfaces that are critical points for the area

functional. Using the so called first variation formula, one can easily show that every

minimal surface has mean curvature identically zero. A subclass of such surfaces, area

minimizing surfaces, satisfy the natural property of being the surface with least area

given a prescribed boundary. There are an abundance of non-trivial examples that

exist in R3, even when one imposes the additional condition of embeddedness (i.e.

without self-intersection). Classic examples of embedded minimal surfaces include

the plane, catenoid, and helicoid. All three of these surfaces are planar domains,

though the plane and helicoid are both embeddings of a disk, while the catenoid is

an embedding of an annulus. The helicoid is often thought of as a “double spiral

staircase,” and it occurs naturally (albeit with boundary) as an approximation of the
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shape of DNA.

Definition 1.1.1. We define a surface to have finite topology if it is homeomorphic

to a compact Riemann surface with a finite number of points removed.

The helicoid is a complete, embedded minimal surface with finite topology but infinite

total curvature. Discovered by Meuisner in 1776, until recently the helicoid was

thought to be the only complete, properly embedded minimal surface with finite

topology and infinite total curvature. Work by Collin [14] established that if such a

surface existed, it must have exactly one end. The discovery of a “genus-one helicoid”

by Hoffman, Karcher, and Wei in 1993, [20], provided an immersed example of such a

surface. In 2004, Hoffman, Weber, and Wolf [22], using a different strategy, confirmed

the existence of an embedded example.

Questions of existence and uniqueness abound in the study of minimal surface

theory. With the help of a compactness result of Colding and Minicozzi [12], Meeks

and Rosenberg resolved a long standing question usually referred to as the uniqueness

of the helicoid [27].

Theorem 1.1.2. (Theorem 0.1 [27], Theorem 1.2 [2])If Σ is a complete, embedded

minimal disk in R3 then it is either the plane or the helicoid.

Remark 1.1.3. The initial statement of this theorem in [27] includes the added con-

dition that Σ be a proper embedding. Colding and Minicozzi, in [13], prove that any

complete, embedded minimal surface of finite topology in R3 is automatically properly

embedded. Therefore, we remove the assumption of properness from the statement

of this theorem and Theorem 1.1.4 below.
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The question of uniqueness for the genus-one example remains open, even when one

imposes additional hypotheses in the form of strong symmetry conditions. Hoffman

and White provide a variational construction of a genus-one helicoid in [25], but

whether it is the same surface as the one in [22] remains unknown. A stronger

understanding of the conformal structure of such surfaces appears to be a natural

first step toward establishing (or refuting) uniqueness. In fact, the uniqueness of the

helicoid follows almost immediately, once one establishes the minimal disk is conformal

to C. Previous results on the conformal structure of embedded minimal surfaces with

finite topology can be found in [28] [30]. In both cases, the surfaces of interest have

the added hypotheses of either more than one end or finite total curvature. The main

point of this thesis is to establish a conformality result for embedded minimal surface

with finite topology and one end (which are shown to have infinite total curvature).

Theorem 1.1.4. (Theorem 1.1 in [1]) Let Σ be a complete (non-flat) minimal surface,

embedded in R
3, with one end and finite topology. Then Σ is conformally a once

punctured, compact Riemann surface. Moreover, the height differential, dh, extends

meromorphically over the puncture with a double pole, as does the meromorphic one

form dg
g
.

In the chapter that follows, we will discuss the function g : Σ → C, the stere-

ographic projection of the Gauss map. For now, we note that the one form dg
g

has

a double pole at the puncture when g has an essential singularity there. This will

ultimately correspond to infinite total curvature on the surface.

Definition 1.1.5. Throughout this thesis, let E(1) denote the set of all complete,
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embedded minimal surfaces of finite topology and one end in R3.

For Σ ∈ E(1), Theorem 1.1.4, the Weierstrass representation, and embeddedness

imply that near the puncture the Weierstrass data is asymptotic to that of a helicoid.

Corollary 1.1.6. There exists an α ∈ R so (for our non-flat Σ ∈ E(1)) dg
g
− iαdh

has holomorphic extension over the puncture, with a zero at the puncture. Equiv-

alently, after possibly translating parallel to the x3-axis, in an appropriately chosen

neighborhood of the puncture, Γ, g(p) = exp(iαz(p)+F (p)) where F : Γ → C extends

holomorphically over the puncture with a zero there and z = x3 + ix∗
3 is a holomorphic

coordinate on Γ. (Here x∗
3 is the harmonic conjugate of x3 and is well defined in Γ.)

As a consequence of this we may appeal to [19] where the behavior of annular ends

with this type of Weierstrass data are studied. In particular, Hauswirth, Perez and

Romon show that such an end is C0-asymptotic∗ to a (vertical) helicoid H as long

as the data satisfies a certain flux condition. In the present situation, as the data is

actually defined on a once punctured compact surface, this condition is automatically

satisfied by Stokes’ theorem and hence:

Corollary 1.1.7. If Σ ∈ E(1) is non-flat then Σ is C0-asymptotic to some helicoid.

Both constructions of embedded, genus-one helicoids ([22, 25]) were independently

shown to have this asymptotic property. Our conformality result shows that this

property is actually a necessity.

∗i.e. for any ε > 0 there exists Rε > 0 so that the part of the end outside of BRε(0) has Hausdorff
distance to H less than ε
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1.2 Idea of the Proof

1.2.1 Simply Connected Case

The proof relies heavily on the new estimates and structural results developed by

Colding and Minicozzi [4, 9, 10, 11, 12]. We first outline the argument used to provide

an alternative proof of the uniqueness of the helicoid, which we detail in Chapter 3.

We then explain how the introduction of the genus complicates matters slightly and

changes the proof.

In Chapter 3, we show that any complete, non-flat, properly embedded minimal

disk can be decomposed into two regions: one a region of strict spiraling, i.e. the

union of two strictly spiraling multi-valued graphs, and the other a neighborhood of

the axis along which the graphs are glued and where the normal is nearly orthogonal

to the axis. This follows from existence results for multi-valued minimal graphs in

embedded disks found in [10] and an approximation result for such minimal graphs

from [8]. The strict spiraling is then used to see that ∇Σx3 �= 0 everywhere on the

surface; thus, the Gauss map is not vertical and the holomorphic map z = x3 + ix∗
3

is a holomorphic coordinate. By looking at the log of the stereographic projection of

the Gauss map, the strict spiraling is used to show that z is actually a proper map

and thus, conformally the surface is the plane. Finally, this gives strong rigidity for

the Weierstrass data implying the surface is a helicoid.
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1.2.2 Non-trivial Genus Case

For Σ ∈ E(1), as there is finite genus, the topology of Σ is concentrated in a ball

in R3, and so by the maximum principle, all components of the intersection of Σ

with a ball disjoint from the genus are disks. Hence, outside of a large ball, one

may use the local results of [9, 10, 11, 12] about embedded minimal disks. In the

simply connected case, the trivial topology of Σ allows one to deduce global geometric

structure immediately from these local results. For Σ ∈ E(1), the presence of non-zero

genus complicates matters. Nevertheless, the global structure will follow from the far

reaching description of embedded minimal surfaces given by Colding and Minicozzi

in [4]. In particular, as Σ has one end, globally it looks like a helicoid. Following the

case for disks, in Chapter 4 we prove a sharper description of the global structure;

indeed, one may generalize the decomposition for disks to Σ ∈ E(1) as:

Theorem 1.2.1. There exist ε0 > 0 and RA, RS, and RG, disjoint subsets of Σ,

such that Σ = RA ∪ RS ∪ RG. The set RG is compact, connected, has connected

boundary and Σ\RG has genus 0. RS can be written as the union of two (oppositely

oriented) multi-valued graphs u1 and u2 with ui
θ �= 0. Finally, (after a rotation of R3)

|∇Σx3| ≥ ε0 in RA.

See Figure 1.1 for a cross section of the three regions in the decomposition of Σ as

outlined in Theorem 1.2.1.

Remark 1.2.2. Here ui multi-valued means that it can be decomposed into N -valued

ε-sheets (see Definition 3.1.2) with varying center. The angular derivative, (ui)θ, is
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Figure 1.1: Decomposition of Σ

then with respect to the obvious polar form on each of these sheets. For simplicity

we will assume throughout that both ui are ∞-valued.

As an important step in establishing the decomposition theorem, notice that the

minimal annulus Γ = Σ\RG has exactly the same weak asymptotic properties as an

embedded non-flat minimal disk. Thus, for both the simply connected and the non-

trivial genus case, strict spiraling in RS and a lower bound for |∇Σx3| on RA together

give (for appropriately chosen RG):

Proposition 1.2.3. In Γ, ∇Σx3 �= 0 and, for all c ∈ R, Γ ∩ {x3 = c} consists of

either one smooth, properly embedded curve or two smooth, properly embedded curves

each with one endpoint on ∂Γ.

The decomposition allows us to argue as before, though the non-trivial topology

again adds some technical difficulties. By Stokes’ Theorem, x∗
3 (the harmonic conju-

gate of x3) exists on Γ and thus there is a well defined holomorphic map z : Γ → C

given by z = x3 + ix∗
3. Proposition 1.2.3 implies that z is a holomorphic coordinate on
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Γ. We claim that z is actually a proper map and so Γ is conformally a punctured disk.

This can again be shown by studying the Gauss map. On Γ, the stereographic pro-

jection of the Gauss map, g, is a holomorphic map that avoids the origin. Moreover,

the minimality of Σ and the strict spiraling in RS imply that the winding number

of g around the inner boundary of Γ is zero. Hence, by monodromy there exists a

holomorphic map f : Γ → C with g = ef . Then, the strict spiraling in RS imposes

strong control on f which is sufficient to show that z is proper. Further, once we

establish Γ is conformally a punctured disk, the properties of the level sets of f imply

that it extends meromorphically over the puncture with a simple pole. This gives

Theorem 1.1.4 and ultimately Corollaries 1.1.6 and 1.1.7.

1.3 The Shapes of Minimal Disks

In [9, 10, 11, 12], Colding and Minicozzi give a complete description of the structure

of embedded minimal disks in a ball in R3. Roughly speaking, they show that any

such surface is either modeled on a plane (i.e. is nearly graphical) or is modeled

on a helicoid (i.e. is two multi-valued graphs glued together along an axis). In the

latter case, the distortion may be quite large. For instance, in [29], Meeks and Weber

“bend” the helicoid; that is, they construct minimal surfaces where the axis is an

arbitrary C1,1 curve. Figure 1.2 shows cross section of one of Meeks and Weber’s

examples, with the axis as a circle. We indicate a subset which is a disk. Here R is

the outer scale of said disk and s the blow-up scale.

A more serious example of distortion is given by Colding and Minicozzi in [7].
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Figure 1.2: Meeks-Weber distortion

There they construct a sequence of minimal disks modeled on the helicoid, but where

the ratio between the scales (a measure of the tightness of the spiraling of the multi-

graphs) at different points of the axis becomes arbitrarily large. Figure 5.1 shows a

cross section of one of Colding and Minicozzi’s examples. Note, locally, near points of

large curvature, the surface is close to a helicoid, and so the distortions are necessarily

global in nature. In the final chapter of this thesis, we establish more precisely on

what scale a minimal disk looks like a helicoid. (These results appear in both [2] and

[3].)
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Chapter 2

Background

2.1 Minimal Surfaces - First and Second Variation

Formulas

As previously mentioned, minimal surfaces are critical points for the area functional.

Our work focusses solely on minimal surfaces in R
3, so we confine all definitions and

consequences to this type of ambient space.

2.1.1 First Variation and the Minimal Surface Equation

When a minimal surface is graphical, it satisfies a non-linear, elliptic partial differ-

ential equation. Using the first variation formula, we can determine the appropriate

PDE.

Let u(x, y) : Ω ⊂ R2 → R be a C2 function. Then, an easy computation from

10



calculus gives that

Area(Graphu) =

∫
Ω

√
1 + |∇u|2.

Consider any C1 function v such that v|∂Ω = 0. We can perturb the graph of u,

keeping the boundary fixed, by considering graphs of the form u + tv, where t ∈ R.

Now, consider

Area(Graphu+tv) =

∫
Ω

√
1 + |∇(u + tv)|2.

Thus,

d

dt

∣∣∣∣
t=0

Area(Graphu+tv) =

∫
Ω

〈∇u,∇v〉√
1 + |∇u|2 = −

∫
Ω

v div

( ∇u√
1 + |∇u|2

)
.

From this we see that u is a minimal graph, and therefore a critical point for the area

functional, if and only if it satisfies

(2.1) div

( ∇u√
1 + |∇u|2

)
= 0.

This is the so called divergence form of the minimal surface equation. Simplifying the

above expression, we sometimes write it as

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.

Now we consider more arbitrary surfaces. Let Σ ⊂ R3 denote a smooth, oriented,

embedded surface in R3, possibly with boundary. As in the case for graphs, we can
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locally perturb the surface through a variation. Let φ ∈ C∞
0 (Σ) be a compactly

supported smooth function on Σ. Define Σφ,t = {x + tφ(x)N(x) | x ∈ Σ} where N is

the unit normal to Σ. Define A(t) = Area(Σφ,t). The first variation formula for area

says that

(2.2)
dA

dt
(0) =

∫
Σ

φH

where H denotes the mean curvature. That is, H = κ1 + κ2 where κ1, κ2 are the

principle curvatures of Σ. As a consequence of (2.2), we see that Σ is minimal if and

only if the mean curvature vanishes identically.

Remark 2.1.1. Note that here we have not considered variations of Σ that include a

tangential direction. But, as tangential changes only correspond to a reparameteri-

zation of the surface, these have no impact on the change of area.

2.1.2 Second Variation and Stability

Of particular interest in the study of minimal surfaces are surfaces that are actually

area minimizing. That is, surfaces for which d2

dt2
A(0) ≥ 0. A standard calculation for

the second variation for area (see for instance section 1.7 of [5]) gives

(2.3)
d2A

dt2
(0) = −

∫
Σ

φLφ

where L = ΔΣ + |A|2. Here ΔΣ denotes the Laplacian intrinsically defined on Σ and

|A|2 = κ2
1 + κ2

2, the norm squared of the second fundamental form on Σ.
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Definition 2.1.2. We define a minimal surface Σ ⊂ R3 as stable if d2A
dt2

(0) ≥ 0.

By (2.3), Σ is stable if for all φ ∈ C∞
0 (Σ), − ∫

Σ
φLφ ≥ 0. The operator L is

commonly referred to as the stability operator or Jacobi operator. Notice that, using

integration by parts (and the fact that φ is compactly supported), a minimal surface

is stable iff
∫

φ2|A|2 ≤ ∫ |∇φ|2 for all φ ∈ C∞
0 (Σ).

We will need an important result relating stability and positive solutions to the

Jacobi equation. (For proofs see [17] or [5].)

Proposition 2.1.3. Let Σ2 ⊂ R3 be an embedded minimal surface. There exists a

positive function u : Σ → R such that Lu = 0 iff Σ is stable.

An important result concerning stable surfaces in R
3 is the classical theorem of

Bernstein:

Theorem 2.1.4. Let f : R2 → R be an entire minimal graph. Then f is affine.

While Bernstein proved his result for entire minimal graphs, a similar result holds for

complete, stable minimal immersions in R3.

Theorem 2.1.5. Let Σ2 ⊂ R3 be a complete, orientable, stable, minimal immersion.

Then Σ is a plane.

For a proof, see [17] or [16]. Ultimately, the idea is that once a complete minimal

surface is stable, one can prove quadratic area growth conditions. That is Area(Σ ∩

BR) ≤ CR2 for some fixed constant C. With quadratic area growth, one can show

that Σ is actually parabolic (every positive superharmonic function is constant). Now

the proof follows from the logic below.
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Since Σ is stable, there exists u > 0 such that (ΔΣ + |A|2)u = 0. Thus, ΔΣu =

−|A|2u ≤ 0. By parabolicity, u must be constant. Thus |A| = 0 and Σ is flat.

We frequently use Proposition 2.1.3 and Theorem 2.1.5 to answer questions on

the multiplicity of convergent surfaces. That is, if Σi → Σ∞ on compact sets with

multiplicity strictly greater than 1 (but finite) in R3, then with a little care, one can

construct a positive solution to the Jacobi equation and thus show that the limit

surface is stable and therefore flat.

2.2 Multivalued Graphs and Separation

Throughout our work, we consider multivalued minimal graphs. These are modeled

on the helicoid and critically, their separation also satisfies a non-linear elliptic PDE.

We denote a polar rectangle as follows:

(2.4) Sθ1,θ2
r1,r2

= {(ρ, θ) | r1 ≤ ρ ≤ r2, θ1 ≤ θ ≤ θ2} .

For a real-valued function, u, defined on a polar domain Ω ⊂ R+ ×R, define the map

Φu : Ω → R3 by Φu(ρ, θ) = (ρ cos θ, ρ sin θ, u(ρ, θ)).

Definition 2.2.1. Given a polar domain Ω ⊂ R
2, we consider u : Ω → R to be an N-

valued graph over an annulus if the graph of u in R3, Γu, is the set {(ρ, θ, u(ρ, θ)) | r1 ≤

ρ ≤ r2, −Nπ ≤ θ ≤ Nπ}.

Definition 2.2.2. We define the separation of the graph u by w(ρ, θ) = u(ρ, θ+2π)−

u(ρ, θ).

14



Thus, Γu := Φu(Ω) is the graph of u, and Γu is embedded if and only if w �= 0.

We will frequently consider multivalued graphs that satisfy the following flatness

condition:

(2.5) |∇u| + ρ|Hess u| + 4ρ
|∇w|
|w| + ρ2 |Hess w|

|w| ≤ ε <
1

2π
.

As an example of a multivalued graph, consider half of the helicoid. In fact,

the helicoid is exactly the union of two infinite-valued graphs glued together along

a singular axis. We now prove a necessary lemma concerning the difference between

two minimal graphs.

Lemma 2.2.3. Suppose that u1, u2 : Ω → R3 are two C2 solutions to the minimal

surface equation. Then v = u2 − u1 satisfies an equation of the form

(2.6) div (ai,j∇v) = 0,

where the eigenvalues of (ai,j) satisfy 0 < ν ≤ λ1 ≤ λ2 ≤ 1/ν. The constant ν depends

on the upper bounds for the gradient of ui.

Proof. Let F : R2 → R2 under the mapping

F (X) =
X

(1 + |X|2)1/2
.
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Then,

0 = F (∇u2) − F (∇u1) =
d

dt

∫ 1

0

F (∇u1 + t∇(u2 − u1))dt

=

∫ 1

0

dF (∇u1 + t∇(u2 − u1))(∇(u2 − u1))dt

=

( ∫ 1

0

dF (∇u1 + t∇(u2 − u1))dt

)
∇(u2 − u1).

Now we need to consider the eigenvalues of dF . First, notice that for X, V ∈ R2 with

|V | = 1 and X = (x1, x2), we have

(2.7) dF (X) =

⎛
⎜⎜⎝

1
(1+|X|2)1/2 − x2

1

(1+|X|2)3/2 − x2
2

(1+|X|2)3/2

− x2
1

(1+|X|2)3/2
1

(1+|X|2)1/2 − x2
2

(1+|X|2)3/2

⎞
⎟⎟⎠ .

And thus

(2.8) dF (X)(V ) =
V

(1 + |X|2)1/2
− 〈X, V 〉

(1 + |X|2)3/2
X.

It then follows that

(2.9) 〈V, dF (X)(V )〉 =
(1 + |X|2) − 〈X, V 〉2

(1 + |X|2)3/2
≥ (1 + |X|2) − |X|2

(1 + |X|2)3/2
≥ 1

(1 + |X|2)3/2
.

Thus, dF is a positive definite matrix with the lower bound for its eigenvalues de-

pendent on upper bounds for |X|. It follows from (2.7), that (ai,j) is a weighted

average of positive definite matrices with eigenvalues dependent on the upper bounds

for ∇u1,∇u2. This gives us (2.6) with the anticipated bounds on the eigenvalues of
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the matrix (ai,j).

Note that if w is the separation of a u satisfying (2.1) and (2.5), then w satisfies

a uniformly elliptic equation by Lemma 2.2.3. Thus, if Γu is embedded then w has

pointwise gradient bounds and a Harnack inequality.

2.3 Weierstrass Representation

Individuals interested in producing new minimal surfaces frequently use Weierstrass

data as a method. The Weierstrass representation takes a triple (M, g, dh) where M is

a Riemann surface, g is the stereographic projection of the Gauss map, and dh is the

height differential and gives an immersion into R3. The function g is meromorphic and

the one form dh has a zero everywhere g has a pole or zero. The minimal immersion

in R3 is defined as

(2.10) F := Re

∫ (
1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
dh.

Any immersed minimal surface in R3 admits such a representation.

For the helicoid with z ∈ C one has:

(2.11) g := eiαz; dh := dz; α ∈ R.

Notice that on the helicoid both dg
g

and dh have double poles at infinity; moreover,

dg
g
− iαdh is identically zero.
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2.4 One Sided Curvature Estimates of Colding and

Minicozzi

The geometric decomposition theorems needed to prove both Theorem 3.0.2 and

Theorem 1.1.4 rely on an important curvature estimate of Colding and Minicozzi.

The idea for the theorem is quite simple; if a minimal disk comes close to but stays

on one side of a plane, its curvature cannot be large.

Theorem 2.4.1. (Theorem 0.2 of [12]) There exists ε > 0 so that if Σ ⊂ B2r0 ∩

x3 > 0 ⊂ R3 is an embedded minimal disk with ∂Σ ⊂ ∂B2r0 , then for all components

Σ′ of Br0 ∩ Σ which intersect Bεr0 we have

(2.12) sup
Σ′

|AΣ|2 ≤ r−2
0 .

See Figure 2.1 for a depiction of the estimate. The components of Σ ∩ Br0 that

intersect Bεr0 are graphs.

Σ

Bεr0

Br0

B2r0

x3 = 0

Figure 2.1: The one-sided curvature estimate

The machinery needed to determine this bound is quite complicated and required

a strong understanding of the structure of embedded minimal disks with boundary
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in the boundary of a ball. We frequently use a corollary to this powerful theorem,

where another piece of Σ takes the place of the plane.

Corollary 2.4.2. (Corollary I.1.9 [12]) Given α > 0 there exists δ0 so that the

following holds:

Let Σ ⊂ B2R be an embedded minimal disk with ∂Σ ⊂ ∂B2R. If Σ contains a 2-valued

graph Σd ⊂ {x2
3 ≤ δ2

0(x
2
1 + x2

2)} = Cδ0 over DR\Dr0 with gradient ≤ δ0, then each

component of BR/2 ∩ Σ\(Cδ0 ∪ B2r0) is a multivalued graph with gradient ≤ α.

See Figure 2.2. Note that Σd plays the role of {x3 = 0}.

Bs(y)
B2r0

Σ′

Σd

Cδ(0)

Figure 2.2: The one-sided curvature estimate in a cone

The strength of this corollary lies in the fact that one gets uniform control on the

gradient of all components in the complement of a cone. In our decomposition, we

find a sequence of multivalued graphs, stacked in R3. Then, using Corollary 2.4.2,

we can show that any graphs that occur between these graphs eventually (for large

enough radius) have good gradient and curvature bounds.
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2.5 Compactness Results for Minimal Surfaces with

Bounded Curvature

Consider a surface Σ2 ⊂ R3. The Gauss map is a continuous map G : Σ2 → S2 such

that G(p) = NΣ(p), where NΣ denotes the unit normal to the surface Σ. Notice that

at each point p, there are two choices for the unit normal. For an oriented minimal

surface, we can globally define G after assigning one unit normal for a point p ∈ Σ.

We sometimes refer to the second fundamental form of Σ, A, as the derivative of the

Gauss map. Let E1, E2 be an orthonormal frame for Σ. Since, for x ∈ S2, NS2(x) = x,

we see that E1, E2 is also an orthonormal frame for S2. Then

(2.13) 〈dNS2(Ei), Ej〉 = 〈∇Ei
N, Ej〉 = −〈N,∇Ei

Ej〉 = −Ai,j

where here by Ai,j we mean the i, j component of the matrix A.

If a minimal surface has small curvature, using the fact that |∇N | ≤ |A| we can

easily see that there exists some s, depending on the curvature, such that Bs(y) is a

graph with small gradient, independent of y ∈ Σ. (Here Bs(y) denotes the intrinsic

ball of radius s about y.) See for instance Lemma 2.2 in [5].

Thus, as minimal graphs satisfy an elliptic PDE (assuming gradient bounds on

the graphs), we get a compactness result.
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Theorem 2.5.1. Let Σi be a sequence of minimal surfaces embedded in R3. If

(2.14) sup
i

sup
K∩Σi

|A|2 < ∞

for every compact K ⊂ R3, then there exists a subsequence Σij and an embedded

minimal surface Σ∞ such that Σij converges (possibly with multiplicity) on compact

sets to Σ∞ in the Ck topology for all k.

The convergence follows immediately from the Arzela-Ascoli theorem and Schauder

theory. The fact that Σ∞ is embedded follows from the maximum principle for mini-

mal surfaces. Also, as noted before, if Σ∞ is nonflat, then we know the convergence

is either with infinite multiplicity or with multiplicity one.

2.6 Colding-Minicozzi Lamination Theory

In a series of five papers [4, 9, 10, 11, 12], Colding and Minicozzi determine the

boundary of the moduli space of complete, embedded minimal planar domains and

surfaces of finite topology in R
3. We appeal to their results, both local and global,

throughout this thesis. For completeness, we include here the compactness result that

ultimately contains all local information.

Theorem 2.6.1. (See Theorem 0.6 in [4].) Let Σi ⊂ BRi
(0) ⊂ R3 be a sequence of

compact, embedded minimal surfaces of fixed genus with ∂Σi ⊂ ∂BRi
and Ri → ∞. If

(2.15) sup
B1∩Σi

|A|2 → ∞
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then there exists a subsequence Σj, a lamination L = {x3 = t}t∈I of R3 by parallel

planes (where I ⊂ R is closed), and a closed non-empty set S in the union of the

leaves of L such that, after a rotation of R3:

1. For each 0 < α < 1, Σj\S converges in the Cα topology to L\S.

2. supBr(x)∩Σj
|A|2 → ∞ as j → ∞ for all r > 0 and x ∈ S. That is, the curvature

blows up along S.

If Σi ∈ E1 and the curvature blows up on a compact set, then one can say more

about the nature of the limit. In that case, L is actually a foliation of R3 by parallel

planes away from a singular axis S = R, orthogonal to the leaves of L. We will use

the fact that S consists of exactly one orthogonal singular axis in the proof of our

decomposition, Theorem 1.2.1.

Rescalings of the helicoid (or even the genus one helicoid) provide a good illus-

tration of the type of convergence we observe for Σi ∈ E(1). Under a sequence of

rescalings, the helicoid converges to a foliation of R3 by parallel planes, away from a

singular axis. The curvature blows up at every point on the axis, and all points on

the axis are removable singularities of the foliation.
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Chapter 3

Uniqueness of the Helicoid

In this chapter, we provide an alternative proof to the “uniqueness of the helicoid.”

Most importantly, the tools developed in this chapter will be used throughout Chapter

4 to determine the conformality result, Theorem 1.1.4. Thus, the goal for this chapter

is to prove the following:

Theorem 3.0.2. The only complete, embedded minimal disks in R3 are the plane and

the helicoid.

The initial proof, given by Meeks and Rosenberg in [27], depends crucially on

the lamination theory and one-sided curvature estimate of Colding and Minicozzi

(see [12]). Instead of appealing to the lamination theory directly, we make use of

the tools developed by Colding and Minicozzi on the existence of multivalued graphs

in embedded minimal disks, as found in [9, 10, 11, 12]. Applying a result of [8] to

these multivalued graphs, we approximate them by pieces of helicoids, giving explicit

asymptotic behavior and geometric rigidity.
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In their paper, Meeks and Rosenberg first use the lamination theory to show that

(after a rotation) a homothetic blow-down of a non-flat complete, properly embedded

minimal disk, Σ, is, away from some Lipschitz curve, a foliation of flat parallel planes

transverse to the x3-axis. This gives, in a weak sense, that the surface is asymptotic

to a helicoid, which they use to conclude that the Gauss map of Σ omits the north

and south poles. The asymptotic structure combined with a result on parabolicity of

Collin, Kusner, Meeks and Rosenberg [15], is then used to show that Σ is conformally

equivalent to C. Finally, they look at level sets of the log of the Gauss map and use a

Picard type argument to show that this holomorphic map does not have an essential

singularity at ∞ and in fact is linear. Using the Weierstrass representation, they

conclude that Σ is the helicoid.

The explicit asymptotics in our paper allow for a more direct approach. We

show Σ contains a central “axis” of large curvature away from which it consists of two

multivalued graphs spiraling together, one strictly upward, the other downward. This

is the structure of the helicoid and more generally, at least away from a compact set,

the structure of the (known) embedded genus one helicoid(s) i.e. the construction of

Weber, Hoffman and Wolf, [22], and that of Hoffman and White, [25], and, indeed,

of any symmetric genus one helicoid (see [24]). Moreover, this is the behavior of any

complete, non-flat, properly embedded minimal disk:

Theorem 3.0.3. There exist subsets of Σ, RA and RS, with Σ = RA ∪RS where RS

can be written as the union of two (oppositely oriented) multivalued graphs u1 and u2

with non-vanishing angular derivative. Further, there exists ε0 > 0 such that on RA,
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|∇Σx3| ≥ ε0.

Remark 3.0.4. Here ui multivalued means that it can be decomposed into N -valued

ε-sheets (see Definition 3.1.2) with varying center. The angular derivative is then

with respect to the obvious polar form on each of these sheets. For simplicity we will

assume throughout that both ui are ∞-valued.

In order to establish this decomposition we first use the explicit asymptotics to

get the strict spiraling in RS. An application of the proof of Rado’s theorem (see [30])

then gives non-vanishing of |∇Σx3| on RA and, by a Harnack inequality, the uniform

lower bound. Crucially,

Proposition 3.0.5. On Σ, ∇Σx3 �= 0 and, for all c ∈ R, Σ ∩ {x3 = c} consists of

exactly one properly embedded smooth curve.

This implies that z = x3+ix∗
3 is a holomorphic coordinate on Σ. By looking at the

stereographic projection of the Gauss map, g, in RS we show that z maps onto C and

so Σ is conformally the plane. This follows from the control on the behavior of g due

to strict spiraling. Indeed, away from a small neighborhood of RA, Σ is conformally

the union of two closed half-spaces with log g = f providing the identification. It then

follows that f is also a conformal diffeomorphism which gives the uniqueness result.

3.1 Preliminaries

To study Σ we rely heavily on the structural results of Colding and Minicozzi regarding

embedded minimal disks. Much of this can be found in the series of papers [9, 10, 11,
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12], with more technical analysis in [6]. For a more general overview of the results,

the interested reader should consult the survey [8].

Throughout this chapter, Σ will be a complete, non-flat, embedded minimal disk.

Definition 3.1.1. Let

(3.1) Cδ(y) =
{
x : (x3 − y3)

2 ≤ δ2
(
(x1 − y1)

2 + (x2 − y2)
2
)} ⊂ R

3

be a cone and set Cδ = Cδ(0). At some point we will need to consider such cones

away from cylinders so we denote these:

(3.2) Cδ,R(y) = Cδ(y) ∩ {
x : (x1 − y1)

2 + (x2 − y2)
2 ≥ R2

} ⊂ R
3.

3.1.1 Initial Sheets

In Colding and Minicozzi’s work, multivalued minimal graphs form the basic building

block used to study the structure of minimal disks. We also make heavy use of the

properties of such graphs, which we normalize as follows:

Definition 3.1.2. A multivalued minimal graph Σ0 is an N-valued (ε-)sheet (centered

at 0 on the scale 1 ), if Σ0 = Γu and u, defined on S−πN,πN
1,∞ , satisfies (2.1), (2.5),

limρ→∞ ∇u(ρ, 0) = 0, and Σ0 ⊂ Cε.

Using Simons’ inequality, Corollary 2.3 of [6] shows that on the one-valued middle

sheet of a 2-valued graph satisfying (2.5), the Hessian of u has faster than linear decay.

For an ε-sheet, Γu, this implies a Bers like result on asymptotic tangent planes. Indeed,
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the normalization at ∞ gives gradient decay,

(3.3) |∇u| ≤ Cερ−5/12.

As an immediate consequence of the above, we have the following lemma:

Lemma 3.1.3. Given δ > 0 there exists an R ≥ 1 such that if Σ0 = Γu is an N-

valued ε-sheet with N > 1, then for ΣM
0 , the (N − 1)-valued middle sheet on scale R,

ΣM
0 ⊂ Σ0 ∩ Cδ,R.

We now give a condition for the existence of ε-sheets. Roughly, all that is required

is a point with large curvature relative to nearby points. Precisely,

Definition 3.1.4. The pair (y, s), y ∈ Σ, s > 0, is a (C) blow-up pair if

(3.4) sup
Σ∩Bs(y)

|A|2 ≤ 4|A|2(y) = 4C2s−2.

Having a blow-up pair forces the surface to spiral nearby (see Theorem 0.4 of

[10]). In particular, after a suitable rotation we obtain an ε-sheet. To show that near

a blow-up pair there is a single N -valued ε-sheet, one needs two results of Colding

and Minicozzi. First, from Corollary 4.14 in [10], is the existence, near a blow-up

point, of N -valued graphs that extend almost to the boundary. Then, by Proposition

II.0.12 from [9], since a large number of sheets gives (2.5), after a suitable rotation

one has an ε-sheet.

Theorem 3.1.5. Given ε > 0, N ∈ Z+, there exist C1, C2 > 0 so: Suppose that (0, s)
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is a C1 blow-up pair of Σ. Then there exists (after a rotation of R3) an N-valued

ε-sheet Σ0 = Γu0 on the scale s. Moreover, the separation over ∂Ds of Σ0 is bounded

below by C2s.

Proof. Proposition II.2.12 of [9] and standard elliptic estimates give an Nε ∈ Z
+ and

δε > 0 so that if u satisfies (2.1) on S−πNε,πNε

e−Nε ,∞ and Γu ⊂ Cδε , then on S0,2π
1,∞ we have

all the terms of (2.5) bounded (by ε/2) except |∇u|. Setting τ = min
{

ε
4
, δε

2

}
and

N0 = N + Nε + 2, apply Corollary 4.14 from [10] to obtain C. That is, if (0, t) is a C

blow-up pair, then the corollary gives an N0-valued graph u defined on S−πN0,πN0
t,∞ with

Γu ⊂ Cτ ∩ Σ and |∇u| ≤ τ . Hence by above (and a rescaling) we see that u satisfies

(2.5) on S−πN,πN
eNε t,∞ . At this point we do not a priori know that limρ→∞∇u(ρ, 0) = 0.

However, there is an asymptotic tangent plane. Thus after a small rotation to make

this parallel to the x1-x2 plane (and a small adjustment to τ and t), we may assume

the limit is zero.

Proposition 4.15 of [10] gives a β > 0 so that w(t, θ) ≥ βt. Integrating (2.5), we

obtain from this a C2 so that w(eNεt, θ) ≥ C2e
Nεt. Finally, if we set C1 = CeNε then

(0, s) being a C1 blow-up pair implies that (0, e−Nεs) is a C blow-up pair. This gives

the result.

Once we have one ε-sheet, we can use the one-sided curvature estimates, Corollary

2.4.2, to extend the graph (and (2.5)) from an ε-sheet to a narrow cone. Specifically,

there is a curvature bound on embedded minimal disks close to, but on one side of,

a flat minimal surface. Thus, using the initial ε-sheet as such a flat surface implies

that in an appropriately chosen cone all pieces of Σ are graphs with good estimates.
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Theorem 3.1.6. Suppose Σ contains a 4-valued ε-sheet Σ0 on the scale 1 with ε

sufficiently small. Then there exist R ≥ 1, δ > 0 depending only on ε such that the

component of Σ ∩ (Cδ\BR) that contains the 3-valued middle sheet on scale R of Σ0

can be expressed as the multivalued graph of a function, u, which satisfies (2.5).

Proof. First, we establish a Harnack inequality for separation within Cε/2,2. Note

that the distance (as subsets of R3) between Cε/2,2 and ∂Cε,1 has a minimum, call it

d0. As long as ε is less than δ0 given by Corollary 2.4.2 with α = 1, we know that

the component of Σ ∩ Cε,1 containing ΣM
0 is the graph of some function u0 defined

on a polar domain Ω0 with |∇u| ≤ 1. Set Ω1 = Φ−1
u (Cε/2,2). Then for b ∈ ∂Ω0 and

a ∈ Ω1, let γab denote a curve in Ω0 connecting a and b normalized so |γ̇ab| = 1. Since

intrinsic distance (in Σ) is at least as large as extrinsic distance we have

(3.5) d0 ≤
∫ �(γab)

0

√
1 + |∇u0(γab(t))|2 dt ≤

√
2�(γab).

That is, there exists a lower bound d1 on dist(∂Ω0, Ω1) that depends only on ε. The

separation function w is defined on smaller domains Ω̃0, Ω̃1. Still d1 gives the same

lower bound on dist(∂Ω̃0, Ω̃1). Thus, by the sharp Harnack inequality of [6], (using

(2.6)) we have for all x ∈ sΩ1

(3.6) sup
Br(x)

w ≤ CH inf
Br(x)

w

where CH is independent of x and r = log(d1/4).

Now given ε, pick Nε and δε as in the proof of Theorem 3.1.5. Set δ1 = min {δε, ε/2}.
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For λ > 0, to be chosen later, pick δ2 = δ2(λ) ≤ δ1/2 as in Corollary 2.4.2 with

α = min {λ, ε/2}. Now pick R0 = R0(λ) as in Lemma 3.1.3 using the initial sheet Σ0

and cone Cδ2 . Then by construction on Ω2 = Φ−1
u (Cδ2,R0), |∇u| ≤ λ.

Integrating this gradient estimate gives supΩ̃2
|w|(ρ, θ) ≤ 2πλρ, where Ω̃2 is again

the restriction to the subset of Ω2 over which w is well defined. Define N(ρ) =

�θ+
1 (ρ)−θ+

2 (ρ)

2π
�, where θ+

i (ρ) = sup{θ ∈ Γi|(ρ, θ) ∈ Γi}. Thus, N(ρ) is approximately

the number of sheets between ∂Ω1 and ∂Ω2 at a given radius. Ultimately, we want

to show that N(ρ) ≥ Nε for all ρ ≥ R0. By repeated application of (3.6), with CH

adjusted to absorb r, we have

(3.7) |w|(ρ, θ) ≤ 2πλρC
2πN(ρ)
H

on Ω1. We then note

(δ1 − δ2)ρ ≤ u0(ρ, θ+
1 (ρ)) − u0(ρ, θ+

1 (ρ) − 2πN(ρ))(3.8)

≤
N(ρ)∑
k=1

w(ρ, θ+
1 (ρ) − 2πk)(3.9)

≤ 2πλN(ρ)C
2πN(ρ)
H ρ(3.10)

≤ 2πC0λC
4πN(ρ)
H ρ(3.11)

where the last inequality comes from the fact that xbx ≤ C0b
2x for C0 depending on

b. Since δ2 ≤ δ1/2 we obtain

(3.12)
δ1

4πλ
≤ C0C

4πN(ρ)
H .
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Hence, by choosing λ sufficiently small, we can make N(ρ) ≥ Nε. Finally, we pick

δ ≤ δ2 and R ≥ R0 so that if (ρ, θ) ∈ Ω = Φ−1
u (Cδ,R) then (e±Nερ, θ) ∈ Ω2 and so

one has (2.5) for u0 on Ω. One can find such a δ by comparing intrinsic distance to

extrinsic distance as at the beginning of the proof.

Remark 3.1.7. Note that all of the above results are amenable to translating and

rescaling around suitable blow-up pairs given by Theorem 3.1.5.

A barrier argument then shows that there are only two such pieces. Namely, by

Theorem I.0.10 of [12], the parts of Σ that lie in between an ε-sheet make up a second

multivalued graph. Furthermore, one-sided curvature gives gradient estimates which,

coupled with the estimates we get given enough sheets, reveal that this graph actually

contains an ε-sheet. Thus, around a blow-up point, Σ consists of two ε-sheets spiraling

together.

We now make the last statement precise. Suppose u is defined on S−πN−3π,πN+3π
1/2,∞

and Γu is embedded. We define E to be the region over D∞\D1 between the top and

bottom sheets of the concentric subgraph of u. That is:

(3.13) E = {(ρ cos θ, ρ sin θ, t) :

1 ≤ ρ ≤ ∞,−2π ≤ θ < 0, u(ρ, θ − πN) < t < u(ρ, θ + (N + 2)π}.

Using Theorem I.0.10 of [12], Theorem 3.1.5, and one-sided curvature, we have:

Theorem 3.1.8. Given ε > 0 sufficiently small, there exist C1, C2 > 0 so: Suppose

(0, s) is a C1 blow-up pair. Then there exist two 4-valued ε-sheets Σi = Γui
(i = 1, 2)
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on the scale s which spiral together (i.e. u1(s, 0) < u2(s, 0) < u1(s, 2π)). Moreover,

the separation over ∂Ds of Σi is bounded below by C2s.

Remark 3.1.9. We refer to Σ1, Σ2 as (ε-)blow-up sheets associated with (y, s).

Proof. Choose ε0 > 0 and N0 as in Theorem I.0.10 (of [12]). For ε < ε0 choose Nε,

δε as in the proof of Theorem 3.1.5. With N − 6 = max {Nε + 4, N0} denote by

C ′
1, C

′
2 the constants given by Theorem 3.1.5. Thus, if (0, r) is a C ′

1 blow-up pair then

there exists an N -valued ε-sheet Σ′
1 = Γu′

1
on scale r inside of Σ. Applying Theorem

I.0.10 to u′
1, we see that Σ ∩ E\Σ′

1 is given by the graph of a function u′
2 defined on

S−πNε−4π,πNε+4π
2r,∞ . In particular, for u′

2 on S−4π,4π
2eNεr,∞ we have (2.5) as long as we can

control |∇u′
2|. But here we use one-sided curvature (and the ε-sheet Σ′

1). Namely,

given α = min {ε/2, δε}, one-sided curvature estimates allow us to choose δ0 > 0 so

that in the cone Cδ0 (and outside a ball) Σ is graphical with gradient less than α.

By (3.3), there exists r1 > 0 such that |∇u′
1| ≤ δ0 on S−5π,5π

r1,∞ and this 5-valued graph

is contained in Cδ0\Br1. Moreover, since five sheets of u′
1 are inside of Cδ0 , the four

concentric sheets of u′
2 are also in that cone. Set γ = max

{
2eNε, 1

}
. Let u1 and u2

be given by restricting u′
1 and u′

2 to S−4π,4π
γr1,∞ and define Σi = Γui

.

Set C1 = γC ′
1, so if (0, s) is a C1 blow-up pair then Σi will exist on scale s.

Integrating (2.5), the lower bound C ′
2 gives a lower bound on initial separation of Σ1.

We find C2 by noting that if the initial separation of Σ2 was too small there would

be two sheets between one sheet of Σ1.
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3.1.2 Blow-up Pairs

Since Σ is not a plane, we can always find at least one blow-up pair (y, s). We then

use this initial pair to find a sequence of blow-up pairs forming an “axis” of large

curvature. The key results we need are Lemma 5.1 of [10], which says that as long

as curvature is large enough in some ball we can find a blow-up pair in the ball,

and Corollary III.3.5 of [11], which guarantees points of large curvature above and

below blow-up points. Colding and Minicozzi, in [13], provide a good overview of this

process of decomposing Σ into blow-up sheets. The main result is the following (see

Lemma 2.5 of [13]):

Theorem 3.1.10. For 1/2 > γ > 0 and ε > 0 both sufficiently small, let C1 be

given by Theorem 3.1.8. Then there exists Cin > 4 and δ > 0 so: If (0, s) is a

C1 blow-up pair then there exist (y+, s+) and (y−, s−), C1 blow-up pairs, with y± ∈

Σ ∩ BCins\ (B2s ∪Cδ), x3(y+) > 0 > x3(y−), and s± ≤ γ|y±|.

Hence, given a blow-up pair, we can iteratively find a sequence of blow-up pairs

ordered by height and lying outside of a cone, with distance between subsequent pairs

bounded by a fixed multiple of the scale.

Proof. For simplicity let us rescale so that s = 1. Since (0, 1) is a C1 blow-up pair,

Theorem 3.1.8 gives two blow-up sheets Σi = Γui
(i = 1, 2). Let ν denote ∂Σ0,2, the

boundary of the component of B2 ∩ Σ containing 0. By the maximum principle this

is a simple closed curve. Since dist(Σi, 0) < 2, ν meets both Σ1 and Σ2. Hence ν

contains two curves ν± ⊂ Σ∩∂B2 that connect the Σi above and below 0 respectively.
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This is accomplished by choosing appropriate components of ν\(Σ1 ∪Σ2). Let Σ± be

the component of Σ\(Σ1 ∪ Σ2 ∪ ν±) that does not contain Σ0,1 (again these will be

above and below 0). Without loss of generality we will focus on Σ+ (i.e above 0).

By Corollary III.3.5 of [11], for C3 (to be chosen later) there exists C2 depending

on C3, and an element x ∈ Σ0,C2 ∩Σ+\B4 with |x|2|A|2(x) ≥ 4C2
3 . Let δ0 > 0 be given

by the corollary of the one-sided curvature estimates, Corollary I.1.9 of [12]. As long

as ε < δ0, one-sided curvature gives a C4 so that: for z ∈ Cδ0 ∩Σ\B2s, |z|2|A|2 ≤ 4C2
4 .

Hence choosing C3 ≥ C4 forces x out of this set. Thus, x ∈ Σ+ ∩ BC2\(Cδ0 ∪ B4).

The lower bound on sup |x|2|A|2 implies that

(3.14) sup
B γ

2 |x|(x)

|A|2 ≥ 16

(
γC3

2

)2

(γ|x|)−2.

Now, applying Lemma 5.1 of [10] we obtain y ∈ Bγ|x|(x) ∩ Σ and r1 ≤ γ|x| − |y − x|

so that (y, r1) is a γC3

2
blow-up pair. If necessary, increase C3 so that γC3

2
≥ C1.

Then for t = C1

γC3
r1 ≤ 1

2
r1 ≤ γ

2
|x|, (y, t) is a C1 blow-up pair. Note that since

1
2
|x| ≤ (1 − γ)|x| ≤ |y| ≤ (1 + γ)|x|, one has t ≤ γ|y|.

The above inequalities imply that if we set Cin = (1 + γ)C2 then y ∈ Σ ∩

BCin
\B4(1−γ) ⊂ BCin

\B2. To determine δ, notice that for γ ≤ δ0

2
√

1+δ2
0

, x3(y) ≥
1
2
x3(x) ≥ C(δ0). Thus, for δ < C(δ0)

Cin
, y ∈ Σ\Cδ. Setting (y+, s+) = (y, t) and making

the same argument for (y−, s−) gives the result.

Hence, given a blow-up pair, we can iteratively find a sequence of blow-up pairs

ordered by height and lying outside of a cone, with distance between subsequent pairs
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bounded by a fixed multiple of the scale.

By the lamination theory, the existence of a blow-up pair imposes strong control

on nearby geometry. The chord-arc bounds and Lemma 2.26 of [13] are examples.

We also have:

Proposition 3.1.11. Given K, there is an N so that: If (y1, s1) and (y2, s2) are

C blow-up pairs of Σ with y2 ∈ BKs1(y1), then the number of sheets between the

associated blow-up sheets is at most N .

Proof. We note that for a large, universal constant C ′ the area of BC′Ks1(y1)∩Σ gives

a bound on N , so it is enough to uniformly bound this area. The chord-arc bounds

of [13] give a uniform constant γ depending only on C ′ so that BC′Ks1(y1) ∩ Σ is

contained in BγKs1(y1) the intrinsic ball in Σ of radius γKs1. Furthermore, Lemma

2.26 of [13] gives a uniform bound on the curvature of Σ in BγKs1(y1) and hence a

uniform bound on the area of BγKs1(y1). Since BC′Ks1(y1)∩Σ ⊂ BγKs1(y1) it also has

uniformly bounded area.

3.2 Asymptotic Helicoids

Lemma 14.1 of [8] and the gradient decay (3.3) shows that ε-sheets can be approxi-

mated by a combination of planar, helicoidal, and catenoidal pieces. Precisely, there

is a “laurent expansion” for the almost holomorphic function ux − iuy. This result

allows us to bound the oscillation on broken circles C(ρ) := S−π,π
ρ,ρ of uθ, which yields

asymptotic lower bounds for uθ.

35



Lemma 3.2.1. Given Γu, a 3-valued ε-sheet on scale 1, set f = ux − iuy. Then for

r1 ≥ 1 and ζ = ρeiθ with (ρ, θ) ∈ S−π,π
2r1,∞

(3.15) f(ζ) = cζ−1 + g(ζ)

where c = c(r1, u) ∈ C and |g(ζ)| ≤ C0r
−1/4
1 |ζ |−1 + C0εr

−1
1 |w(r1,−π)|.

Using this approximation result we now bound the oscillation.

Lemma 3.2.2. Suppose Γu is a 3-valued ε-sheet on scale 1. Then for ρ ≥ 2, there

exists a universal C so:

(3.16) osc
C(ρ)

uθ ≤ Cρ−1/4 + Cε|w(ρ,−π)|.

Proof. Using Lemma 3.2.1 and the identification uθ(ρ, θ) = −Im ζf(ζ) for ζ = ρeiθ,

we compute:

osc
C(ρ)

uθ = sup
|ζ|=ρ

Im (−c − ζg(ζ))− inf
|ζ|=ρ

Im (−c − ζg(ζ))

≤ 2 sup
|ζ|=ρ

|ζ ||g(ζ)| ≤ 4C0ρ
−1/4 + 2C0ε|w(ρ/2,−π)|.

The last inequality comes from Lemma 3.2.1, setting 2r1 = ρ. Finally, integrate (2.5)

to get the bound |w|(ρ/2,−π) ≤ |w|(ρ,−π) and choose C sufficiently large.

Integrating uθ around C(ρ) gives w(ρ,−π), which yields a lower bound on supC(ρ) uθ

in terms of the separation. The oscillation bound of (3.16) then gives a lower bound

for uθ. Indeed, for ε sufficiently small and large ρ, uθ is positive.
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Proposition 3.2.3. There exists an ε0 so: Suppose Γu is a 3-valued ε-sheet on scale

1 with ε < ε0 and w(1, θ) ≥ C2 > 0. Then there exists C3 = C3(C2) ≥ 2, so that on

S−π,π
C3,∞:

(3.17) uθ(ρ, θ) ≥ C2

8π
ρ−ε.

Proof. Since
∫ π

−π
uθ(ρ, θ) dθ = w(ρ,−π) we see w(ρ,−π) ≤ 2π supC(ρ) uθ. Using the

oscillation bound (3.16) then gives the lower bound:

(3.18) (1 − 2πCε)w(ρ,−π) − 2πCρ−1/4 ≤ 2π inf
C(ρ)

uθ.

Pick ε0 so that 2πCε0 ≤ 1/2. Integrating (2.5) yields w(ρ, θ) ≥ w(1, θ)ρ−ε ≥ C2ρ
−ε.

Thus,

(3.19) inf
C(ρ)

uθ ≥ C2

4π
ρ−ε − Cρ−1/4.

Since ε < 1/4, just choose C3 large.

3.3 Decomposition of Σ

In order to decompose Σ, we use the explicit asymptotic properties found above

to show that, away from the “axis,” Σ consists of two strictly spiraling graphs. In

particular, this implies that all intersections of Σ with planes transverse to the x3-axis

have exactly two ends. The proof of Rado’s theorem then gives that ∇Σx3 is non-
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vanishing and so each level set consists of one unbounded smooth curve. A curvature

estimate and a Harnack inequality then give the lower bound on |∇Σx3| near the axis.

To prove Theorem 3.0.3 we first construct RS.

Lemma 3.3.1. There exist constants C1, R1 and a sequence (yi, si) of C1 blow-up pairs

of Σ so that: x3(yi) < x3(yi+1) and for i ≥ 0, yi+1 ∈ BR1si
(yi) while for i < 0, yi−1 ∈

BR1si
(yi). Moreover, if RA is the connected component of

⋃
i BR1si

(yi)∩Σ containing

y0 and RS = Σ\RA, then RS has exactly two unbounded components, which are

(oppositely oriented) multivalued graphs u1 and u2 with ui
θ �= 0. In particular, ∇Σx3 �=

0 on the two graphs.

Proof. Fix ε < ε0 where ε0 is given by Proposition 3.2.3. Using this ε, from Theorem

3.1.8 we obtain the blow-up constant C1 and denote by C2 the lower bound on initial

separation. Suppose 0 ∈ Σ and that (0, 1) is a C1 blow-up pair. From Theorem 3.1.10

there exists a constant Cin so that there are C1 blow-up pairs (y+, s+) and (y−, s−)

with x3(y−) < 0 < x3(y+) and y± ∈ BCin
. Note by Proposition 3.1.11 that there is a

fixed upper bound N on the number of sheets between the blow-up sheets associated

to (y±, s±) and the sheets Σ0
i (i = 1, 2) associated to (0, 1).

As a consequence of Theorem 3.1.6, there exists an R so that all the N sheets

above and the N sheets below Σ0
i are ε-sheets centered on the x3-axis on scale R.

Call these pairs of 1-valued sheets Σj
i with −N ≤ j ≤ N . Integrating (2.5), we obtain

from C2 and N a value, C ′
2, so that for all Σj

i , the separation over ∂DR is bounded

below by C ′
2. Non-vanishing of the right hand side of (3.17) is scaling invariant, so

there exists a C3 such that: on each Σj
i , outside of a cylinder centered on the x3-axis
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of radius RC3, ui
θ �= 0. The chord-arc bounds of [13] (i.e. Theorem 0.5) then allow

us to pick R1 large enough so the component of BR1 ∩ Σ containing 0 contains this

cylinder, the points y+, y− and meets each Σj
i . Finally, we note that all the statements

in the theorem are invariant under rescaling. Hence, use Theorem 3.1.10 to construct

a sequence of C1 blow-up pairs (yi, si) satisfying the necessary conditions.

The placement of the blow-up pairs and the strict spiraling gives:

Lemma 3.3.2. For all h, there exist α, ρ0 > 0 so that for all ρ > ρ0 the set Σ ∩

{x3 = c} ∩ {x2
1 + x2

2 = ρ2} consists of exactly two points for |c − h| ≤ α.

Proof. First note, for ρ0 large, the intersection is never empty by the maximum prin-

ciple and because Σ is proper. Without loss of generality we may assume h = 0 with

0 ∈ Z0 = Σ ∩ {x3 = 0} and |A|2(0) �= 0. Let R1 and the set of blow-up pairs be

given by Lemma 3.3.1. There then exists ρ0 so for 2ρ > ρ0, {x2
1 + x2

2 = ρ2} ∩ Z0 lies

in the set RS. If no such ρ0 existed then, since the blow-up pairs lie outside a cone,

there would exist δ > 0 and a subset of the blow-up pairs (yi, si) so 0 ∈ BδR1si
(yi).

However, Lemma 2.26 of [13], with K1 = δR1, would then imply |A|2(0) ≤ K2s
−2
i , or

|A|2(0) = 0, a contradiction. Now, for some small α and ρ > ρ0, Zc ∩ {x2
1 + x2

2 = ρ2}

lies in RS for all |c| < α, and so {x2
1 + x2

2 = ρ2} ∩ {−α < x3 < α} ∩ Σ consists of the

union of the graphs of u1 and u2 over the circle ∂Dρ, both of which are monotone

increasing in height.

As x3 is harmonic on Σ, Proposition 3.0.5 is an immediate consequence of the

previous result. We now show Theorem 3.0.3:
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Proof. By Lemma 3.3.1 it remains to show that |∇Σx3| is bounded below on RA.

Suppose that (0, 1) is a blow-up pair. By the chord-arc bounds of [13], there exists γ

large enough so that the intrinsic ball of radius γR1 contains Σ ∩ BR1 . Lemma 2.26

of [13] implies that curvature is bounded in B2γR1 ∩Σ uniformly by K. The function

v = −2 log |∇Σx3| ≥ 0 is well defined and smooth by Proposition 3.0.5 and standard

computations give ΔΣv = |A|2. Then, since |∇Σx3| = 1 somewhere in the component

of B1(0)∩Σ containing 0, we can apply a Harnack inequality (see Theorems 9.20 and

9.22 in [18]) to obtain an upper bound for v on the intrinsic ball of radius γR1 that

depends only on K. Consequently, there is a lower bound ε0 on |∇Σx3| in Σ ∩ BR1 .

Since this bound is scaling invariant, the same bound holds around any blow-up pair.

Finally, any bounded component, Ω, of RS has boundary in RA and so, since v is

subharmonic, |∇Σx3| ≥ ε0 on Ω. Thus, by adjoining all such bounded Ω to RA we

obtain Theorem 3.0.3.

3.4 Conformal Structure of Σ

Since ∇Σx3 is non-vanishing and the level sets of x3 in Σ consist of a single curve,

the map z = x3 + ix∗
3 : Σ → C is a global holomorphic coordinate (here x∗

3 is the

harmonic conjugate of x3). Additionally, ∇Σx3 �= 0 implies that the normal of Σ

avoids (0, 0,±1). Thus, the stereographic projection of the Gauss map, denoted by

g, is a holomorphic map g : Σ → C\ {0}. By monodromy, there exists a holomorphic

map f = f1 + if2 : Σ → C so that g = ef . We will use f to show that z is

actually a conformal diffeomorphism between Σ and C. As the same is then true for
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f , embeddedness and the Weierstrass representation implies Σ is the helicoid.

3.4.1 Structure of f

We note the following relation between ∇Σx3, g and f :

(3.20) |∇Σx3| = 2
|g|

1 + |g|2 ≤ 2e−|f1|.

An immediate consequence of (3.20) and the decomposition of Theorem 3.0.3 is that

there exists γ0 > 0 so on RA, |f1(z)| ≤ γ0. This imposes strong rigidity on f :

Proposition 3.4.1. Let Ω± = {x ∈ Σ : ±f1(x) ≥ 2γ0} then f is a proper conformal

diffeomorphism from Ω± onto the closed half-spaces {z : ±Re z ≥ 2γ0}.

Proof. Let γ > γ0 be a a regular value of f1. Such γ exists by Sard’s theorem and

indeed form a dense subset of (γ0,∞). We first claim that the smooth submanifold

Z = f−1
1 (γ) has a finite number of components. Note that Z is non-empty by (3.3)

and (3.20). By construction, Z is a subset of RS and, up to choosing an orientation,

Z lies in the graph of u1, which we will henceforth denote as u. Let us parameterize

one of the components of Z by φ(t), non-compact by the maximum principle, and

write φ(t) = Φu(ρ(t), θ(t)).

At the point Φu(ρ, θ) we compute:

(3.21) g(ρ, θ) = − 1√
1 + |∇u|2 − 1

(
uρ(ρ, θ) + i

uθ(ρ, θ)

ρ

)
eiθ.
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Since uθ(ρ(t), θ(t)) > 0, there exists a function θ̃(t) with π < θ̃(t) < 2π such that

(3.22) |∇u|(ρ(t), θ(t))eiθ̃(t) = −uρ(ρ(t), θ(t)) − i
uθ(ρ(t), θ(t))

ρ(t)
.

Thus f2(φ(t)) = θ(t) + θ̃(t).

We now claim limt→±∞ |f2(φ(t))| = ∞. Suppose limt→∞ f2(φ(t)) = R < ∞ and

f2(φ(t)) < R. Then, the formula for f2(φ(t)) implies that for t large φ(t) lies in

one sheet. The decay estimates (3.3) together with (3.20) imply ρ(t) cannot became

arbitrarily large and so the positive end of φ lies in a compact set. Thus, there is

a sequence of points pj = φ(tj), with tj monotonically increasing to ∞, so pj →

p∞ ∈ Σ. By the continuity of f1, p∞ ∈ Z, and since f2(pj) is monotone increasing

with supremum R, f2(p∞) = R, and so p∞ is not in φ. However, p∞ ∈ Z implies

f ′(p∞) �= 0 and so f restricted to a small neighborhood of p∞ is a diffeomorphism

onto its image, contradicting φ coming arbitrarly close to p∞.

Thus, the formula for f2(φ(t)) and the bound on θ̃ show that θ(t) must extend from

−∞ to ∞. We now conclude that there are at most a finite number of components of

Z. Namely, since θ(t) runs from −∞ to ∞ we see that every component of Z must

meet the curve η(ρ) = Φu(ρ, 0) ∈ RS. Again, the gradient decay of (3.3) says that

the set of intersections of Z with η lies in a compact set, and so consists of a finite

number of points. Now, suppose there was more than one component of Z. Looking

at the intersection of Z with η, we order these components innermost to outermost;

parameterize the innermost curve by φ1(t) and the outermost by φ2(t). Pick τ a

regular value for f2, and parameterize the component of f−1
2 (τ) that meets φ1 by
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σ(t), writing σ(t) = Φu(ρ(t), θ(t)) in RS. From the formula for f2, |θ(t) − τ | ≤ 2π.

Again, σ(t) cannot have an end in a compact set, so ρ(t) → ∞. Hence, σ must also

intersect φ2 contradicting the monotonicity of f1 on σ.

Hence, when γ > γ0, is a regular value of f1, f−1
1 (γ) is a single smooth curve. We

claim this implies that all γ > γ0 are regular values. Suppose γ′ > γ0 were a critical

value of f1. Then, as f1 is harmonic, the proof of Rado’s theorem implies for γ > γ0,

a regular value of f1 near γ′, f−1
1 (γ) would have at least two components. Thus,

f : Ω+ → {z : Re z ≥ 2γ0} is a conformal diffeomorphism that maps boundaries onto

boundaries, immediately implying f is also proper on Ω+, and similarly for Ω−.

By looking at z, which already has well understood behavior away from ∞, we

see that Σ is conformal to C with z providing an identification.

Proposition 3.4.2. The map h ◦ z−1 : C → C is linear.

Proof. We first show that z is a conformal diffeomorphism between Σ and C, that

is z is onto. This follows if we show x∗
3 goes from −∞ to ∞ on the level sets of

x3. The key fact is: each level set of x3 has one end in Ω+ and the other in Ω−.

This is an immediate consequence of the radial gradient decay on level sets of x3

forced by the one-sided curvature estimate. Indeed, x3 runs from −∞ to ∞ along the

curve ∂Ω+ and so z(∂Ω+) splits C into two components with only one, V, meeting

z(Ω+) = U . After conformally straightening the boundary of V (using the Riemann

mapping theorem) and precomposing with f |−1
Ω+

we obtain a map from a closed half-

space into a closed half-space with the boundary mapped to the boundary. We claim

that this map is necessarily onto, that is U equals V̄ . Suppose it was not onto, then

43



a Schwarz reflection would give a holomorphic map from C into a simply connected

proper subset of C. Because the latter is conformally a disk, Liouville’s theorem

would imply this map was constant, a contradiction. As a consequence, if p → ∞

in Ω+ then z(p) → ∞, with the same true in Ω−. Thus, along each level set of x3,

|x∗
3(p)| → ∞ and so z is onto. Then, by the level set analysis in the proof of 3.4.1

and Picard’s theorem, f ◦ z−1 is a polynomial and is indeed linear.

3.4.2 Concluding Uniqueness

After a translation in R
3 and a rebasing of x∗

3, f(z) = αz for some α ∈ C. As dz is

the height differential, the Weierstrass representation gives

x1(it) = |α|−2 (α2 sinh(α2t) sin(α1t) − α1 cosh(α2t) cos(α1t))

and

x2(it) = |α|−2 (α2 sinh(α2t) cos(α1t) + α1 cosh(α2t) sin(α1t))

where α = α1 + iα2. By inspection this curve is only embedded when α1 = 0, i.e. if

α = iα2. The factor α2 corresponds to a homothetic rescaling and so Σ is the helicoid.
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Chapter 4

Conformal Structure of Minimal

Surfaces with Finite Topology

Throughout this section, we apply the techniques of Chapter 3 to study complete

embedded minimal surfaces with finite topology and one end. The space E(1) of such

surfaces is non-trivial; the embedded genus one helicoid, H, constructed in [22] by

Hoffman, Weber, and Wolf provides an example which moreover has the property of

being asymptotically helicoidal (see also [32] for a good exposition). We note again

that Colding and Minicozzi, in [13], show that any surface in E(1) is necessarily

properly embedded, a fact we use throughout.

The construction and study of H, as well as objects in the larger class where

embeddedness is dropped, has a rich history. Using the Weierstrass representation,

Hoffman, Karcher, and Wei in [20] first constructed an immersed genus one helicoid.

Computer graphics suggested it was embedded, but the existence of an embedded
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genus one helicoid (in fact H) followed only after Hoffman and Wei proposed a new

construction in [23]. They considered H as the limit of a family of screw-motion in-

variant minimal surfaces with periodic handles and a helicoidal end. Weber, Hoffman,

and Wolf confirmed the existence of such a family of surfaces in [21] and ultimately

proved embeddedness of H in [22]. Hoffman, Weber, and Wolf conjecture that H is

the unique element of E(1) with genus one containing two coordinate axes. Recently,

Hoffman and White, in [25], used a variational argument to construct an embedded

genus one helicoid, though whether their construction is H is unknown.

In [24], Hoffman and White proved rigidity results for immersed minimal genus

one surfaces with one end, assuming the surface contained the x1 and x3-axes. In

particular, they showed the surface was conformally a punctured torus with the end

asymptotic to a helicoid. In this section, we prove Theorem 1.1.4. That is, we show

that any Σ ∈ E(1) is conformally a once punctured, compact Riemann surface, with

Weierstrass data that has helicoid-like behavior at the puncture.

As in the simply connected case, the proof of Theorem 1.1.4 requires we first prove

the strong structural decomposition result, Theorem 1.2.1.

4.1 Decomposition of Σ

In the next four subsections, we develop the tools needed to prove the structural

results of Theorem 1.2.1 and Proposition 1.2.3. Many of these are extensions of those

developed for the simply connected case. We prove Theorem 1.2.1 and Proposition

1.2.3 at the conclusion of subsection 4.1.9.
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4.1.1 Preliminaries

We first introduce some notation. Throughout this chapter, let Σ ∈ E(1) and have

positive genus, i.e. Σ is a complete, properly embedded minimal surface with finite

and positive genus, k, and one end. Here we say that a surface has genus k if it is

homeomorphic to a compact genus k Riemann surface with at most a finite number

of punctures. As Σ has one end and is complete in R3, there exists an R > 0 so that

one of the components Σ of Σ ∩ BR is a compact surface with connected boundary

and genus k. Thus, Σ\Σ has genus 0 and is a neighborhood of the end of Σ. We now

homothetically rescale so that the genus, Σ, lies in B1 and so that supΣ |A|2 ≥ 1.

We continue to let Cδ = {x2
3 ≤ δ2(x2

1 + x2
2)}, as in Definition 3.1.1. Further, we

still refer to a blow-up pair (y, s) as in Definition 3.1.4.

4.1.2 Topological structure of Σ

An elementary but crucial consequence of the maximum principle is that each com-

ponent of the intersection of a minimal disk with a closed ball is a disk. Similarly,

each component of the intersection of a genus k surface with a ball has genus at most

k (see Appendix C of [12] and Section I of [11]). We note that for Σ with one end

and finite genus we obtain a bit more:

Proposition 4.1.1. Suppose Σ ∈ E(1) and Σ ⊂ Σ∩B1 is connected and has the same

genus as Σ. Then, Σ\Σ is an annulus. Moreover, for any convex set C with non-

empty interior, if C ∩B1 = ∅, then each component of C ∩Σ is a disk. Alternatively,

if B1 ⊂ C then all the components of C ∩ Σ not containing Σ are disks.
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Proof. That Σ\Σ is an annulus is a purely topological consequence of Σ having one

end. Namely, if ∂Σ had more than one connected component, the genus of Σ would

be strictly greater than the genus of Σ.

If C and B1 are disjoint then, as they are convex, there exists a plane P so that P

meets Σ transversely and so that P separates B1 and C. Since Σ\Σ is an annulus and

P ∩ Σ = ∅, the convex hull property implies that P ∩ Σ consists only of unbounded

smooth proper curves. Thus exactly one of the components of Σ\(P ∩ Σ) is not a

disk. As C is disjoint from the non-disk component we have the desired result. On

the other hand, if C is convex and contains B1, denote by C ′ the component of C ∩Σ

containing Σ. Suppose there was a component of C ∩Σ not equal to C ′ that was not

a disk, then there would be a subset of Σ with boundary in C̄ but interior disjoint

from C, violating the convex hull property.

4.1.3 Rescalings of Σ

We note that Theorem 1.2.1 is a sharpening, for Σ ∈ E(1), of a much more general

description of the shapes of minimal surfaces given by Colding and Minicozzi in [4].

More precisely, in that paper they show, for a large class of embedded minimal sur-

faces in R3, how the geometric structure of a surface is determined by its topological

properties. In particular, as Σ has finite topology and one end, their work shows that

it roughly looks like a helicoid. That is, away from a compact set containing the

genus, Σ is made up of two infinite-valued graphs that spiral together and are glued

along an axis. While we do not make direct use of this description, it is needed in
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order to derive the structural results of Section 4.1.4 from the compactness theory of

[4]. Thus, we briefly sketch a proof.

First, Theorem 4.1.1 implies that the sequences λiΣ, λi → 0, of homothetic scal-

ings of Σ are all uniformly locally simply connected (ULSC); i.e. there is no con-

centration of topology other than the genus shrinking to a point (see (1.1) of [4]

for the rigorous definition). Theorem 0.9 of [4] (particularly its extension to finite

genus ULSC surfaces) gives a compactness result for such sequences. Namely, any

ULSC sequence of fixed, finite genus surfaces, with boundaries going to ∞ and cur-

vature blowing up in a compact set, has a subsequence converging to a foliation, L,

of flat parallel planes with at most two singular lines (where the curvature blows

up), S1,S2 orthogonal to the leaves of the foliation. Up to a rotation of R3 we have

L = {x3 = t}t∈R
and so Si are parallel to the x3-axis. Away from the singular lines

the convergence is in the sense of graphs, in the Cα topology on compact sets for

any 0 < α < 1. Moreover, as explained in property (Culsc) of Theorem 0.9 (see also

Proposition 1.5 of [4]), in a small ball centered at a point of the singular set the

convergence is (away from the singular set) as a double spiral staircase. We note that

in our case, i.e. λiΣ, λi → 0, there is only one singular line and indeed since Σ ⊂ B1

has non-zero curvature this singular line is the x3-axis. To see this, we use a further

description of the convergence given by property (Culsc), namely, when there are two

singular lines, the double spirals that form around each singular line are glued so that

graphs going around both singular lines close up. To be precise, consider bounded,

non-simply connected subsets of R3\ (S1 ∪ S2) that contain no closed curves homo-
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topic (in R3\ (S1 ∪ S2)) to a curve around only Si. That is, consider bounded regions

that go only around both singular lines. In these regions, the convergence is as a

single valued graph. If this were true of the convergence of λiΣ, then one could re-

move from Σ a closed curve disjoint from Σ and obtain two unbounded components,

contradicting that Σ has one end. Thus, the local picture near S1 of a double spiral

staircase extends outward and Σ has the claimed structure.

4.1.4 Structural Results

To obtain the decomposition of Theorem 1.2.1 we will need two important structural

results which generalize results for disks from [9] and [10] (it should be noted that

many of the proofs of these results did not require that the surface be a disk but only

that the boundary be connected, a fact used in [4]). The first is the existence of an

N -valued graph starting near the genus and extending as a graph all the way out.

The second result is similar but for a blow-up pair far from the genus. Namely, for

such a pair, a multivalued graph forms on the scale of the pair and extends as a graph

all the way out. It may be helpful to compare with the comparable results for disks,

i.e. Theorem 0.3 of [9] and Theorem 0.4 of [10].

The geometric nature of the proof of Theorem 0.9 of [4] implies that λiΣ always

converges to the same lamination independent of the choice of λi. We now use the

nature of this convergence, that any sequence of homothetic rescalings λiΣ, with

λi → 0, has a subsequence that converges to the foliation L with singular set S, the

x3-axis, to deduce gradient bounds in a cone. This, and further application of the
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compactness theory, will then give Propositions 4.1.3 and 4.1.4.

Lemma 4.1.2. For any ε > 0, δ > 0 there exists an R > 1 so every component of

(Cδ\BR) ∩ Σ is a graph over {x3 = 0} with gradient less than ε.

Proof. We proceed by contradiction. Suppose there exists a sequence {Ri} with

Ri → ∞ and points pi ∈ (Cδ\BRi
) ∩ Σ such that the component of Bγ|pi|(pi) ∩ Σ

containing pi, Ωi, is not a graph over {x3 = 0} with gradient less than ε. Here γ

depends on δ and will be specified later. Now, consider the sequence of rescalings

1
|pi|Σ, which by possibly passing to a subsequence converges to L. Passing to another

subsequence, 1
|pi|pi converges to a point p∞ ∈ Cδ∩B1. Let Ω̃i = 1

|pi|Ωi. Proposition 1.5

of [4] guarantees that if Bγ(p∞)∩S = ∅ then the Ω̃i converge to Ω̃∞ ⊂ {x3 = x3(p∞)}

as graphs. As S is the sole singular set, we may choose γ sufficiently small, depending

only on δ, to make this happen. Thus, for sufficiently large j, Ω̃j is a graph over

{x3 = 0} with gradient bounded by ε, giving the desired contradiction.

Note that variants of the following propositions are used in [4], specifically in the

proof of the compactness result, i.e. Theorem 0.9 for finite genus surfaces, though they

are not made explicit there. Note that while both propositions require a rotation of

R3, they are the same rotation. This can be seen because we prove both propositions

by a compactness argument that appeals to the Colding-Minicozzi lamination theory

of [4]. The only rotation needed is the initial rotation required in Theorem 0.9 of [4].

Proposition 4.1.3. Given ε > 0 and N ∈ Z+ there exists an R > 0 so that: After

a rotation of R
3 there exists an N-valued graph Σg ⊂ Σ over the annulus D∞\DR ⊂

{x3 = 0}, with gradient bounded by ε and in Cε.
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Proof. Choose R from Lemma 4.1.2 with δ = ε. Note, control on the gradient bounds

the separation between sheets. Thus, increasing R, if necessary, guarantees N sheets

of a graph inside Cε.

Proposition 4.1.4. Given ε > 0 sufficiently small and N ∈ Z
+ there exist C1, C2 > 0

and R > 0 so: After a rotation of R3, if (y, s) is a C1 blow-up pair in Σ and |y| ≥ R

then there exists an N-valued graph Σg over the annulus D∞\Ds(Π(y)) ⊂ {x3 = 0}

with gradient bounded by ε and in the cone Cε(y), with initial separation bounded

below by C2s. Finally, distΣ(Σg, y) ≤ 2s.

Proof. Note that as long as |y| is sufficiently large, Theorem 0.6 of [10] gives an Ω <

1/2 (as well as C1 and C2) so that since the component of B 1
2
|y|(y)∩Σ containing y is a

disk, there exists a N -valued graph Σ0 over the annulus, A = DΩ|y|\Ds/2(y) ⊂ P with

gradient bounded by ε/2, initial separation greater than C2s and distΣ(Σ0, y) ≤ 2s.

Here P is in principle an arbitrary plane in R
3.

We claim that Lemma 4.1.2 implies a subset, Σ′
0, of Σ0 is a N -valued graph

over the annulus A′ = DΩ|y|/2\Ds(Π(y)) ⊂ {x3 = 0} with gradient bounded by ε,

which further implies Σ′
0 can be extended as desired. To that end we note that for

δ > 1/(4Ω), if y /∈ Cδ then A (and thus, by possibly increasing δ, Σ0) meets Cδ.

Lemma 4.1.2 allows us to choose an R0 > 0 so that every component of Σ∩ (Cδ\BR0)

is a multi-valued graph over {x3 = 0} with gradient bounded by ε/4. Thus if we take

R > 2R0 then there is a point of Σ0 in Cδ\BR0 ; therefore, for the gradient estimates

at the point to be consistent, P must be close enough to {x3 = 0} so that we may

choose Σ′
0 ⊂ Σ0 so it is a multi-valued graph over A′. Furthermore, the part of Σ′

0
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over the outer boundary of A′ is necessarily inside of Cδ\BR0 and so Lemma 4.1.2

allows us to extend it as desired.

4.1.5 One-sided Curvature in Σ

In several places we make use of the one-sided curvature estimate of [12]. Recall that

this result gives a curvature estimate for a minimal disk that is close to and on one

side of a plane. As a sequence of rescaled catenoids shows, it is crucial that the surface

be a disk. In our situation, Proposition 4.1.1 allows the use of the one-sided curvature

estimate far from the genus. For convenience we record the statement we will need

and indicate how it follows from 2.4.2

Corollary 4.1.5. Given ε, δ > 0 there exist δ0 > 0 and R > 1 such that, if there

exists a 2-valued δ0-sheet on scale s centered at y where y /∈ Cδ ∪ BR, then all the

components of Σ ∩ (Cδ0\B2s(y)) are multi-valued graphs with gradient ≤ ε.

Proof. The result follows immediately from the proof of Corollary 2.4.2 of [12] as long

as one notes that the proof of I.1.9 depends only on each component of Σ ∩ CKδ0

being a disk for K some large (universal) constant. Thus, by Proposition 4.1.1, we

need only check that for a suitable choice of R and upper bound δ′0 for δ0 (both R

and δ′0 depending only on δ), y /∈ Cδ ∪ BR implies CKδ′0(y) is disjoint from B1 (i.e.

from the genus).

Now suppose x ∈ CKδ′0(y) and think of x and y as vectors. By choosing δ′0

sufficiently small (depending on δ) we have that |〈x− y, y〉| < (1 − γ)|y||x− y| (that

is the angle between x − y and y is bounded away from 0◦); note 1 > γ > 0 depends
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only on δ. But then |x|2 = |x− y + y|2 ≥ |x− y|2 + 2〈x− y, y〉+ |y|2 ≥ γ|y|2. Hence,

picking R2 > 1
γ

suffices.

4.1.6 Geometric Bounds Near Blow-up Pairs

We record the following extension of Lemma 2.26 of [13] to surfaces with non-trivial

topology. The proof is identical to that of Lemma 2.26 as long as one replaces Colding

and Minicozzi’s compactness result for minimal disks, i.e. Theorem 0.1 of [12], with

the more general Theorem 0.6 of [4]:

Proposition 4.1.6. Given K1, g we get a constant K2 such that if

1. Σ ⊂ R3 is an embedded minimal surface with genus(Σ) = g

2. Σ ⊂ BK2s(y) and ∂Σ ⊂ ∂BK2s(y)

3. (y, s) is a blow-up pair,

then we get the curvature bound

(4.1) sup
BK1s(y)∩Σ

|A|2 ≤ K2s
−2.

An immediate corollary is that, for blow-up pairs far from the genus, the scale is

small relative to distance to the genus.

Corollary 4.1.7. Given α, C1 > 0 there exists an R such that for (y, s), a C1 blow-up

pair of Σ with |y| ≥ R then s < α|y|.
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Proof. Recall we have normalized Σ so supB1∩Σ |A|2 ≥ 1. Now suppose the result

did not hold. Then there exists a sequence (yj, sj) of C1 blow-up pairs with |yj| ≥ j

and sj ≥ α|yj|. Set K1 = 2/α. By Proposition 4.1.6 there exists K2 such that

supBK1sj
(yj)∩Σ |A|2 ≤ K2s

−2
j . Since B1 ⊂ BK1sj

(yj), supB1∩Σ |A|2 ≤ K2s
−2
j . But

sj ≥ α|yj| ≥ αj, thus for j sufficiently large one obtains a contradiction.

4.1.7 Blow-up Sheets

In order to get the strict spiraling in the decomposition of Theorem 1.2.1 we need

to check that the multi-valued graphs that make up most of Σ can be consistently

normalized. To that end, we note that for blow-up pairs far enough from the genus

one obtains a nearby ε-sheet (i.e. we have a normalized multivalued graph). Indeed,

the proof of Theorem 3.1.5 of Chapter 3 applies without change to blow-up pairs

satisfying the conditions of Proposition 4.1.4. We claim that in between this sheet, Σ

consists of exactly one other ε-sheet.

Theorem 4.1.8. Given ε > 0 sufficiently small there exist C1, C2 > 0 and R > 1

so: Suppose (y, s) is a C1 blow-up pair, with |y| > R. Then there exist two 4-valued

ε-sheets Σi = Γui
(i = 1, 2) on the scale s centered at y which spiral together (i.e.

u1(s, 0) < u2(s, 0) < u1(s, 2π)). Moreover, the separation over ∂Ds(Π(y)) of Σi is

bounded below by C2s.

Remark 4.1.9. We refer to Σ1, Σ2 as (ε-)blow-up sheets associated with (y, s).

Proof. We fix a δ > 0 and note that Lemma 4.1.2 gives a R > 1 so that if |y| > R

then y /∈ Cδ and using this δ and ε we pick δ0 < ε as in Corollary 4.1.5 (and increase
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R if needed). Then, Theorem 3.1.5 of Chapter 3 and Proposition 4.1.4 together give

one δ0-sheet, Σ1, forming near (y, s) for appropriately chosen C1 (and possibly after

again increasing R). Now as long as the part of Σ between the sheets of Σ1 make up a

second minimal graph, the proof of Theorem 3.1.8 of Chapter 3 applies (and provides

the correct C2).

We denote by E the region in R3 between the sheets of Σ1 (see Theorem I.0.10 of

[12] or Theorem 3.1.8 of Chapter 3 for a precise definition). Theorem I.0.10 of [12]

implies that near the blow-up pair the part of Σ between Σ1 is a graph Σin
2 ; i.e. if

R0 is chosen so B4R0(y) is disjoint from the genus then BR0(y) ∩ E ∩ Σ\Σ1 = Σin
2 .

To ensure Σ2
in is non-empty, we increase R so that |y| ≥ 8s (which we may do by

Corollary 4.1.7). On the other hand, Appendix D of that same paper guarantees

that, outside of a very large ball centered at the genus, the part of Σ between Σ1 is a

graph, Σout
2 . That is, for R1 ≥ |y| large, E ∩Σ\(BR1 ∪Σ1) = Σout

2 . Now by one-sided

curvature estimates (which Corollary 4.1.5 allows us to use), all the components of

E\Σ1 are graphs and so it suffices to show that Σin
2 and Σout

2 are subsets of the same

component. Suppose not. Then, as Σin
2 is a graph and Σ is complete, Σin

2 must

extend inside E beyond BR1 . But this contradicts Appendix D of [12] by giving two

components of Σ\Σ1 in E ∩ Σ\BR1 .

4.1.8 Blow-Up Pairs

While the properties of ε-sheets give the strictly spiraling region of Σ, to understand

the region where these sheets fit together (i.e. the axis), we need a handle on the

56



distribution of the blow-up pairs of Σ. In the case of trivial topology, non-flatness

gives one blow-up pair (y0, s0), which in turn yields associated blow-up sheets. Then

by Corollary III.3.5 of [11], the blow-up sheets give the existence of nearby blow-up

pairs (y±1, s±1) above and below (see also Theorem 3.1.10 of Chapter 3 or Lemma 2.5

of [13]). Iterating, one constructs a sequence of blow-up pairs that give the axis RA.

Crucially, for the extension of the argument to surfaces in E(1), the result of [11]

is local; it depends only on the topology being trivial in a large ball relative to the

scale s0. Thus, the above construction holds in Σ as long as one deals with two issues.

First, establish the existence of two initial blow-up pairs far from the genus, one above

and the other below, with small scale relative to the distance to the genus. Second,

show that the iterative process produces blow-up pairs which continue to have small

scale (again relative to the distance to the genus).

We claim that the further a blow-up pair is from the genus, the smaller the ratio

between the scale and the distance to the genus; hence both issues can be addressed

simultaneously. This is an immediate consequence (see Corollary 4.1.7) of the control

on curvature around blow-up pairs as given by Proposition 4.1.6 (an extension of

Lemma 2.26 of [13] to Σ). Thus, given an initial blow-up pair far enough above the

genus, we can iteratively produce higher and higher blow-up pairs that satisfy the

appropriate scale condition, with the same true starting below the genus and going

down. Here we establish the existence of a chain of blow-up pairs which will be critical

to our decomposition theorem:

Lemma 4.1.10. Given ε > 0 sufficiently small, there exist constants C1, Cin > 0 and

57



a sequence (ỹi, s̃i) of C1 blow-up pairs of Σ such that: the sheets associated to (ỹi, s̃i)

are ε-sheets on scale s̃i centered at ỹi and x3(ỹi) < x3(ỹi+1) for i ≥ 1, ỹi+1 ∈ BCins̃i
(ỹi)

while for i ≤ −1, ỹi−1 ∈ BCins̃i
(ỹi).

Proof. Without loss of generality, we work above the genus (i.e. for x3 > 1 and

i ≥ 1), as the argument below the genus is identical. Use ε to choose C1, C2 and R

as in Theorem 3.1.8. By Corollary III.3.5 of [11] there are constants Cout > Cin > 0

such that, for a C1 blow-up pair (y, s) with |y| ≥ R, as long as the component of

BCouts(y)∩Σ containing y is a disk, we can find blow-up pairs above and below (y, s)

and inside BCins(y). Corollary 4.1.7 and Proposition 4.1.1 ensure a value h1 ≥ R,

depending on Cout so for |y| ≥ h1 this condition is satisfied. Thus, it suffices to find

an initial blow-up pair (ỹ1, s̃1) with |ỹ1| ≥ h1, as repeated application of Corollary

III.3.5 of [11] will give the sequence (ỹi, s̃i).

Proposition 4.1.3 and Appendix D of [12] together guarantee the existence of two

Ñ -valued graphs spiraling together over an unbounded annulus (with inner radius R).

Then, for large enough Ñ , the proof of Theorem 3.1.8 of Chapter 3 gives two N -valued

ε-sheets around the genus, Σ1, Σ2, on some scale R̃ and in the cone Cε. Theorem III.3.1

of [11] with r0 ≥ max{1, R̃, h1} then implies there is large curvature above and below

the genus. Hence, by a standard blow-up argument (see Lemma 5.1 of [10]) one gets

the desired C1 blow-up pair (ỹ1, s̃1) above the genus with |ỹ1| > 2r0 ≥ h1.

58



4.1.9 Decomposing Σ

In this section, we provide proofs of Proposition 1.2.3 and Theorem 1.2.1. They follow

immediately after the proof of the structural decomposition.

The decomposition of Σ now proceeds as in Section 3.2 of Chapter 3, with Propo-

sition 3.2.3 of Chapter 3 giving strict spiraling far enough out in the ε-sheets of Σ.

After specifying the region of strict spiraling, RS , the remainder of Σ will be split

into the genus, RG, and the axis, RA. The strict spiraling, the fact that away from

the genus convex sets meet Σ in disks (see Lemma 4.1.1), and the proof of Rado’s

theorem (see [30]) will then give ∇Σx3 �= 0 in RA. A Harnack inequality will then

allow us to obtain a lower bound for |∇Σx3| on this set.

Lemma 4.1.11. There exist constants C1, R0, R1 and a sequence (yi, si) (i �= 0) of

C1 blow-up pairs of Σ so that: x3(yi) < x3(yi+1) and for i ≥ 1, yi+1 ∈ BR1si
(yi)

while for i ≤ −1, yi−1 ∈ BR1si
(yi). Moreover, if RA = R+

A ∪ R−
A where R±

A is

⋃
±i>0 ΣR1si,yi

(and ΣR1si,yi
is the component of BR1si

(yi) ∩ Σ containing yi), then

RS = Σ\ (RA ∪ BR0) has exactly two unbounded components which can be written as

the union of two multi-valued graphs u1 and u2, with ui
θ �= 0.

Proof. We wish to argue as in Lemma 3.3.1 of Chapter 3 and to do so we must ensure

that we may use the chord-arc bounds of [13] and the one-sided curvature estimates

of [12] near the pairs (yi, si). As these are both local results it will suffice to work far

from the genus.

Fix ε < ε0 where ε0 is given by Proposition 3.2.3 of Chapter 3 which will be

important for the strict spiraling. Next pick δ > 0 and apply Corollary 4.1.5 to
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obtain a δ0 < ε and R̃ > 1. Now using δ0 in place of ε let (ỹi, s̃i) be the sequence

constructed in Lemma 4.1.10. Let us now determine how to choose the (yi, si).

First of all, as long as yi /∈ Cδ ∪ BR̃ we may use the one-sided curvature estimate

in Cδ0(yi). Notice by Lemma 4.1.2 we may increase R̃ and require only that yi /∈ BR̃.

Now recall that the chord-arc bounds give a constant Carc > 0 so for any γ > 1, if

the component of B2Carcγsi
(yi) ∩ Σ containing yi is a disk, then the intrinsic ball of

radius Carcγsi centered at yi contains Bγsi
(yi) ∩ Σ. On (yi, si), we want a uniform

bound, N , on the number of sheets between the blow-up sheets associated to the

pairs (yi, si) and (yi+1, si+1). This is equivalent to a uniform area bound which in

turn follows from the chord-arc bounds described above and curvature bounds of

Proposition 4.1.6 (for details see Proposition 3.1.11 of Chapter 3). To correctly apply

this argument, one must be sufficiently far from the genus; i.e. for a fixed constant

Cbnd, the component of BCbndsi
(yi)∩Σ containing yi must be a disk. To that end, pick

h2 ≥ 0 by using Corollary 4.1.7 with α−1 ≥ max
{

Cbnd, 2R1, R̃
}

where R1 is to be

chosen later. We then pick the sequence (yi, si) from (ỹi, s̃i) by requiring x3(yi) ≥ h2

(and then relabelling). Notice that the way we choose the (yi, si) ensures that N is

independent of our ultimate choice of R1.

We now determine R1. By choice of (yi, si), the one-sided curvature bounds hold

and so there is an R2 such that in Cδ0(y1) all of the (at most) N sheets between the

blow-up sheets associated to (y1, s1) and (y2, s2) are δ0-sheets on scale R2s1 centered

on the line � which goes through y1 and is parallel to the x3-axis (see Theorem 3.1.6

of Chapter 3). Label these pairs of δ0-sheets Σj
k, k = 1, 2 and 1 ≤ j ≤ N . Proceeding
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now as in the second paragraph of the proof of Lemma 3.3.1 in Chapter 3, we use

N , C2 and (2.5) to get C̃2 so C̃2s1 is a lower bound on the separation of each Σj
k

over the circle ∂DR2s1(Π(y1)) ⊂ {x3 = 0}. Proposition 3.2.3 of Chapter 3 gives a C3,

depending on C̃2, such that outside of a cylinder centered at � of radius R2C3s1, all the

Σj
k strictly spiral. Choose R̃1, depending only on Cin, N, δ0, C3 and R2, so BR̃1s1

(y1)

contains this cylinder, the point y2 and meets each Σj
k. Then if R1 = CarcR̃1 the

preceding is also true of the component of BR1s1(y1)∩Σ containing y1. By the scaling

invariance of strict spiraling and the uniformity of the choices, the same is true for

each (yi, si).

Finally, by properness, there exists a finite number, M , of ε-sheets between the

blow-up sheets associated to (y±1, s±1). Pick R0 large enough so that outside of

the ball of radius R0 the M sheets between the blow-up sheets associated to (y1, s1)

and (y−1, s−1) strictly spiral. Such an R0 exists by Proposition 4.1.3 and the above

argument.

Proof. (Proposition 1.2.3) By properness there exists an R′
0 ≥ R0 so that the compo-

nent of BR′
0
∩ Σ containing Σ contains BR0 ∩ Σ. We take RG to be this component

and note that ∂RG is connected by Proposition 4.1.1. The strict spiraling in RS and

the proof of Rado’s theorem gives Proposition 1.2.3.

Proof. (Theorem 1.2.1) By using Lemma 4.1.11 (and making the obvious modifica-

tions needed to account for RG) the proof of Theorem 3.0.3 of Chapter 3 then gives

Theorem 1.2.1 of this paper.
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4.2 Conformal Structure of Γ

In this section we prove Theorem 1.1.4 and Corollary 1.1.6 (in subsection 4.2.3) by

analysis similar to that in Section 3.4 of Chapter 3. To do so, we first show that

Γ = Σ\RG is conformally a punctured disk and, indeed, the map z = x3+ix∗
3 : Γ → C

is a proper, holomorphic coordinate (here x∗
3 is the harmonic conjugate of x3). Note

that by Proposition 1.2.3, as long as z is well defined, it is injective and a conformal

diffeomorphism. Thus, it suffices to check that z is well defined and that it is proper;

i.e. if p → ∞ in Γ then z(p) → ∞.

Proposition 4.2.1. x∗
3 is well defined on Γ.

Proof. As Σ is minimal, ∗dx3, the conjugate differential to dx3, exists on Σ and is

closed and harmonic. We wish to show it is exact on Γ. To do so, it suffices to show

that for every closed curve ν in Γ, we have
∫

ν
∗dx3 = 0. By Proposition 4.1.1, Σ\ν has

two components, only one of which is bounded. The bounded component, together

with ν, is a manifold with (connected) boundary, and on this manifold ∗dx3 is a closed

form. Hence, the result follows immediately from Stokes’ theorem.

4.2.1 Existence of f

We now show that there exists f : Γ → C such that g = ef on Γ, where g is

the stereographic projection of the Gauss map of Σ. We argue as in Section 3.4 of

Chapter 3, though we must first check that there is a well defined notion of log g in

Γ. Since g is meromorphic in Σ and has no poles or zeros in Γ, this is equivalent to

showing that g has an equal number of poles and zeros.
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Proposition 4.2.2. Counting multiplicity, g has an equal number of poles and zeros.

Proof. The zeros and poles of g occur only at the critical points of x3. In particular,

by Proposition 3.0.5, there exist h and R so that all the zeros and poles are found in

the cylinder:

(4.2) Ch,R =
{|x3| ≤ h, x2

1 + x2
2 ≤ R2

} ∩ Σ.

Moreover, for R and h sufficiently large, γ = ∂Ch,R is the union of four smooth curves,

two at the top and bottom, γt and γb, and two disjoint helix like curves γ1, γ2 ⊂ RS.

Hence, for c ∈ (−h, h), {x3 = c} meets ∂Ch,R in exactly two points. Additionally, as

γ1 and γ2 are compact, there is a constant α > 0 so | d
dt

x3(γi(t))| > α, i = 1, 2.

Let us first suppose that g has only simple zeros and poles and these occur at

distinct values of x3, thus, the Weierstrass representation implies that the critical

points of x3 are non-degenerate. We now investigate the level sets {x3 = c}. By the

strict spiraling of γi (i = 1, 2), at the regular values these level sets consist of an

interval with end points in γi (i = 1, 2) and the union of a finite number of closed

curves. Moreover, by the minimality of Ch,R, the non-smooth components of the

level sets at critical values will consist of either two closed curves meeting in a single

point or the interval and a closed curve meeting in a single point. As a consequence

of this {|x3| ≤ h, x2
1 + x2

2 ≤ R2} \Ch,R has exactly two connected components Ω1 and

Ω2. Orient Ch,R by demanding that the normal point into Ω1. Notice that it is well

defined to say if a closed curve appearing in {x3 = c} ∩ Ch,R surrounds Ω1 or Ω2.
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Figure 4.1: Level curve examples in Proposition 4.2.2

The restrictions imposed on g and minimality of Ch,R imply that at any critical

level, as one goes downward, either a single closed curve is “created” or is “destroyed”.

(See Figure 4.1∗.) Moreover, when such a curve is created it makes sense to say

whether it surrounds Ω1 or Ω2 and this is preserved as one goes downward. Now

suppose a closed curve is created and that it surrounds Ω1; then it is not hard to

see that at the critical point the normal must point upwards. Similarly, if a closed

curve surrounding Ω1 is destroyed then the normal at the critical point is downward

pointing. For, closed curves surrounding Ω2 the opposite is true; i.e. when a closed

curve is created then at the critical point the normal points downward. Thus, since

the level sets at h and −h are intervals, one sees that the normal points up as much

as it points down. That is, g has as many zeros as poles.

We now drop the restrictions on the poles and zeros of g. Beyond these assump-

tions the argument above used only that Ch,R was minimal and that the boundary

curves γi (i = 1, 2) strictly spiral. It is not hard to check that these last two conditions

∗(a) Initial orientation chosen at height x3 = h. (b) A curve pinching off from Ω1. (c) Two curves
pinching from one. (d) A curve pinching off from Ω2
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are preserved by small rotations around lines in the x1-x2 plane. We claim that such

rotations also ensure that the Gauss map of the new surface must have simple poles

or zeros and these are on distinct level sets. To that end we let Cε
h,R be the rotation of

Ch,R by ε degrees around a fixed line � in the x1-x2 plane and through the origin (note

we do not rotate the ambient R3). Denote by Φε the induced isometric isomorphism

between the sets.

The strict spiraling of γ1, γ2 implies there exists an ε0 > 0, depending on α and R

and a constant K > 0, depending on R so: for all 0 < ε < ε0, if c ∈ (−h+Kε, h−Kε)

then {x3 = c} ∩ Cε
h,R meets ∂Cε

h,R in two points. Moreover, by a suitable choice of

� the critical points will be on distinct level sets. Denote by gε the stereographic

projection of the Gauss map of Cε
h,R. We now use the fact that g is meromorphic

on Σ (and thus the zeros and poles of g are isolated) and that gε is obtained from g

by a Möbius transform. Indeed, these two facts imply that (after shrinking ε0) for

ε ∈ (0, ε0), gε has only simple zeros and poles on Cε
h,R and by our choice of � these are

on distinct levels of x3. By further shrinking ε0 one can ensure that all of the critical

values occur in the range (−h + Kε, h − Kε). Thus, the level sets in Cε
h,R of x3 for

c ∈ (−h + Kε, h − Kε) consist of an interval with endpoints in ∂Cε
h,R, one in each γi

for i = 1, 2, and the union of a finite number of closed curves.

Our original argument then immediately implies that gε has as many zeros as

poles. Thus,
∫

∂Ch,R
Φ∗

ε
dgε

gε
=

∫
∂Cε

h,R

dgε

gε
= 0 for ε < ε0. Hence, as Φ∗

ε
dgε

gε
is continuous in

ε,
∫

∂Ch,R

dg
g

= 0.

Corollary 4.2.3. A holomorphic function f : Γ → C exists so ef = g on Γ.

65



4.2.2 Concluding properness of z

The strict spiraling in RS was used in Chapter 3 to show that the map f = f1 + if2

was, away from a neighborhood of the axis, a proper conformal diffeomorphism onto

the union of two disjoint closed half-spaces. Since every level set of x3 has an end in

each of these sets, properness of z was then a consequence of Schwarz reflection and

the Liouville theorem. The same is true when there is non-zero genus:

Proposition 4.2.4. There exists a γ0 > 0 so: with Ω± = {x ∈ Γ : ±f1(x) ≥ γ0}, f

is a proper conformal diffeomorphism from Ω± onto {z : ±Re z ≥ γ0}.

Proof. Pick γ0 as in Proposition 3.4.1 of Chapter 3 (where γ0 depends only on the ε0

of Theorem 1.2.1). As long as f−1
1 (γ0) ∩ ∂Γ = ∅, the proof in Chapter 3 carries over

unchanged. Note, the structure of that proof only depends on having a lower bound

for γ0 and so we may increase γ0 (if necessary) so γ0 > max∂RG
|f1|.

4.2.3 Conformal Structure of Σ

Proof. (Theorem 1.1.4) Coupled with the above results, the proof of Proposition 3.4.2

of Chapter 3 then gives that z → ±∞ along each level set of x3; that is z : Γ → C is

a proper holomorphic coordinate. Thus, z(Γ) contains C with a closed disk removed;

in particular, Γ is conformally a punctured disk. Then, since f−1
1 (γ0) ∩ Γ is a single

smooth curve, f has a simple pole at the puncture. Similarly, by Proposition 1.2.3,

z has a simple pole at the puncture. In Γ, the height differential dh = dz and

dg
g

= df .

66



Embeddedness and the Weierstrass representation, (2.10), then imply Corollary

1.1.6:

Proof. Theorem 1.1.4 gives that, in Γ, f(p) = αz(p) + β + F (p) where α, β ∈ C

and F : Γ → C is holomorphic and has holomorphic extension to the puncture (and

has a zero there). By translating Σ parallel to the x3-axis and re-basing x∗
3 we may

assume β = 0. By Proposition 1.2.3, {x3 = 0} ∩ Γ can be written as the union

of two smooth proper curves, σ±, each with one end in ∂Γ, and parametrized so

x∗
3(σ

±(t)) = t for ±t > T ; here T > 0 is large enough that σ±(t) ⊂ RS. Let us

denote by ρ±(t) and θ±(t) the polar coordinates of σ±(t). Notice that as we are in Γ,

Im f(σ±(t)) = (Reα)t+ImF (σ±(t)). By the strict spiraling in RS, there are integers

N± so |θ±(t) − Im f(σ±(t))| < πN± (see the proof of Proposition 3.4.1 of Chapter

3). Thus, since F (σ±(t)) → 0 as |t| → ∞, if Re α �= 0 then θ±(t) is unbounded as |t|

increases. That is, σ+ and σ− spiral infinitely and in opposite directions. Moreover,

the strict spiraling also gives that ρ±(t) is strictly increasing in |t|. To see this note

that since ρ′(t)uρ(ρ(t), θ(t)) + θ′(t)uθ(ρ(t), θ(t)) = 0 along σ±(t) and uθ �= 0, ρ′(t)

can only vanish when θ′(t) does. But, our choice of parametrization rules out the

simultaneous vanishing of these two derivatives. This contradicts embeddedness, as

such curves must eventually intersect. This last fact is most easily seen by looking

at the universal cover of the annulus {max {ρ±(±T0)} ≤ ρ ≤ min {ρ±(±(T0 + T1)}}

where T0, T1 > T > 0 are chosen so |θ±(±(T0 +T1))−θ±(±T0)| ≥ 4π and the annulus

is non-empty. In particular, by appropriately lifting σ+ and σ−, the intersection is

immediate. Therefore, Re α = 0.
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Chapter 5

Local Results on Minimal Disks

Recall, for Σ ⊂ R
3 a minimal disk, we say (y, s) ∈ Σ × R

+ is a (C) blow-up pair if

supBs(y)∩Σ |AΣ|2 ≤ 4C2s−2 = 4|AΣ|2(y) (here C is large and fixed). For Σ minimal

with ∂Σ ⊂ ∂BR = ∂BR(0) where (0, s) is a blow-up pair, there are two important

scales; R the outer scale and s the blow-up scale. The work of Colding and Minicozzi

gives a value 0 < Ω < 1 so that the component of Σ ∩ BΩR containing 0 consists

of two multi-valued graphs glued together (see for instance Lemma 2.5 of [13] for a

self-contained explanation). Sharpening this result, Theorem 5.1.2 below shows that

on the scale of s (provided R/s is large), Σ is bi-Lipschitz to a piece of a helicoid with

Lipschitz constant near 1. Using the surfaces constructed in [7] (which are the most

distorted currently known) we show, in Theorem 5.2.1, that such a result cannot hold

on the outer scale and indeed fails to hold on certain smaller scales.
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5.1 Minimal Disks Close to a Helicoid

To prove Theorem 5.1.2, we first need to prove a technical lemma. Consider two

surfaces Σ1, Σ2 ⊂ R
3, so that Σ2 is the graph of ν over Σ1. Then the map φ : Σ1 → Σ2

defined as φ(x) = x + ν(x)n(x) is smooth. Moreover, if ν is small in a C1 sense, φ is

an “almost isometry”.

Lemma 5.1.1. Let Σ2 be the graph of ν over Σ1, with Σ1 ⊂ BR, ∂Σ1 ⊂ ∂BR and

|AΣ1 | ≤ 1. Then, for ε sufficiently small, |ν| + |∇Σ1ν| ≤ ε implies φ is a diffeomor-

phism with 1 − ε ≤ ||dφ|| ≤ 1 + ε.

Proof. For ε sufficiently small (depending on Σ1), φ is injective. Working in R3, given

orthonormal vectors e1, e2 ∈ TpΣ1 we compute:

(5.1) dφp(ei) = ei + 〈∇Σ1ν(p), ei〉n(p) + ν(p)Dnp(ei).

The last two terms are together controlled by ε. Hence, 1− ε < |dφp(ei)| < 1 + ε.

The local result will follow from a compactness argument (compare with Proposi-

tion 2 of [26]):

Theorem 5.1.2. Given ε, R > 0 there exists R′ ≥ R so: Suppose 0 ∈ Σ′ is an

embedded minimal disk with Σ′ ⊂ BR′s(0), ∂Σ′ ⊂ ∂BR′s(0), and (0, s) a blow-up pair.

Then there exists Ω, a subset of a helicoid, so that Σ, the component of Σ′ ∩ BRs

containing 0, is bi-Lipschitz with Ω, and the Lipschitz constant is in (1 − ε, 1 + ε).

Proof. By rescaling we may assume that s = 1. We proceed by contradiction. Suppose
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no such R′ existed for fixed ε, R. That is, there exists a sequence of counter-examples;

embedded minimal disks Σ′
i ⊂ BRi

, ∂Σ′
i ⊂ ∂BRi

, (0, 1) a C blow-up pair of each Σ′
i

and R ≤ Ri → ∞, but Σi, the component of BR ∩ Σ′
i containing zero, not close to a

helicoid.

By definition, |AΣ′
i
(0)|2 = C > 0 for all Σ′

i and so the lamination theory of Cold-

ing and Minicozzi implies that a subsequence of the Σ′
i converge smoothly and with

multiplicity one to Σ∞, a complete embedded minimal disk. Namely, in any ball

centered at 0 the curvature of Σi is uniformly bounded by Lemma 2.26 of [13]. Fur-

thermore, the chord-arc bounds of [13] give uniform area bounds and so by standard

compactness arguments one has smooth convergence (possibly with multiplicity) to

Σ∞. If the multiplicity of the convergence is greater than 1, then one can construct

a positive solution to the Jacobi equation (see Appendix B of [4]). That implies Σ∞

is stable, and thus a plane by the Bernstein theorem, contradicting the curvature at

0. As Corollary 0.7 of [13] gives properness of Σ∞, Theorem 3.0.2 implies Σ∞ is a

helicoid. We may, by rescaling, assume Σ∞ has curvature 1 along the axis.

For any fixed R′ a subsequence of Σ′
i ∩ BR′ converges to Σ∞ ∩ BR′ in the smooth

topology. And so, for any ε, with i sufficiently large, we find a smooth νi defined on

a subset of Σ∞ so that |νi| + |∇Σ∞νi| < ε and the graph of νi is Σ′
i ∩ BR′ . Choosing

R′ large enough to ensure minimizing geodesics between points in Σi lie in Σ′
i ∩ BR′

(using the chord-arc bounds of [13]), Lemma 5.1.1 gives the desired contradiction.
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5.2 Distortions of the Helicoid

Recall that as an application of their work on the structure of disks, Colding and

Minicozzi proved a compactness result for sequences of embedded minimal disks 0 ∈

Σi ⊂ R3 as long as ∂Σi ⊂ ∂BRi
and Ri → ∞. In particular, they show there are only

two options. Either such a sequence contains a subsequence converging smoothly on

compact sets to a complete embedded minimal disk or, if the curvature is unbounded

in some compact subset of R
3, the convergence is (in a certain sense, see [12] for

details) to a singular minimal lamination of parallel planes. The surfaces constructed

by Colding and Minicozzi in [7] show that the condition that the boundaries of the

surface go to infinity is essential, i.e this compactness result is global in nature. (Figure

5.1 shows a cross section of one of Colding and Minicozzi’s examples, which represent

extreme distortions of helicoids. We indicate the two important scales: R = 1 the

outer scale and s the blow-up scale. Here (0, s) is a blow-up pair.)

In a similar vein, the result depends very strongly on the ambient geometry of the

three-manifold. In particular, in the proof of their compactness result, Colding and

Minicozzi rely heavily on a flux argument (the details of which are in [6]). That is

they use that the coordinate functions of R3 restrict to harmonic functions on minimal

Σ ⊂ R3, a fact that generalizes only to certain other highly symmetric three-manifolds.

One of the most important problems in this area is determining when a Colding

and Minicozzi type of compactness result (or indeed any compactness result) extends

to surfaces embedded in more arbitrary three-manifolds. Understanding precisely

the best scale for which the Lipschitz approximation holds (for which Theorem 5.2.1
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Figure 5.1: Colding-Minicozzi distorted helicoids

gives an upper bound) may be an important tool to establish removable singularities

theorems for minimal laminations in arbitrary Riemannian manifolds. In turn, such

results could prove key to proving more general compactness theorems.

Theorem 5.2.1. Given 1 > Ω, ε > 0 and 1/2 > γ ≥ 0 there exists an embedded

minimal disk 0 ∈ Σ with ∂Σ ⊂ ∂BR and (0, s) a blow-up pair so: the component of

BΩR1−γsγ ∩ Σ containing 0 is not bi-Lipschitz to a piece of a helicoid with Lipschitz

constant in ((1 + ε)−1, 1 + ε).

To produce our example, we first recall the surfaces constructed in [7]:

Theorem 5.2.2. (Theorem 1 of [7]) There is a sequence of compact embedded min-

imal disks 0 ∈ Σi ⊂ B1 ⊂ R
3 with ∂Σi ⊂ ∂B1 containing the vertical segment

{(0, 0, t) : |t| ≤ 1} ⊂ Σi such that the following conditions are satisfied:

1. limi→∞ |AΣi
|2(0) → ∞

2. supΣi
|AΣi

|2 ≤ 4|AΣi
|2(0) = 8a−4

i for a sequence ai → 0
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3. supi supΣi\Bδ
|AΣi

|2 < Kδ−4 for all 1 > δ > 0 and K a universal constant.

4. Σi\ {x3 − axis} = Σ1,i ∪ Σ2,i for multi-valued graphs Σ1,i and Σ2,i.

Remark 5.2.3. (2) and (3) are slightly sharper than what is stated in Theorem 1 of

[7], but follow easily. (2) follows from the Weierstrass data (see Equation (2.3) of

[7]). This also gives (3) near the axis, whereas away from the axis use (4) and Heinz’s

curvature estimates.

Next introduce some notation. For a surface Σ (with a smooth metric) we denote

intrinsic balls of radius s, centered at p, by BΣ
s (p) and define the (intrinsic) density

ratio at a point p as: θs(p, Σ) = (πs2)−1Area(BΣ
s (p)). When Σ is immersed in R3

and has the induced metric, θs(p, Σ) ≤ Θs(p, Σ) = (πs2)−1Area(Bs(p) ∩ Σ), the usual

(extrinsic) density ratio. Importantly, the intrinsic density ratio is well-behaved under

bi-Lipschitz maps. Indeed, if f : Σ → Σ′ is injective and with α−1 < Lipf < α (where

Lip f is the Lipschitz constant of f), then:

(5.2) α−4θα−1s(p, Σ) ≤ θs(f(p), Σ′) ≤ α4θαs(p, Σ).

This follows from the inclusion, BΣ
α−1s(f

−1(p)) ⊂ f−1(BΣ′
s (p)) and the behavior of area

under Lipschitz maps, Area(f−1(BΣ′
s (p)) ≤ (Lip f−1)2Area(BΣ′

s (p)).

Note that by standard area estimates for minimal graphs, if Σ∩Bs(p) is a minimal

graph then θs(p, Σ) ≤ 2. In contrast, for a point near the axis of a helicoid, for large

s the density ratio is large. Thus, in a helicoid the density ratio for a fixed, large s

measures, in a rough sense, the distance to the axis. More generally, this holds near
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blow-up pairs of embedded minimal disks:

Lemma 5.2.4. Given D > 0 there exists R > 1 so: If 0 ∈ Σ ⊂ B2Rs is an embedded

minimal disk with ∂Σ ⊂ ∂B2Rs and (0, s) a blow-up pair then θRs(0, Σ) ≥ D.

Proof. We proceed by contradiction, that is suppose there were a D > 0 and embed-

ded minimal disks 0 ∈ Σi with ∂Σi ⊂ ∂B2Ris with Ri → ∞ and (0, s) a blow-up pair

so that θRis(0, Σi) ≤ D. The chord-arc bounds of [13] imply there is a 1 > γ > 0 so

BΣi
Ris

(0) ⊃ Σi ∩ BγRis. Hence, the intrinsic density ratio bounds the extrinsic density

ratio, i.e. D ≥ θRis(p, Σi) ≥ γ2ΘγRis(p, Σi). Then, by a result of Schoen and Simon

[31] there is a constant K = K(Dγ−2), so |AΣi
|2(0) ≤ K(γRis)

−2. For Ri large this

contradicts that (0, s) is a blow-up pair for all Σi.

Remark 5.2.5. Note that the above does not depend on the strength of chord-arc

bounds. In fact, it is also an immediate consequence of the fact that intrinsic area

bounds on a disk give total curvature bounds. In turn, the total curvature bounds

again yield uniform curvature bounds. See Section 1 of [10] for more detail.

In order to show the existence of the surface Σ of Theorem 5.2.1, we exploit the

fact that two points on a helicoid that are equally far from the axis must have the same

density ratio. Assuming the existence of a Lipschitz map between Σ and a helicoid,

we get a contradiction by comparing the densities for two appropriately chosen points

that map to points equally far from the axis of the helicoid.

Proof. (of Theorem 5.2.1) Fix 1 > Ω, ε > 0 and 1/2 > γ ≥ 0 and set α = 1 + ε.

Let Σi be the surfaces of Theorem 5.2.2; we claim for i large, Σi will be the desired
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Figure 5.2: The points pi and ui

example. Suppose this was not the case. Setting si = Ca2
i /
√

2, where ai is as

in (2) and C is the blow-up constant,one has (0, si) is a blow-up pair in Σi, since

supΣi∩Bsi
|AΣi

|2 ≤ 8a−4
i = 4C2s−2

i = 4|AΣi
|2(0), moreover, si → 0. Hence, with

Ri = Ωsγ
i < 1, the component of BRi

∩ Σi containing 0, Σ′
i, is bi-Lipschitz to a piece

of a helicoid with Lipschitz constant in (α−1, α). That is, there are subsets Γi of

helicoids and diffeomorphisms fi : Σ′
i → Γi with Lip fi ∈ (α−1, α).

We now begin the density comparison. First, Lemma 5.2.4 implies there is a

constant r > 0 so for i large θrsi
(0, Σ′

i) ≥ 4α8 and thus by (5.2) θαrsi
(fi(0), Γi) ≥

4α4. We proceed to find a point with small density on Σi that maps to a point

on Γi equally far from the axis as fi(0) (which has large density). Let Ui be the

(interior) of the component of B1/2Ri
∩ Σi containing 0. Note for i large enough, as

si/Ri → 0, the distance between ∂Ui and ∂Σi
′ is greater than 4α2rsi. Similarly, for

p ∈ ∂Ui for i large, p′ ∈ BΣ′
i

4α2rsi
(p) implies |p′| ≥ 1

4
Ri. Hence, property (3) gives

that |AΣ′
i
|2(p′) ≤ K ′s−4γ

i . Thus, for i sufficiently large Bα2rsi
(p) is a graph and so

θα2rsi
(p, Σ′

i) ≤ 2. Pick ui ∈ ∂f(Ui) at the same distance to the axis as fi(0) and so
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the density ratio is the same at both points. (See Figure 5.2. Note that the density

ratio of ui is much larger than the density ratio of pi.) As fi(Ui) is an open subset of Γi

containing fi(0), pi = f−1
i (ui) ∈ ∂Ui. Notice that θαrsi

(ui, Γi) = θαrsi
(fi(0), Γi) ≥ 4α4

so 2α4 ≥ α4θα2rsi
(pi, Σ

′
i) ≥ 4α4.
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