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Abstract

By Morava’s point of view on the stable homotopy category, the quotient in

some sense associated to the filtration related to the height of formal group

laws is studied by the category of modules over the function ring of the

deformation space of the Honda group law of height n with the lift of the

action of the automorphism group on the closed fibre through the Adams-

Novikov spectral sequence. The next step to understand the stable homotopy

category may be to solve the “extensions”. It may be necessary to know the

relation between the formal group laws of height n and n− 1.

In this thesis we study a certain formal group law over a complete discrete

valuation ring which is of height n over the closed fibre and of height n−1 over

the generic fibre. We show that there is a Galois extension of the quotient

field of the discrete valuation ring with the Galois group isomorphic to the

Morava stabilizer group Sn−1 of height n − 1. The action of the Morava

stabilizer group Sn of height n on the quotient field lifts to the action on

the Galois extension which commutes with the action of the Galois group.

Furthermore, there is an Sn × Sn−1 equivariant morphism from the lift of

the formal group law over the Galois extension to the Honda group law of

height n− 1 on which Sn acts trivially. Then, by a kind of correspondence,

we construct a ring homomorphism from the cohomology of Sn−1 to the

cohomology of Sn with the coefficients in the quotient field.

Advisor: Professor Jack Morava
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1 Introduction

The Hopf algebroid MU∗MU is interpreted in terms of the one dimensional

formal group laws. In [11] Morava investigated the category C of p-local

comodules over MU∗MU by using the filtration

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · ·

where n corresponds to the height of formal group laws over p-local ring.

Then he related the quotient category Cn/Cn+1 to the category of modules

over the function ring of the deformation space of the standard formal group

law Hn of height n with the action of the automorphism group Sn of Hn.

Motivated by Morava’s work, Miller, Ravenel and Wilson [10] established

the frame work on organizing systematically the periodic phenomena on the

E2-term of the Adams-Novikov spectral sequence based on the cobordism

theory MU . Then Ravenel [12] formulated his conjectures on the reflection

of the algebraic structure on the Adams-Novikov E2-term on the actual sta-

ble homotopy category. Devinatz, Hopkins and Smith [4, 6] solved all the

Ravenel conjectures except for the telescope conjecture. By these works, we

get a filtration of full subcategories in the stable homotopy category C of

p-local finite spectra

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · ·

where n is related to the height of formal group laws. By Morava’s point of

view on the stable homotopy category, the quotient in some sense associated

to the above filtration is studied by the category of modules over the function

ring of the deformation space of Hn with the lift of the action of Sn on the
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closed fibre through the Adams-Novikov spectral sequence. The next step to

understand the stable homotopy category may be to solve the “extensions”.

It may be necessary to know the relation between the formal group laws of

height n and n− 1. In this thesis we study a certain formal group law over

a complete discrete valuation ring which is of height n over the closed fibre

and of height n− 1 over the generic fibre.

Let F be a finite field which contains the finite fields Fpn and Fpn−1 . There

is the Honda group law Hn of height n over the field F. The Morava stabilizer

group Sn is the automorphism group of Hn. There is a universal deformation

Fn of Hn. The formal group law Fn is defined over the formal power series

ring WF[[u1, . . . , un−1]] where WF is the ring of Witt vectors in F. Then the

action of Sn n Γ on Hn lifts to the action on Fn which induces a continuous

action of SnnΓ on WF[[u1, . . . , un−1]] where Γ is the Galois group of F over

the prime field Fp . Since the ideal generated by p, u1, . . . , un−2 is invariant

under the action of Sn n Γ, there is an induced action of Sn n Γ on the

quotient ring F[[un−1]]. We denote by K the quotient field F((un−1)). We

consider that the formal group law Fn is defined over F[[un−1]]. Then the

formal group law Fn is of height n on the closed fibre F and of height n− 1

on the generic fibre K. By the result of Lazard [7], the formal group laws

over the separably closed field of characteristic p > 0 are classified up to

isomorphism by their height. Hence there is an isomorphism between Fn and

the Honda group law Hn−1 of height n−1 over the separable closure Ksep. In

[1] Ando, Morava and Sadofsky showed that there is a unique isomorphism

between Fn and Hn−1 over Ksep which satisfies certain conditions motivated

from a geometric point of view. We would like to consider the above situation
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with the action of the Morava stabilizer group Sn.

Let Φ be an isomorphism between Fn and Hn−1 over the separable closure

Ksep. Let L be an extension of K obtained by adjoining all the coefficients

of Φ. Hence we have a morphism of the formal group laws from (Fn, L) to

(Hn−1,F). The main theorem of this note is as follows.

Theorem 1.1 (Theorem 4.9). The group (Sn×Sn−1)nΓ acts on (Fn, L)

where the action of SnnΓ is a lift of the action on (Fn, K) and the subgroup

Sn−1nΓ is identified with the Galois group of the extension L/Fp((un−1)). If

we consider that the group (Sn× Sn−1)n Γ acts on (Hn−1,F) where the sub-

group Sn acts trivially, then there is a (Sn×Sn−1)nΓ equivariant morphism

from (Hn−1,F) to (Fn, L).

In geometric terms Spec(F[[un−1]]) is an Sn invariant 1-dimensional sub-

space of the formal deformation space of the Honda group law Hn. Let U be

the punctured disk Spec(K)−Spec(F). Then there is a Galois covering of U

with the Galois group isomorphic to Sn−1. The action of Sn lifts to the Galois

covering which commutes with the action of the Galois group. Furthermore,

if we consider that the product group Sn × Sn−1 acts on Hn−1 where the

action of Sn is trivial, then there is a Sn × Sn−1 equivariant morphism from

the lift of Fn on the Galois covering to Hn−1 on the point Spec(F).

By a kind of correspondence using Theorem 1.1, we construct a ring

homomorphism from the cohomology of Sn−1 to the cohomology of Sn with

the coefficients in K[u±1]:

H∗(Sn−1; F[w±1])Γ −→ H∗(Sn;K[u±1])Γ

where w satisfies w−(pn−1−1) = vn−1 (cf. Theorem 12.3).
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2 Deformation of formal group laws

Let R be a ring with a maximal ideal I such that the residue field k = R/I

is of characteristic p > 0. Let G be a formal group law over k of height

n <∞. In this section we recall the deformation theory of formal group laws

by Lubin and Tate [8].

For a formal power series f(X) over a ring R and a ring homomorphism

α : R → S, we denote by α∗f(X) the formal power series over S obtained

by the ring homomorphism α. We say that a local ring A with the maximal

ideal m is complete if the canonical homomorphism A →lim
←−

A/mi is an

isomorphism. For a local homomorphism α between local rings, we denote

by α the induced homomorphism on the residue fields.

Let A be a complete Noetherian local R-algebra with the maximal ideal

m such that IA ⊂ m. We denote by ι the canonical inclusion of residue fields

k ⊂ A/m induced by the R-algebra structure. A deformation of G to A is

a formal group law G̃ over A such that ι∗G = π∗G̃ where π : A → A/m is

a canonical projection. Let G̃1 and G̃2 be two deformations of G to A. We

define a ∗-isomorphism between G̃1 and G̃2 as an isomorphism ũ : G̃1 → G̃2

over A such that π∗ũ is the identity map between π∗G̃1 = ι∗G = π∗G̃2.

Lemma 2.1 (cf. [8]). There is at most one ∗-isomorphism between G̃1 and

G̃2.

We denote by D(R) the category of complete Noetherian local R-algebras

with morphisms as local R-algebra homomorphisms. Let DEF(A) be the set

of all ∗-isomorphism classes of the deformations of G to A. Then DEF defines

a functor from D(R) to the category of sets.
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Let R[[t1, . . . , tn−1]] be a formal power series ring over R with n− 1 vari-

ables. If R is a complete Noetherian local ring, then R[[t1, . . . , tn−1]] is an ob-

ject of D(R). There is a one-to-one correspondence between a local R-algebra

homomorphism from R[[t1, . . . , tn−1]] to A and an (n−1)-tuple (a1, . . . , an−1)

of elements of the maximal ideal m of A. Lubin and Tate showed that there

is a formal group law F (t1, . . . , tn−1) over R[[t1, . . . , tn−1]] which satisfies the

following conditions.

1. π∗F (0, . . . , 0)(x, y) = G(x, y) where π : R→ k is the projection.

2. For each i (1 ≤ i ≤ n− 1),

F (0, . . . , 0, ti, . . . , tn−1)(x, y) ≡ x+ y + tiCpi(x, y) mod deg (pi + 1)

where Cpi(x, y) = (xp
i
+ yp

i − (x+ y)p
i
)/p.

We say that a formal group law F (t1, . . . , tn−1) satisfying the above condi-

tions is a universal deformation of G by the following theorem.

Theorem 2.2 (Lubin and Tate [8]). Let A be an object of D(R). For

every deformation G̃ of G to A, there is a unique local R-algebra homomor-

phism α : R[[t1, . . . , tn−1]] → A such that α∗F (t1, . . . , tn−1) is ∗-isomorphic

to G̃. Hence, if R is a Noetherian local ring, the functor DEF is represented

by R[[t1, . . . , tn−1]]:

DEF(A) ∼= HomD(R)(R[[t1, . . . , tn−1]], A)

and F (t1, . . . , tn−1) is a universal object.

We suppose that R is a complete Noetherian local ring. We abbreviate

R[[t1, . . . , tn−1]] to R[[t]] and F (t1, . . . , tn−1) to F (t). For a formal group law
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F (X, Y ) and an invertible power series f(X) over a same ring, we denote

by F f (X, Y ) the formal group law f(F (f−1(X), f−1(Y ))). Let f(X) be an

automorphism of G over k. For any power series f̃ ′(X) in R[[X]] such that

π∗f̃ ′(X) = u(X), the formal group law F (t)
ef ′(X, Y ) is a deformation of

G over R[[t]]. Hence we obtain a unique local R-algebra homomorphism

α : R[[t]] → R[[t]] such that α∗F (t) is ∗-isomorphic to F (t)
ef . If g̃′(X) is

another power series in R[[X]] such that π∗g̃′(X) = f(X), then we get a local

R-algebra homomorphism α′ : R[[t]]→ R[[t]] such that α∗F (t) is ∗-isomorphic

to F (t)eg′ . But g̃′(f̃ ′−1(X)) is a ∗-isomorphism from F (t)
ef ′ to F (t)eg′ . Hence

we see that α = α′. Let f̃ ′′ be a unique ∗-isomorphism from F (t)
ef to α∗F (t).

Then f̃(X) = f̃ ′′(f̃ ′(X)) is an isomorphism from F (t) to α∗F (t) such that

π∗f̃(X) = f(X). We see that a homomorphism f̃(X) from F (t) to α∗F (t)

such that π∗f̃(X) = f(X) is unique since there is at most one ∗-isomorphism

between deformations. Hence we obtain the following proposition.

Proposition 2.3. We suppose that R is a complete Noetherian local ring.

For every automorphism f(X) of G over k, there is a unique pair (α, f̃) of

a local R-algebra automorphism α of R[[t]] and an isomorphism f̃(X) from

F (t) to α∗F (t) such that π∗f̃(X) = f(X).

For a ring R, we denote by WR the ring of Witt vectors with coefficients

in R. If k is a perfect field of characteristic p > 0, then Wk is a complete

discrete valuation ring of characteristic 0 with the residue field k. In Wk we

can take p as a uniformizer. The ring Wk for a perfect field of characteristic

p > 0 has the following universal property.

Lemma 2.4 (cf. II. 5. [14]). Let A be a complete local ring with the max-

imal ideal m. For a ring homomorphism α from a perfect field k of charac-
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teristic p > 0 to the residue field A/m, there is a unique local homomorphism

from Wk to A such that the induced homomorphism on the residue field

coincides with α.

Let G be a formal group law of height n < ∞ over the perfect field k of

characteristic p > 0. We denote by Wk the category with objects as pairs

(A,α) where A is a complete Noetherian local ring with maximal ideal m

and α is a homomorphism from k to the residue field A/m. The morphisms

from (A,α) to (B, β) consist of local homomorphism γ from A to B such

that γ ◦ α = β. For an object (A,α) of Wk, a deformation of G to (A,α)

is a formal group law G̃ over A such that α∗G = π∗G̃ where π : A → A/m

is a canonical projection. A ∗-isomorphism f(X) between deformations G̃1

and G̃2 of G to (A,α) is an isomorphism of formal group laws over A such

that π∗f(X) = X. Let Def(A,α) be the set of all ∗-isomorphism classes

of deformations of G to (A,α). Then Def defines a functor from Wk to the

category of sets. By Lemma 2.4, we see that the category Wk is isomorphic to

the category D(Wk). Then we obtain the following theorem by Theorem 2.2.

We abbreviate the object (Wk[[t1, . . . , tn−1]], id) of Wk to Wk[[t1, . . . , tn−1]].

Theorem 2.5. The functor Def is represented by Wk[[t1, . . . , tn−1]]:

Def(A,α) ∼= HomWk
(Wk[[t1, . . . , tn−1]], (A,α)).

Let F (X,Y ) be a universal deformation on Wk[[t]]. For an automorphism

α : k → k and an isomorphism f : G→ α∗G, we take any power series f̃ ′(X)

in Wk[[X]] such that π∗f̃ ′(X) = f(X). Then F
ef ′(X,Y ) is a deformation of

G to (Wk[[t]], α). Hence we get a local homomorphism β : Wk[[t]] → Wk[[t]]

such that β∗F (X, Y ) is ∗-isomorphic to F
ef ′(X, Y ) and β = α. Let f̃ ′′(X) be
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a unique ∗-isomorphism from F
ef ′(X,Y ) to β∗F (X, Y ). Then f̃ ′′(f̃ ′(X)) is a

unique homomorphism from F (X, Y ) to β∗F (X, Y ) such that π∗f̃ ′′(f̃ ′(X)) =

f(X). Hence we get the following proposition.

Proposition 2.6. Let G be a height n < ∞ formal group law over a per-

fect field k of characteristic p > 0. Let F be a universal deformation on

Wk[[t]]. For every pair (α, f) of an automorphism of field α : k → k and

an isomorphism f : G → α∗G, there is a unique pair (β, f̃) of a continuous

automorphism β : Wk[[t]] → Wk[[t]] and an isomorphism f̃ : F → β∗F such

that β = α and π∗f̃(X) = f(X).

Let F be a finite field which contains the finite filed Fpn with pn elements.

We note that F is perfect. The ring of Witt vectors WF is an unramified

extension of the p-adic integer ring Zp. We consider the height n Honda

formal group law Hn defined over F. The formal group law Hn is p-typical

with the p-series

[p]Hn(X) = Xpn .

Let En be a formal power series ring over WF with (n− 1) variables:

En = WF[[u1, . . . , un−1]].

The ring En is a complete Noetherian local ring with residue field F. There

is a p-typical formal group law Fn defined over En with the p-series

[p]Fn(X) = pX +Fn u1X
p +Fn u2X

p2

+Fn · · ·+Fn un−1X
pn−1

+Fn X
pn .

The formal group law Fn is a deformation of Hn to (En, id).
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Lemma 2.7. The formal group law Fn is a universal deformation of Hn.

Proof. We show that Fn satisfies the conditions of a universal deformation.

Let En,i be the formal power series ring over WF with variables ui, . . . , un−1.

Let pi : En → En,i be a local WF-algebra homomorphism given by pi(uj) = 0

for j = 1, . . . , i − 1 and pi(uj) = uj for j = i, . . . , n − 1. Then p∗iFn is a

p-typical formal group law over En,i with the p-series

[p]p
∗
i Fn(X) ≡ pX + uiX

pi mod deg (pi + 1).

If p∗iFn(X, Y ) ≡ X+Y +bCk(X, Y ) mod deg k+1, then we have [n]p
∗
i Fn(X) ≡

nX + b (n−nk)
λ

Xk mod deg (k + 1) where λ = p if k is a power of p and λ = 1

otherwise. In particular, we get

[p]p
∗
i Fn(X) ≡ pX + b

(p− pk)
λ

Xk mod deg (k + 1).

This implies that k = pi and b(1− ppi−1) = ui. Let ti = ui/(1− ppi−1). Then

we have

En = WF[[t1, . . . , tn−1]]

En,i = WF[[ti, . . . , tn−1]]

The WF-algebra homomorphism En → En,i given by tj 7→ 0 for 1 ≤ j < i

and tj 7→ tj for i ≤ j < n is pi. Hence we get

p∗iFn = X + Y + tiCpi(X, Y ) mod deg (pi + 1).

This completes the proof.

3 Homomorphisms of formal group laws

In this section we recall a generalization of a homomorphism between for-

mal group laws over possibly different ground rings considered by several
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authors (cf. [19]).

Let R1 and R2 be two commutative rings. Let F1 (resp. F2) be a formal

group law over R1 (resp. R2). We understand that a homomorphism from

F1 to F2 is a pair (α, f) of a ring homomorphism α : R2 → R1 and a

homomorphism f : F1 → α∗F2 in the usual sense. The composition of

two homomorphisms (α, f) : F1 → F2 and (β, g) : F2 → F3 is defined as

(α ◦ β, α∗g ◦ f) : F1 → F3:

F1
f−→ α∗F2

α∗g−→ α∗(β∗F3) = (α ◦ β)∗F3.

A homomorphism (α, f) : F1 → F2 is an isomorphism if there exists a

homomorphism (β, g) : F2 → F1 such that (α, f) ◦ (β, g) = (id, id) and

(β, g) ◦ (α, f) = (id, id). Then a homomorphism (α, f) : F1 → F2 is an iso-

morphism if and only if α is a ring isomorphism and f is an isomorphism in

usual sense.

Let F be a finite field which contains the finite fields Fpn with pn elements.

Let Hn be the height n Honda formal group law over F. The formal group

law Hn is a p-typical formal group law with the p-series

[p]Hn(X) = Xpn .

Let Sn be the Morava stabilizer group. This is an automorphism group of

Hn over F in usual sense. We denote by Gn(t) the automorphism group of

Hn over F in the generalized sense.

Lemma 3.1. The automorphism group Gn(t) is isomorphic to the semi-

direct product Gal(F/Fp)n Sn.
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Proof. An automorphism of Hn consists of a ring isomorphism α : F→ F and

an isomorphism of formal group laws f : Hn → α∗Hn. Then α ∈ Gal(F/Fp).

Since Hn is defined over the prime field Fp , α
∗Hn = Hn. Hence we get

f ∈ Sn. We regard Sn as the subset of the power series ring F[[X]]. Then the

action of the Galois group Gal(F/Fp) induces an action on Sn. The semi-

direct product Gal(F/Fp) n Sn with respect to this action is isomorphic to

the automorphism group of Hn over F.

Let R be a complete Noetherian local ring with residue field k of charac-

teristic p > 0. Let G be a formal group law over k of height n < ∞. By ,

there is a universal deformation F of G over R[[t1, . . . , tn−1]]. We understand

that an automorphism of G is a pair (α, f) of a local R-algebra automorphism

and an isomorphism f : F → α∗F in usual sense. We denote by AutR(F )

the automorphism group of F in generalized sense. Let aut(G) be the au-

tomorphism group of G in usual sense. There is a natural homomorphism

from AutR(F ) to aut(G).

Lemma 3.2. The natural homomorphism AutR(F )→ aut(G) is an isomor-

phism.

Proof. This follows from Proposition 2.3.

Let G be a height n < ∞ formal group law over a perfect field k of

characteristic p > 0. There is a universal deformation F over Wk[[t1, . . . , tn]].

We understand that an automorphism of F is a pair (α, f) of a continuous

automorphism of Wk[[t]] and an isomorphism f : F → α∗F in usual sense.

We denote by Aut(G) (resp. Aut(F )) the automorphism group of G (resp.

F ) in generalized sense. There is a natural homomorphism from Aut(F ) to

Aut(G).
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Lemma 3.3. The natural homomorphism Aut(F )→ Aut(G) is an isomor-

phism.

Proof. This follows from Proposition 2.6.

Let En be the complete local ring WF[[u1, . . . , un−1]] where WF is the

ring of Witt vectors over F. We take a deformation Fn of Hn to (En, id) as

the p-typical formal group law with p-series

[p]Fn(X) = pX +Fn u1X
p +Fn · · ·+Fn un−1X

pn−1

+Fn X
pn .

By Lemma 2.7, Fn is a universal deformation of Hn. Let G̃n(t) be the au-

tomorphism group of Fn and let G̃WF
n (F) be the subgroup of G̃n(F) which

consists of the automorphism (α, f) such that α is a WF-algebra homomor-

phism. We note that there is a natural homomorphism G̃n(F)→ Gn(F) and

this induces a homomorphism G̃WF
n (F)→ Sn.

Corollary 3.4. The natural homomorphisms G̃n(F)→ Gn(F) and G̃WF
n (F)→

Sn are isomorphisms.

4 Isomorphisms between Fn and Hn−1

In this section we investigate a relation between two formal group laws Fn and

Hn−1 over the field F((un−1)). In particular, we see that the Morava stabilizer

group Sn−1 is realized as the Galois group of the minimum extension over

F((un−1)) on which an isomorphism between Fn and Hn−1 is defined.

Let n ≥ 2. Let F be a finite field. In this section we assume that F con-

tains the finite fields Fpn and Fpn−1 . Let k = F((un−1)) be the quotient field
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of the formal power series ring F[[un−1]]. There is a WF-algebra homomor-

phism θ : En → k given by θ(ui) = 0 for i = 1, . . . , n−2 and θ(un−1) = un−1.

Then we get a p-typical formal group law θ∗Fn. We abbreviate θ∗Fn to Fn.

The formal group law Fn is a p-typical with the p-series

[p]Fn(X) = un−1X
pn−1

+Fn X
pn .

Let Hn−1 be the height n− 1 Honda formal group law over k. Then Hn−1 is

a p-typical formal group law with the p-series

[p]Hn−1(X) = Xpn−1

.

Let K be a separable closure of k. Then there is an isomorphism between Fn

and Hn−1 over K, since the height of Fn is n− 1 (cf. Appendix 2, [13]). We

fix an isomorphism Φ from Fn to Hn−1. Since Φ is a homomorphism between

p-typical formal group laws, Φ has a following form:

Φ(X) =
∑
i≥0

Hn−1ΦiX
pi .

Let Li = k(Φ0,Φ1, . . . ,Φi) for i ≥ −1 and L = ∪i≥−1Li.

Lemma 4.1. The extension Li/k is totally ramified of degree (pn−1−1)pi(n−1)

for i ≥ 0.

Corollary 4.2. The extension L/k is totally ramified.

Proof. Since Φ(X) is a homomorphism from Fn to Hn−1, we have

Φ([p]Fn(X)) = [p]Hn−1(Φ(X)).

The left hand side is

Φ(un−1X
pn−1

) +Hn−1 Φ(Xpn)

=
∑

i≥0
Hn−1Φiun−1

piXpn+i−1
+Hn−1

∑
i≥0

Hn−1ΦiX
pn+i

.

13



The right hand side is

∑
i≥0

Hn−1 [p]Hn−1(ΦiX
pi)

=
∑

i≥0
Hn−1Φi

pn−1
Xpn+i−1

.

By comparing the coefficient of Xpn−1
, we obtain Φ0un−1 = Φ0

pn−1
. Since

Φ(X) is an isomorphism, Φ0 6= 0. Hence

Φ0
pn−1−1 − un−1 = 0.

This is an Eisenstein polynomial. Therefore L0/k is totally ramified of degree

pn−1 − 1. In particular, Φ0 is a prime element of L0.

We assume that Li−1/k is totally ramified of degree (pn−1 − 1)p(i−1)(n−1)

and Φi−1 is a prime element of Li−1. By comparing the coefficient of Xpn+i−1
,

we have

Φiun−1
pi + f(Φ0, . . . ,Φi−1) = Φi

pn−1

where f(Φ0, . . . ,Φi−1) is an element of the integer ring OLi−1
such that

f ≡ Φi−1 mod (Φi−1
2). Hence this is an Eisenstein polynomial. There-

fore Li/Li−1 is totally ramified of degree pn−1 and Φi is a prime element of

Li. By induction, we get the lemma.

We recall that G̃n(F) is an automorphism group of Fn over En in the

generalized sense. For g ∈ G̃n(F), we denote by α(g) the corresponding

continuous automorphism of En and by t(g) the corresponding isomorphism

from Fn to α(g)∗Fn. An automorphism α(g) induces a continuous automor-

phism of k. We abbreviate the induced automorphism of k by α(g). We note

that this is a right action of G̃n(F) on k. For an element g ∈ G̃n(F), we

denote by g̃ a continuous automorphism of the separable closure K which is

any extension of the automorphism α(g).
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Lemma 4.3. For any g and i, Li
eg = Li. In particular, Li/Fp((un−1)) is a

Galois extension.

Corollary 4.4. For any extension g̃ of α(g), Leg = L. In particular,

L/Fp((un−1)) is a Galois extension.

Proof. We have an isomorphism

Fn
Φ−→ Hn−1.

By applying g̃, we get an isomorphism

g̃∗Fn
eg∗Φ−→ g̃∗Hn−1.

Note that g̃∗Fn = α(g)∗Fn (resp. g̃∗Hn−1 = Hn−1), since Fn is defined over

k (resp. Fp). By a commutative diagram:

Fn
t(g)−→ α(g)∗Fn

Φ

y
yg̃∗Φ

Hn−1
h(g,eg)−→ Hn−1,

we have

Φeg(t(g)(X)) = h(g, g̃)(Φ(X)).

Here

t(g)(X) =
∑

i≥0
g∗Fnti(g)Xpi .

and ti are continuous functions from Sn to the integer ring Ok of k for all

i ≥ 0. The automorphism h(g, g̃) : Hn−1 → Hn−1 is an element of the Morava

stabilizer group Sn−1. The power series h(g, g̃)(X) has a following form:

h(g, g̃)(X) =
∑
i≥0

Hn−1hi(g, g̃)Xpi

15



where hi(g, g̃) ∈ Fpn−1 . Then the left hand side is

∑
i,j≥0

Hn−1Φj
egti(g)p

j

Xpi+j .

The right hand side is

∑
i,j≥0

Hn−1hj(g, g̃)Φi
pjXpi+j .

By comparing the coefficient of X, we obtain

Φ0
egt0(g) = h0(g, g̃)Φ0.

Since h0(g, g̃) ∈ Fpn−1 , we get

Φ0
eg = h0(g, g̃)Φ0t0(g)−1 ∈ k(Φ0) = L0.

We assume that Φ0
eg, . . . ,Φi−1

eg ∈ Li−1. Then by comparing the coefficient

of Xpi , we obtain

Φi
egt0(g)p

i − h0(g, g̃)Φi ∈ Li−1.

Hence we get

Φi
eg ∈ Li−1(Φi) = Li.

This completes the proof.

We suppose that a Galois group acts on the field on the right. For σ ∈
Gal(L/Fp((un−1))), we consider the following diagram:

Fn
id
= Fn

σ

Φ

y
yΦσ

Hn−1
h′(σ)−→ Hn−1,
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We note that Fn
σ = Fn since Fn is defined over Fp((un−1)). This diagram

defines a map

h′ : Gal(L/Fp((un−1)))→ Gn−1(F).

Lemma 4.5. The map h′ : Gal(L/Fp((un−1))) → Gn−1(F) is a homomor-

phism.

Proof. For σ′ ∈ Gal(L/Fp((un−1))), we have a commutative diagram:

Fn = Fn

Φσ

y
yΦσ′σ

Hn−1
h′(σ′)σ−→ Hn−1.

Then we get a commutative diagram:

Fn = Fn = Fn

Φ

y
yΦσ

yΦσ′σ

Hn−1
h′(σ)−→ Hn−1

h′(σ′)σ−→ Hn−1.

This means h′ is a homomorphism.

The Morava stabilizer group Sn−1 is the automorphism group of Hn−1

over the algebraic closure Fp in usual sense. We denote an element h ∈ Sn−1

by h = h0 + h1T + h2T
2 + · · · where hi ∈ WFpn−1 , hp

n−1

i = hi for i ≥ 0 and

h0 6= 0. Then h corresponds to the automorphism

h(X) =
∑
i≥0

Hn−1π(hi)X
pi

where π : WFpn−1 → Fpn−1 is the projection. Let S
(0)
n−1 = Sn−1. We define

the subgroups S
(i)
n−1 for i ≥ 1 by

S
(i)
n−1 = {h ∈ Sn−1| h0 = 1, h1 = 0, . . . , hi−1 = 0}.

17



Then S
(i+1)
n−1 is a normal subgroup of Sn−1 and the quotient group Sn−1/S

(i+1)
n−1

is finite of order (pn−1 − 1)p(n−1)i for i ≥ 0. The canonical homomorphism

Sn−1 →lim
←−

Sn−1/S
(i+1)
n−1 is an isomorphism. Hence Sn−1 and Gn−1(F) =

Gal(F/Fp)n Sn−1 are profinite groups.

Theorem 4.6. The map h′ : Gal(L/Fp((un−1))) → Gn−1(F) is an isomor-

phism.

Proof. There is a commutative diagram of exact sequences:

1→ Gal(L/k) −→ Gal(L/Fp((un−1))) −→ Gal(k/Fp((un−1))) → 1y
yh′

y
1→ Sn−1 −→ Gn−1(F) −→ Gal(F/Fp) → 1.

Since k/Fp((un−1)) is an unramified extension, the right vertical arrow is an

isomorphism. Hence it is sufficient to show that the left vertical arrow h′ :

Gal(L/k)→ Sn−1 is an isomorphism. If σ ∈ Gal(L/Li), then Φσ(X) ≡ Φ(X)

mod degree pi+1. Hence h′(σ)(X) ≡ X mod degree pi+1. This shows that

h′(Gal(L/Li)) ⊂ S
(i+1)
n−1 . Then h′ induces a homomorphism:

h
′
: Gal(Li/k) −→ Sn−1/S

(i+1)
n−1 .

If h
′
(σ) = e for σ ∈ Gal(L/k), then we have h′(σ)(X) ≡ X mod degree pi+1.

This implies Φσ(X) ≡ X mod degree pi+1. Therefore h
′
is a monomorphism.

Since the degree of Li over k is equal to the order of Sn−1/S
(i+1)
n−1 , the homo-

morphism h
′

is an isomorphism for all i. Therefore the homomorphism h′ is

an isomorphism.

Let Θ be the set of all isomorphism from Fn to Hn−1 over K. For Φ′ ∈ Θ,
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we consider the following commutative diagram:

Fn = Fn

Φ

y
yΦ′

Hn−1
h−→ Hn−1.

Since the isomorphism h : Hn−1 → Hn−1 is defined over Fpn−1 , we see that

Φ′ is defined over L. Then the Galois group Gal(L/k) acts on Θ.

Corollary 4.7. The action of Gal(L/k) on Θ is simply transitive.

Proof. For Φ′ ∈ Θ, we get h ∈ Sn−1 by the above commutative diagram.

Let σ ∈ Gal(L/k) be the corresponding element under the isomorphism

h′ : Gal(L/k)
∼=→ Sn−1. Then we have a commutative diagram:

Fn = Fn

Φ

y
yΦσ

Hn−1
h−→ Hn−1.

By comparing two commutative diagrams, we see that Φσ = Φ′. This shows

that the action is transitive.

If σ ∈ Gal(L/k) satisfies Φσ = Φ, then we have Φσ
i = Φi for all i. Since L

is generated by Φi for i = 0, 1, . . . over k, we see that σ = id. This completes

the proof

Let Aut(k) be the group consisting of the automorphisms of the topologi-

cal field k. We consider Aut(k) acts k on the right. There is a homomorphism

G̃n(F) → Aut(k) given by g 7→ α(g). Since L is algebraic over k, there is

a unique valuation on L extending the valuation on k. We regard L as a
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topological field by means of this valuation. Let Aut(L) be the automor-

phism group of L as a topological field. We denote by A(L/k) the subgroup

of Aut(L) consisting of the automorphisms which preserve the subfield k:

A(L/k) = {θ ∈ Aut(L)| θ(k) = k}.

Then we have a restriction homomorphism

A(L/k)→ Aut(k).

Let G = G̃n(F)×Aut(k) A(L/k) be the fibre product:

G p−→ G̃n(F)y
y

A(L/k) −→ Aut(k).

By Lemma 4.3, the natural projection p : G → G̃n(F) is surjective. It is clear

that the kernel of p is the Galois group Gal(L/k). Hence we have an exact

sequence:

1→ Gal(L/k) −→ G p−→ G̃n(F)→ 1.

Let Gn−1(L) be the automorphism group of Hn−1 over L in generalized

sense. By the same way as Lemma 3.1, we have an isomorphism Gn−1(L) ∼=
Aut(L) n Sn−1. Let A(L/k) n Sn−1 be the subgroup of Gn−1(L). For

(g, g̃) ∈ G, we consider the following commutative diagram:

Fn
t(g)−→ α(g)∗Fn

Φ

y
yΦeg

Hn−1
h(g,eg)−→ Hn−1.

This diagram defines a map f : G → A(L/k)n Sn−1 by (g, g̃) 7→ (g̃, h(g, g̃)).
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Lemma 4.8. The map f : G → A(L/k)n Sn−1 is a homomorphism.

Proof. For (g′, g̃′) ∈ G, we have a commutative diagram:

α(g)∗Fn
t(g′)α(g)

−→ α(g)∗α(g′)∗Fn

Φegy
yΦeg′eg

Hn−1
h(g′,eg′)eg−→ Hn−1.

Then we get a commutative diagram:

Fn
t(g)−→ α(g)∗Fn

t(g′)α(g)

−→ α(g)∗α(g′)∗Fn

Φ

y
yΦeg yΦeg′eg

Hn−1
h(g,eg)−→ Hn−1

h(g′,eg′)eg−→ Hn−1.

This means that

f((g′, g̃′) · (g, g̃)) = (g̃′g̃, h(g′, g̃′)eg · h(g, g̃)).

Hence f is a homomorphism.

There are homomorphisms A(L/k) → Aut(k) → Gal(F/Fp) where the

first homomorphism is restriction and the second homomorphism is obtained

by considering the induced automorphism on the residue field. These homo-

morphisms are compatible with the action on the Morava stabilizer group

Sn−1. Hence we get a homomorphism f ′ : A(L/k)n Sn−1 → Gn−1(F).

There are homomorphisms

G f ′◦f−→ Gn−1(F) −→ Gal(F/Fp).

By Corollary 3.4, we have a natural isomorphism G̃n(F) ∼= Gn(F). We iden-

tify G̃n(F) and Gn(F) by this isomorphism. Then we have homomorphisms

G p−→ Gn(F) −→ Gal(F/Fp).
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We verify that the following diagram is commutative:

G p−→ Gn(F)

f ′◦f

y
y

Gn−1(F) −→ Gal(F/Fp).

Then we get a commutative diagram of exact sequences:

1→ Gal(L/k) −→ G p−→ Gn(F) → 1y f ′◦f

y
y

1→ Sn−1 −→ Gn−1(F) −→ Gal(F/Fp) → 1.

The left vertical arrow is an isomorphism from Theorem 4.6. Hence we get

the following Theorem.

Theorem 4.9. There are isomorphisms

G ∼= Gn(F)×Gal(F/Fp ) Gn−1(F) ∼= Gal(F/Fp)n (Sn × Sn−1).

5 Action of G on L

By Theorem 4.9, G is a profinite group. There is an action of G on L by

using the projection G → A(L/k). In this section we show that the profinite

group G acts on L continuously.

Since L is algebraic over k, there is a unique valuation v on L extending

the valuation on k. We regard L as a metric space by using v. We note

that every g ∈ G preserves the valuation: v(xg) = v(x) for all x ∈ L. In

particular g ∈ G induces a homeomorphism g : L → L. For any x ∈ L

and m > 0, we define U(x,m) as an open neighbourhood of x given by

U(x,m) = {y ∈ L| v(y − x) > m}.
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Lemma 5.1. If G acts on Li continuously for all i, then G acts on L con-

tinuously.

Proof. We take any x ∈ L and any m > 0. There exists i such that x ∈ Li.
Since G acts on Li continuously, there exists an open neighbourhood V of

the identity G such that x · V ⊂ U(x,m). Then for any y ∈ U(x,m) and

h ∈ V , we have

v(yhg − xg) = v((yhg − xhg) + (xhg − xg))
≥ min{v(yhg − xhg), v(xhg − xg)}
= min{v(y − x), v(xh − x)}
> m.

This shows that G acts continuously on L.

Hence we consider the action of G on Li for fixed i. We denote by v′ the

valuation of Li such that v′(Φi) = 1. Let Ui(x,m) be the open nighbourhood

of x given by {y ∈ Li| v′(y − x) > m}.

Lemma 5.2. For any m > 0, there exists an open neighbourood V of the

identity of G such that v′(Φi
g − Φi) > m for all g ∈ V .

Proof. The action of (g, g̃) ∈ G is described by the commutative diagram

Fn
t(g)−→ α(g)∗Fn

Φ

y
yΦeg

Hn−1
h(g,eg)−→ Hn−1.

Hence we have a relation

∑
i,j≥0

Hn−1Φj
eg∗ti(g)p

j

Xpi+j =
∑
i,j≥0

Hn−1hjΦ
pj

i X
pi+j .
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If v′(t0(g) − 1) > m, v′(t1(g)) > m, . . . , v′(ti(g)) > m and h0 = 1, h1 =

0, . . . , hi = 0, then v′(Φegj − Φj) > m for j = 1, . . . , i. There exists an open

subgroup S
(j)
n of Sn such that v′(t0(g)−1) > m, v′(t1(g)) > m, . . . , v′(ti(g)) >

m for all g ∈ S(j)
n . Then the open subgroup Gal(F/Fp) n (S

(j)
n × S(m+1)

n−1 ) of

G satisfies the condition.

Proposition 5.3. The profinite group G acts on the metric space L contin-

uously.

Proof. By Lemma 5.1, it is sufficient to prove that G acts on Li continuously

for all i. Let x ∈ Li such that

x =
∞∑

j=m′
xjΦi

j

where xj ∈ F for j ≥ m′. For any m > 0, by Lemma 5.2, there exists an open

neighbourhood V of the identity of G such that v′(Φg
i −Φi) > m−m′+ 1 for

all g ∈ V . Let W = V ∩Sn×Sn−1. Since Sn×Sn−1 is an open subgroup, W

is an open set. Then we have x ·W ⊂ Ui(x,m). For any y ∈ Ui(x,m) and

any h ∈W ,

v′(yhg − xg) = v′((yhg − xhg) + (xhg − xg))
≥ min{v′(yhg − xhg), v′(xhg − xg)}
= min{v′(y − x), v′(xh − x)}
> m.

This shows that G acts on Li continuously.
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6 Vanishing of some cohomology

Let G be a topological group and let M be a topological G-module. In

this section we define a cohomology group of G with the coefficients in M

parameterized by a topological space. Then we consider a vanishing condition

of this cohomology group.

Let X be a topological space and let A be a subspace of X. We denote

by (X,A) such a pair of topological spaces. We define a homogeneous n-

cochain of G with the coefficients in M over a topological pair (X,A) to be

a continuous map f from X ×Gn+1 to M such that

f(x; σσ0, σσ1, . . . , σσn) = σ · f(x;σ0, σ1, . . . , σn).

and

f(a;σ1, . . . , σn) = 0 if a ∈ A.

We denote by Cn
(X,A)(G;M) the abelian group of all homogeneous n-cochains

for G in M over (X,A). As usual the coboundary map d : Cn
(X,A)(G;M) →

Cn+1
(X,A)(G;M) is given by

df(x;σ0, . . . , σn+1) =
n+1∑
i=0

(−1)if(x;σ0, . . . , σ̂i, . . . , σn+1).

Let H∗(X,A)(G;M) be the cohomology group of the cochain complex

C∗(X,A)(G;M). For (X,A) =pt (one point space), we see that H∗pt(G;M) =

H∗(G;M) is the continuous cohomology group of G with the coefficients in

M .

In the following of this section we assume that G is a finite group and

regard it as a discrete group. Let C(X,A;M) be the abelian group of all
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continuous functions f : X → M such that f(a) = 0 for a ∈ A. Then

a homogeneous n-cochain of G with the coefficients in M over (X,A) is

naturally identified with a homogeneous n-cochain of G with the coefficients

in C(X,A;M). In particular, we have a natural isomorphismH∗(X,A)(G;M) ∼=
H∗(G;C(X,A;M)).

We recall some vanishing condition of the cohomology group of G (cf.

Chap. I §6 [5]). A mean on M is an additive function I which associates

with each map f : G→M an element I(f) ∈M such that

1. if f(σ) = m ∈M for all σ ∈ G, then I(f) = m,

2. for all σ ∈ G, I(σ · f) = σ · I(f) where (σ · f)(τ) = σ · f(σ−1τ).

Proposition 6.1. If M is a G-module which admits a mean, then Hn(G;M) =

0 for all n > 0.

Proof. Let f be a homogeneous n-cocycle for G in M . For fixed σ1, . . . , σn,

we consider the map

φ(f ; σ1, . . . , σn) : σ 7→ f(σ, σ1, . . . , σn).

This map has a mean value (Inf)(σ1, . . . , σn) ∈M . Since φ(f ; σσ1, . . . , σσn) =

σ·φ(f ;σ1, . . . , σn), we get (Inf)(σσ1, . . . , σσn) = σ·(Inf)(σ1, . . . , σn). Hence

Inf is a homogeneous (n−1)-cochain for G in M . We show that d(Inf) = f .

Since f is an n-cocycle,

0 = df(x, σ0, σ1, . . . , σn)

= f(σ0, . . . , σn)−∑n
i=0(−1)if(x, σ0, . . . , σ̂i, . . . , σn).

So we have
n∑
i=0

(−1)iφ(f ;σ0, . . . , σ̂i, . . . , σn) = f(σ0, . . . , σn).
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By taking mean values of both sides, we get

n∑
i=0

(−1)i(Inf)(σ0, . . . , σ̂i, . . . , σn) = f(σ0, . . . , σn).

The left hand side is equal to d(Inf)(σ0, . . . , σn). This completes the proof.

Let R be a commutative ring. We denote by R[G] the group ring of G

over R. Let g (g ∈ G) be a canonical base of R[G].

Lemma 6.2. The G-module R[G] admits a mean.

Proof. A map f : G→ R[G] has a following form:

f(g) =
∑

g′∈G
fg′(g)g′

where fg′ : G→ R. We define I(f) as

I(f) =
∑
g∈G

fg(g)g.

Then it is easy to verify that I is a mean.

If R is a topological commutative ring, the group ring R[G] is naturally

topological G-module. Let f : X × G → R[G] be a continuous function.

Fixed x ∈ X, the function f(x,−) : G → R[G], g 7→ f(x, g) has a mean

value I(f)(x) ∈ R[G] by using the mean of the proof of Lemma 6.2.

Lemma 6.3. The function I(f) : X → R[G] is continuous.

Proof. The function f : X ×G→ R[G] is a following form:

f(x, g) =
∑

g′∈G
f(x, g)g′g

′.
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Then f is continuous if and only if f(−, g)g′ : X → R is continuous for all

g, g′ ∈ G. On the other hand, the function I(f) =
∑

g∈G I(f)gg is continuous

if and only if I(f)g : X → R is continuous for all g ∈ G. By the proof of

Lemma 6.2, I(f)g(x) = I(f(x,−))g = f(x, g)g. This complete the proof.

Corollary 6.4. The G-module C(X,A;R[G]) admits a mean.

Proof. Let f : G→ C(X,A;R[G]) be a map. The adjoint ad(f) : X ×G→
R[G] is a continuous map. By Lemma 6.3, we have I(ad(f)) ∈ C(X,A;M).

Then the function I(ad(−)) is a mean on C(X,A;M).

Proposition 6.5. Let R be a topological commutative ring. If M ∼= R[G] as

topological G-modules, then Hn
(X,A)(G;M) = 0 for all n > 0.

Proof. Since H∗(X,A)(G;M) ∼= H∗(G;C(X,A;M)), this follows from Proposi-

tion 6.1 and Corollary 6.4.

Remark 6.6. We can also define the cohomology H∗(X,A)(G;M)′ of G in

M over a topological pair (X,A) by using a (normalized) nonhomogeneous

cochain complex of G in M . If G is finite, we also have a natural isomorphism

H∗(X,A)(G;M)′ ∼= H∗(G;C(X,A;M)).

Hence, under the same condition as Proposition 6.5, we have H∗(X,A)(G;M)′ =

0 for all n > 0.

7 Normalized cochain complex

Let G be a topological group and let M be a topological G-module. A

continuous n-cochain for G in M is a continuous function f : Gn → M . We
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denote by Cn = Cn(G;M) the abelian group of all continuous n-cochains for

G in M . The coboundary map d : Cn → Cn+1 is given by

df(γ1, . . . , γn+1) = γ1 · f(γ2, . . . , γn+1)

+
∑n

i=1(−1)if(γ1, . . . , γiγi+1, · · · , γn+1)

+(−1)n+1f(γ1, . . . , γn).

A “normalized” continuous n-cochain for G in M is a continuous function

f : Gn → M such that f(γ1, . . . , γn) = 0 if γi is equal to the identity e for

some i (1 ≤ i ≤ n). We denote by An the abelian group of all “normalized”

continuous n-cochains for G in M . It is easy to verify that A∗ is a sub-

cochain complex of C∗. In this section we show that the natural cochain

map A∗ ↪→ C∗ induces isomorphisms on cohomology groups.

We define a filtration of the cochain complex C∗. Let F pCn be a sub-

group of Cn consisting of all continuous n-cochains for G in M such that

f(γ1, . . . , γn) = 0 if γi is equal to the identity e for some i (1 ≤ i ≤ p). Then

we have a filtration of the abelian group Cn:

Cn = F 0Cn ⊃ F 1Cn ⊃ · · · ⊃ F n−1Cn ⊃ F nCn = F n+1Cn = · · · .

It is easy to see that d(F pCn) ⊂ F pCn+1. Hence F pC∗ is a sub-cochain

complex of C∗. We obtain a filtration of the cochain complex C∗:

C∗ = F 0C∗ ⊃ F 1C∗ ⊃ · · · ⊃ F pC∗ ⊃ · · · .

Note that ∩pF pC∗ = A∗. In the following we show that the inclusion F pC∗ ↪→
F p−1C∗ induces isomorphisms on cohomology groups.

For 1 ≤ p ≤ n, we define an abelian group Bp,n to be the set of all

continuous functions f : Gn−1 → M such that f(γ1, . . . , γn−1) = 0 if γi is
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equal to the identity e for some i (1 ≤ i < p). For p > n, we set Bp,n = 0.

There is an exact sequence for all p ≥ 1 and n:

0→ F pCn −→ F p−1Cn −→ Bp,n → 0

where the right hand map is given by the restriction of the source

Gn−1 = Gp−1 × {e} ×Gn−p ↪→ Gn.

There is a section of F p−1Cn → Bp,n obtained by the projection forgetting

the pth component of G:

Gn = Gp−1 ×G×Gn−p −→ Gp−1 × {e} ×Gn−p = Gn−1.

Since F pC∗ is a sub-cochain complex of F p−1C∗, there is a map d : Bp,n →
Bp,n+1 which makes Bp,∗ a cochain complex. The coboundary map d : Bp,n →
Bp,n+1 is given by the following form:

(df)(γ1, . . . , γn) =
∑n−1

i=p (−1)if(γ1, . . . , γp−1, γp, . . . , γiγi+1, . . . , γn)

+(−1)nf(γ1, . . . , γp−1, γp, . . . , γn−1).

Hence it is sufficient to show that all the cohomology groups of the cochain

complex Bp,∗ vanish so as to prove that Hn(F pC)→ Hn(F p−1C) are isomor-

phisms for all n.

We define a map s : Bp,n → Bp,n−1. For f ∈ Bp,n, the function s(f) :

Gn−2 →M is defined by

s(f)(γ1, . . . , γn−2) = f(γ1, . . . , γp−1, e, γp, . . . , γn−2).

Clearly s(f) ∈ Bp,n−1. Note that if f ∈ Bp,p, then s(f) = 0. We compute

30



d(s(f)) and s(d(f)). First we have

d(s(f))(γ1, . . . , γn−1) =
∑n−2

i=p (−1)is(f)(γ1, . . . , γp−1, γp, . . . ,

· · · , γiγi+1, . . . , γn−1)

+(−1)n−1s(f)(γ1, . . . , γn−2)

=
∑n−2

i=p (−1)if(γ1, . . . , γp−1, e, γp, . . . ,

· · · , γiγi+1, . . . , γn−1)

+(−1)n−1f(γ1, . . . , γp−1, e, γp, . . . , γn−2).

Second we have

s(d(f))(γ1, . . . , γn−1) = d(f)(γ1, . . . , γp−1, e, γp, . . . , γn−1)

= (−1)pf(γ1, . . . , γp−1, γp, . . . , γn−1)

+
∑n−2

i=p (−1)i+1f(γ1, . . . , γp−1, e, γp, . . . ,

· · · , γiγi+1, . . . , γn−1)

+(−1)nf(γ1, . . . , γp−1, e, γp, . . . , γn−2).

Hence we get

d(s(f)) + s(d(f)) = (−1)pf.

This shows that Hn(Bp,∗) = 0 for all n.

Theorem 7.1. The cochain map A∗ ↪→ C∗ induces isomorphisms on coho-

mology groups

H∗(A)
∼=−→ H∗(C).

8 Inflation maps

LetG be a Hausdorff topological group and letK be a finite normal subgroup.

We denote by H the quotient group G/K and π : G→ H the quotient map.
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In this section we assume that there is a continuous section s : H → G

such that s(e) = e. Note that s is not necessarily group homomorphism. For

example, if G is a profinite group, then there is such a section [15]. Let M be a

topological G module. The fixed submodule MK is naturally a topological H

module. In this section we study the inflation map H∗(H;MK)→ H∗(G;M)

under some conditions.

A normalized continuous n-cochain for G in M is a continuous map f :

Gn → M such that f(γ1, . . . , γn) = 0 if γi is equal to the identity e for

some i (1 ≤ i ≤ n). We denote by An = An(G;M) the abelian group of all

normalized continuous n-cochains for G in M . By definition, A0 = M . The

non-homogeneous coboundary map d : An → An+1 is given by

(df)(γ1, . . . , γn+1) = γ1 · f(γ2, . . . , γn+1)

+
∑n

i=1(−1)if(γ1, . . . , γiγi+1, . . . , γn+1)

+(−1)n+1f(γ1, . . . , γn).

By Theorem 7.1, the cohomology ofA∗ is the continuous cohomologyH∗(G;M).

We define a filtration of the cochain complex A∗. For j = 0, we set

An0 = An. For 0 < j ≤ n, F jAn is defined as a subgroup of An consisting

of f ∈ An such that f : Gn → M factors through the continuous map

f ′ : Gn−j ×Hj →M . For j > n, we set F jAn = 0. Hence we get a filtration

of An:

An = F 0An ⊃ F 1An ⊃ · · ·F nAn ⊃ F n+1An = 0.

It is easy to verify that d(F jAn) ⊂ F jAn+1. Hence (F jA∗)j≥0 is a filtration

of the cochain complex A∗:

A∗ = F 0A∗ ⊃ F 1A∗ ⊃ · · · ⊃ F nA∗ ⊃ · · · .
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Let N be the topological K module obtained from the topological G

module M by the restriction of the action to K. In the following we assume

that there is a topological commutative ring R such that the topological K

module N is isomorphic to the group ring R[K] as topological K modules.

Since K is discrete and finite, the normalized continuous n-cochain group

An(K;N) is naturally isomorphic to a direct product of finite many copies of

N . We introduce a topology on An(K;N) by using this isomorphism and the

product topology. Let Aj(G;Ai(K;N)) be the abelian group of all normalized

continuous j-cochains of G in Ai(K;M). Note that a map from a topological

space X to Ai(K;M) is continuous if and only if the adjoint X×Ki →M is

continuous. We define a homomorphism rj : F jAi+j → Aj(H;Ai(K;M)) by

rj(f)(σ1, . . . , σj)(τ1, . . . , τi) = f ′(τ1, . . . , τi, σ1, . . . , σj)

where f ′ : Gi ×Hj →M is a continuous map such that

f(γ1, . . . , γn) = f ′(γ1, . . . , γn−j, πγn−j+1, . . . , πγn).

It is easy to see that rj(f) = 0 if f ∈ F j+1Ai+j. Hence we get a homo-

morphism

rj : F jAi+j/F j+1Ai+j −→ Aj(H;Ai(K;M)).

We note that rj : F jAj/F j+1Aj → Aj(H;M) is an isomorphism. Let d

be the coboundary operator of F jA∗/F j+1A∗. The coboundary operator of

A∗(K;M) induces a homomorphism

dK : Aj(H;A∗(K;M))→ Aj(H;A∗+1(K;M)).

Then we obtain that dK ◦ rj = rj ◦ d.
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Lemma 8.1. H(Aj(H;A∗(K;M)), dK) = Aj(H;MK) for all j.

Proof. Let Tn be a subspace of Gn given by

Tn = ∪nk=1G
k−1 × {e} ×Gn−k−1 ⊂ Gn.

By Remark 6.6, H∗(Gn,Tn)(K;M)′ = MK . This shows that the lemma holds.

Lemma 8.2. rj : Hj(F jA∗/F j+1A∗)
∼=−→ Aj(H;MK).

Proof. Let f ∈ F jAj such that df ∈ F j+1Aj+1. Then dK(rj(f)) = 0.

By Lemma 8.1, rj(f) ∈ Aj(H;MK). Conversely, let f̃ ∈ Aj(H;MK) ⊂
Aj(H;M). We define f ∈ F jAj by

f(γ1, . . . , γj) = f̃(πγ1, . . . , πγj).

Then for any τ ∈ K, we easily see that

df(γ1τ, γ2, . . . , γj+1) = df(γ1, γ2, . . . , γj+1).

Lemma 8.3. Hn(F jA∗/F j+1A∗) = 0 for all n > j.

Proof. Put i = n − j − 1 ≥ 0. Let f ∈ F jAn such that df ∈ F j+1An+1.

Since dK ◦ rj = rj ◦ d, we have dK(rj(f)) = 0. By Lemma 8.1, there is u ∈
Aj(H;Ai(K;M)) such that dKu = rj(f). We define a continuous function

g : Ki ×Gj →M by

g(σ1, . . . , σi, γ1, . . . , γj) = u(πγ1, . . . , πγj)(σ1, . . . , σi).

34



Set g0 = g. We define a sequence of continuous functions g1, . . . , gi such

that gk is defined on Gk × Ki−k × Gj with its values in M and gk is an

extension of gk−1 for all 1 ≤ k ≤ i. We write ρts = (ρs, . . . , ρt) ∈ Gt−s+1, γts =

(γs, . . . , γt) ∈ Gt−s+1 and σts = (σs, . . . , σ
t) ∈ Kt−s+1 for 1 ≤ s ≤ t. Let

g1(ρ, σi2, γ
j
1) = s(πρ) · g(s(πρ)−1ρ, σi2, γ

j
1)− f(s(πρ), s(πρ)−1ρ, σi2, γ

j
1).

For k > 1, we define the gk’s recursively by

gk(ρ
k
1, σ

i
k+1, γ

j
1) = gk−1(ρk−2

1 , ρk−1s(πρk), s(πρk)
−1ρk, σ

i
k+1, γ

j
1)

+(−1)kf(ρk−1
1 , s(πρk), s(πρk)

−1ρk, σ
i
k+1, γ

j
1).

Then we can show that f − dgi ∈ F j+1An as the proof of Theorem 2.2.1

of [5].

Therefore we get an E1-term of the spectral sequence associated with the

filtration (F jA∗)j≥0 of the cochain complex A∗

Ep,q
1
∼=




Ap(H;MK) if q = 0,

0 if q 6= 0.

It is easy to verify that the differential d1 is given by the coboundary map of

the normalized continuous cochain complex A∗(H;MK) of H in MK . Hence

we get an E2-term

Ep,q
2
∼=




Hp(H;MK) if q = 0,

0 if q 6= 0.

The spectral sequence collapses from E2-term and converges to the cohomol-

ogy groups H∗(A∗) = H∗(G;M). It is easy to verify that the edge homo-

morphism Ep,0
2 → Hp(A∗) is identified with the inflation map Hp(H;MK)→

Hp(G;M). Hence we get the following theorem.
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Theorem 8.4. Let G be a Hausdorff topological group, K a finite normal

subgroup and H = G/K the quotient group. We assume that there is a

continuous section s : H → G. Let M be a topological G module such

that M is isomorphic as topological K-modules to a group ring R[K] for

some topological commutative ring R. Then the inflation map H∗(H;MK)→
H∗(G;M) is an isomorphism

H∗(H;MK)
∼=−→ H∗(G;M).

9 Cohomology of Gn−1(F) in F[w±1]

Let F be a finite field containing the finite fields Fpn and Fpn−1 . The profinite

group Gn−1(F) is a semi-direct product Gal(F/Fp)nSn−1. There is an action

of Gn−1(F) on the graded field F[w±1] where the degree of w is −2. In this

section we study the cohomology of Gn−1(F) in the coefficients F[w±].

We recall that the group Gn−1(F) is the automorphism group of the

Honda formal group law Hn−1 over the field F in the generalized sense. The

Morava stabilizer group Sn−1 which is the automorphism group of Hn−1 in

usual sense is a normal subgroup of Gn−1(F) and its quotient group is the

Galois group Gal(F/Fp). In fact we have an isomorphism

Gn−1(F) ∼= Gal(F/Fp)n Sn−1.

The profinite group Gn−1(F) acts on the graded field F[w±1] from the

right as follows. For every h ∈ Sn−1, h has a following expression

h = h0 + h1T + h2T
2 + · · · , hi ∈ WFpn−1 , hp

n−1

i = hi, h0 6= 0
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where T n−1 = p and Thi = hpiT for all i ≥ 0. The subgroup Sn−1 of Gn−1(F)

acts on F[w±1] as F-algebra automorphisms by

wh = π(h0)−1w, h ∈ Sn−1

where π : WFpn−1 → Fpn−1 is the projection to the residue field. The sub-

group Gal(F/Fp) acts on F[w±1] by

(awn)σ = aσwn, σ ∈ Gal(F/Fp), a ∈ F, n ∈ Z.

Then we obtain an action of Gn−1(F) on F[w±1] compatible to the above

actions of the subgroups Sn−1 and Gal(F/Fp).

We consider the cohomology of Gn−1(F) in F[w±1]. Since we have an

exact sequence

1→ Sn−1 −→ Gn−1(F) −→ Gal(F/Fp)→ 1

and the quotient group Gal(F/Fp) is finite, we have a Lyndon-Hochschild-

Serre spectral sequence

E∗,∗2 = H∗(Gal(F/Fp);H
∗(Sn−1; F[w±1])) =⇒ H∗(Gn−1(F); F[w±1]).

The cohomology H∗(Sn−1; F[w±1]) is Gal(F/Fp) module over F and the ac-

tion of Gal(F/Fp) satisfies the relation (cm)σ = cσmσ for all c ∈ F and

m ∈ H∗(Sn−1; F[w±1]). By Lemma 5.4 of [2], the E2-term is given by

Ep,q
2
∼=




H∗(Sn−1; F[w±1])Gal(F/Fp ), if q = 0,

0 if q 6= 0.

Hence the spectral sequence collapses from E2-term and we obtain an iso-

morphism

H∗(Gn−1(F); F[w±1]) ∼= H∗(Sn−1; F[w±1])Gal(F/Fp ).
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We denote by Γ(n− 1) the Galois group of the extension Fpn−1/Fp . The

subfield Fpn−1 [w±1] ⊂ F[w±1] is stable under the action of Sn−1. Hence we

have

H∗(Sn−1; F[w±1]) ∼= H∗(Sn−1; Fpn−1 [w±1])⊗Fpn−1 F.

This isomorphism implies an isomorphism

H∗(Sn−1; F[w±1])Gal(F/Fp ) ∼= H∗(Sn−1; Fpn−1 [w±1])Γ(n−1).

Therefore we get the following proposition.

Proposition 9.1. There is an isomorphism

H∗(Gn−1(F); F[w±1]) ∼= H∗(Sn−1; Fpn−1 [w±1])Γ(n−1).

10 Cohomology of Gn in F((un−1))[u±1]

The profinite group acts on the graded field F((un−1))[u±1] where the degree

of u is −2. In this section we study the cohomology of Gn in the coefficients

F((un−1))[u±1].

Let k = F((un−1)). The profinite group Gn = Gal(F/Fp)nSn acts on the

field k continuously from the right. Explicitly, the Morava stabilizer group

Sn acts on k as F -algebra automorphisms by

un−1
g = t0(g)−(pn−1−1)un−1, g ∈ Sn

where t0(g) is the leading coefficient of the homomorphism

t(g) : Fn → α(g)∗Fn, t(g)(X) =
∑
i≥0

α(g)∗Fnti(g)Xpi .
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The Galois group Gal(F/Fp) acts on F naturally and on un−1 trivially.

We define an action of the profinite group Gn on the graded field k[u±1]

extending the action on the degree 0 part given above. For g ∈ Sn, we set

ug = t0(g)−1u

and Gal(F/Fp) acts on u trivially. Then we see that this defines a continuous

action of Gn on k[u±1] from the right.

We consider the cohomology of Gn in the coefficients k[u±1]. Since there

is an exact sequence

1→ Sn −→ Gn −→ Gal(F/Fp)→ 1

and the quotient group Gal(F/Fp) is finite, we have a Lyndon-Hochschild-

Serre spectral sequence

E∗,∗2 = H∗(Gal(F/Fp);H
∗(Sn; k[u±1])) =⇒ H∗(Gn; k[u±1]).

By the same reason as the case of H∗(Sn−1; F[w±1]), we see that the E2-term

is given by

Ep,q
2
∼=




H∗(Sn; k[u±1])Gal(F/Fp), if q = 0,

0 if q 6= 0

and the spectral sequence collapses from E2-term. Since the subfield

Fpn((un−1))[u±1] ⊂ k[u±1] is stable under the action of Gn, we obtain the

following proposition.

Proposition 10.1. There is an isomorphism

H∗(Gn; k[u±1]) ∼= H∗(Sn; Fpn((un−1))[u±1])Gal(Fpn/Fp ).

39



11 Cohomology of G(i)

Let F be a finite filed containing the finite fields Fpn and Fpn−1 . Let k =

F((un−1)). We denote by Li the totally ramified Galois extension k(Φ0, . . . ,Φi)

for i ≥ 0 where Φi are coefficients of the isomorphism

Φ : Fn −→ Hn−1, Φ(X) =
∑
i≥0

Hn−1ΦiX
pi .

Let L−1 = k and L = ∪i≥0Li. We consider a graded field L[u±1] where

the degree of u is −2. In this section we define quotient groups G(i) of the

profinite group G which act on the graded field Li[u
±1] for i ≥ −1. Then we

study the cohomologies of G(i) in the coefficients Li[u
±1].

We recall that G is a fibre product G̃n(F) ×Aut(k) A(L/k) where G̃n(F)

is the automorphism group of the deformation Fn in F[[un−1]], Aut(k) is the

automorphism group of the local field k, and A(L/k) is the subgroup of the

automorphism group of the valuation field L, whose elements preserve the

subfield k. By Theorem 4.9, there is an isomorphism G ∼= Gal(F/Fp)n (Sn×
Sn−1). Hence G is a profinite group. There is an action of G on L by using

the projection G → A(L/k). By Proposition 5.3, the action is continuous

with respect to the profinite topology on G and the valuation topology on L.

Let L[u±1] be a graded field where the degree of u is −2. We define an

action of G on L[u±1] as automorphisms of graded field, which is an extension

of the action of G on the degree 0 part L. An element g of G̃n(F) is a pair

(α(g), t(g)) where α(g) is a continuous automorphism of F[[un−1]] and t(g) is

an isomorphism t(g) : Fn → α(g)∗Fn over F[[un−1]]. The automorphism t(g)
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has a form

t(g)(X) =
∑
i≥0

α(g)∗Fnti(g)Xpi .

For (g, g̃) ∈ G = G̃n(F)×Aut(k) A(L/k), we set

u(g,eg) = t0(g)−1u.

This defines a continuous action of G on L[u±1] as automorphism of a graded

field. We note that under the isomorphism G ∼= Gal(F/Fp) n (Sn × Sn−1),

the subgroup Gn−1 = Gal(F/Fp) n Sn−1 acts on u trivially and on L as a

Galois group Gal(L/Fp((un−1))).

We recall that a quotient group Sn−1(i) of Sn−1. An element h of the

Morava stabilizer group Sn−1 has a form

h = h0 + h1T + h2T
2 + · · · , hi ∈ WFpn−1 , hp

n−1−1
i = hi, h0 6= 0

where T n−1 = p and Thi = hpiT . For i ≥ 0, there is an open normal subgroup

S
(i)
n−1 given by

S
(i)
n−1 = {h ∈ Sn−1| h0 = 1, h1 = · · ·hi−1 = 0}.

We denote by Sn−1(i) the quotient group Sn−1/S
(i+1)
n−1 . Since S

(i+1)
n−1 is open,

Sn−1(i) is a finite group and its order is equal to (pn−1 − 1)p(n−1)i.

For i ≥ −1, we define a quotient group G(i) of G. Under the isomorphism

G ∼= Gal(F/Fp) n (Sn × Sn−1), we see that the subgroup S
(i+1)
n−1 is normal.

We denote by G(i) the quotient group G/S(i+1)
n−1 . In particular, G(−1) = Gn.

Hence there is an exact sequence of profinite groups

1→ S
(i+1)
n−1 −→ G −→ G(i)→ 1.
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By Lemma 4.3, the action of G on L[u±1] induces an action of G on the

subfield Li[u
±1] for all i ≥ −1. Then it is easy to verify that the action of G

on Li[u
±1] factors through the quotient group G(i).

There is an exact sequence

1→ S
(i)
n−1/S

(i+1)
n−1 −→ G(i) −→ Gi− 1→ 1.

By Theorem 4.6 and its proof, the kernel S
(i)
n−1/S

(i+1)
n−1 is identified with the

Galois group of the extension Li/Li−1. Hence the invariant sub ring of the ac-

tion of S
(i)
n−1/S

(i+1)
n−1 on Li[u

±1] is equal to Li−1[u±1]. We consider the inflation

map

H∗(G(i− 1);Li−1[u±1]) −→ H∗(G(i);Li[u
±1])

for i ≥ 0. For a finite Galois extension Li/Li−1, the existence of a normal

basis implies that the Gal(Li/Li−1) module Li is a regular representation over

the discrete valuation field Li−1. By Theorem 8.4, we obtain the following

theorem.

Proposition 11.1. The inflation map

H∗(G(i);Li[u
±1]) −→ H∗(G(i+ 1);Li+1[u±1])

is an isomorphism for all i ≥ −1.

12 Ring homomorphism

In this section we construct a ring homomorphism from the cohomology of

Gn−1 in the coefficients F[w±1] to the cohomology of Gn in the coefficients

F((un−1))[u±1].
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Let Gn−1 be the profinite group Gal(F/Fp)nSn−1. We denote by Gn−1(i)

the quotient group of Gn−1 given by Gal(F/Fp) n Sn−1(i) for i ≥ 0. The

action of Gn−1 on F[w±1] factors through Gn−1(i). The following lemma is

well-known on the cohomology of the profinite group.

Lemma 12.1 (cf. [15]). H∗(Gn−1; F[w±1]) ∼=lim
−→
i

H∗(Gn−1(i); F[w±1]).

Let k = F((un−1)), Li = k(Φ0,Φ1, . . . ,Φi) for i ≥ 0 and L = ∪i≥0Li.

The action of G on the graded field L[u±1] induces the action of the quotient

group G(i), which is isomorphic to Gal(F/Fp)n(Sn×Sn−1(i)), on the subfield

Li[u
±1]. We identify the graded field F[w±1] as the subfield of L[u±1] by using

the relation

w = Φ−1
0 u.

Lemma 12.2. F[w±1] is stable under the action of G. The subgroup Sn of

G acts trivially on F[w±1]. The action of the subgroup Gn−1 of G coincides

with the action defined in § 9.

Proof. For g ∈ Sn, we have

Φg
0 = t0(g)−1Φ0, ug = t0(g)−1.

Hence Sn acts on w trivially. For h ∈ Sn−1, we have

Φh
0 = π(h0)Φ0, uh = u.

Hence we obtain

wh = π(h0)−1w.
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This shows that F[w±1] is stable under G and the action of Gn−1 is the same

as defined in § 9.

By Lemma 12.2, we see that the inclusion F[w±1] ↪→ Li[u
±1] is compatible

with the projection map G(i) → Gn−1(i) for all i ≥ 0. Hence we get an

inflation map

H∗(Gn−1(i); F[w±1]) −→ H∗(G(i);Li[u
±1]).

We consider the homomorphism of systems

H∗(Gn−1(0); F[w±1]) → H∗(Gn−1(1); F[w±1]) → · · · →y
y

H∗(G(0); F[w±1]) → H∗(G(1); F[w±1]) → · · · →
By Theorem 11.1, the homomorphisms in the bottom sequence are all iso-

morphisms and we have an isomorphism

H∗(Gn; k[u±1])
∼=−→ H∗(G(i);Li[u

±1])

for all i ≥ 0. By passing to the direct limits of the systems we obtain that

H∗(Gn−1; F[w±1]) ∼= lim
−→
i

H∗(Gn−1(i); F[w±1])

−→ lim
−→
i

H∗(G(i);Li[u
±1]) ∼= H∗(Gn; k[u±1]).

Hence we obtain the following theorem.

Theorem 12.3. There is a ring homomorphism

ϕ : H∗(Gn−1; F[w±1]) −→ H∗(Gn; k[u±1]).

Remark 12.4. We recall that H∗(S1; Fp [w
±1]) is an exterior algebra gener-

ated by ζ1 for p > 2. Then we can show that ϕ(ζ) = t1 which is nontrivial

by Shimomura.
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Soc. Math. France 83 (1955), 251–274.

[8] J. Lubin and J. Tate. Formal moduli for one-parameter formal Lie

groups. Bull. Soc. Math. France 94 1966 49–59.

[9] H. R. Miller and D. C. Ravenel. Morava stabilizer algebras and the

localization of Novikov’s E2-term. Duke Math. J. 44 (1977), no. 2, 433–

447.

45



[10] H. R. Miller, D. C. Ravenel and W. S. Wilson. Periodic phenomena in

the Adams-Novikov spectral sequence. Ann. Math. (2) 106 (1977), no.

3, 469–516.

[11] J. Morava. Noetherian localisations of categories of cobordism comod-

ules. Ann. of Math. (2) 121 (1985), no. 1, 1–39.

[12] D. C. Ravenel. Localization with respect to certain periodic homology

theories. Amer. J. Math. 106 (1984), no. 2, 351–414.

[13] D. C. Ravenel. Complex cobordism and stable homotopy groups of

spheres. Pure and Applied Mathematics, 121. Academic Press, Inc., Or-

lando, Fla., 1986.

[14] J. P. Serre. Local fields. Translated from the French by Marvin Jay

Greenberg. Graduate Texts in Mathematics, 67. Springer-Verlag, New

York-Berlin, 1979.

[15] J. P. Serre. Galois cohomology. Translated from the French by Patrick

Ion and revised by the author. Springer-Verlag, Berlin, 1997.

[16] K. Shimomura, Katsumi On the Adams–Novikov spectral sequence and

products of β-elements. Hiroshima Math. J. 16 (1986), no. 1, 209–224.

[17] K. Shimomura. The homotopy groups of the L2-localized mod 3 Moore

spectrum. J. Math. Soc. Japan 52 (2000), no. 1, 65–90.

[18] K. Shimomura, Katsumi. The Adams-Novikov E2-term for computing

π∗(L2V (0)) at the prime 2. Topology Appl. 96 (1999), no. 2, 133–152.

46



[19] N. P. Strickland, Finite subgroups of formal groups. J. Pure Appl. Al-

gebra 121 (1997), no. 2, 161–208.

[20] A. Weil. Basic number theory. Reprint of the second (1973) edition.

Classics in Mathematics. Springer-Verlag, Berlin, 1995.

47



Vita

The author is a native of Aichi, Japan. He holds a Bachelor of Arts in

Mathematics from Kyoto University in Kyoto, Japan and a Master of Arts

in Mathematics from Kyoto University in Kyoto, Japan.

48


