Statistics of Non-real Zeros and Critical Points of Systems of Real Random Polynomials
Brian Macdonald
January 22, 2008

1. Abstract

In this paper we study the expected density of non-real zeros of a system of real random polynomials in several variables and critical points of a real random polynomial in several variables. We use the Poincaré-Lelong formula to show that the expected density of non-real zeros of random polynomial systems with real coefficients rapidly approaches the expected density of non-real zeros in the complex coefficients case. We use the Kac-Rice formula to prove the analogous result for critical points of a real random polynomial in several variables.

2. Introduction

1. Expected density of zeros. Kac [Kac48] and Rice [Ric54] independently found the expected density of zeros of a random polynomial with real standard Gaussian coefficients. Bogomolny, Bohigas, and Leboeuf ([BBL92], [BBL96]) and Hannay [Han96] have results on the density of (and correlations between) complex zeros of random polynomials with complex Gaussian coefficients. Edelman and Kostlan [EK95] generalize the results for density of real (resp. complex) zeros to systems of functions in several variables when the coefficients are real (resp. complex) Gaussian random variables.

In one variable, Shepp and Vanderbei [SV95] and Prosen [Pro96] have studied non-real zeros of real polynomials. Shepp and Vanderbei extended Kac's formula for the expected density of zeros of polynomials in one real variable, in the case where the coefficients are standard real Gaussian coefficients, to include non-real zeros of those same polynomials. Prosen followed Hannay's approach to show that, as the degree of the polynomials goes to infinity, the expected density of non-real zeros of a random polynomial with real Gaussian coefficients approaches the expected density of non-real zeros of the random polynomials with the corresponding complex Gaussian coefficients (i.e. those complex coefficients with the same variance). Prosen's motivation came from quantum chaos, and he wanted the statistics of zeros of eigenstates of 1-dim chaotic systems.

In this paper we generalize Prosen's result on the density of non-real zeros of real random polynomials to random polynomial systems in several variables. Consider $h_{m, N}=$ $\left(f_{1, N}, \ldots, f_{m, N}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$, where $f_{q, N}$ is a polynomial of the form

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}
$$

where c_{J}^{q} is a real or complex random variable with associated measure $d \gamma$ for each q. We show that for these m independent functions in m variables, the expected density of non-real zeros in the real coefficients case rapidly approaches the expected density in the complex coefficients case as the degree of the polynomials gets large. In fact, we show
that the convergence is exponential. More formally, let

$$
\begin{aligned}
d \gamma_{c x} & =\frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}, \text { and } \\
d \gamma_{\text {real }} & =\delta_{\mathbb{R}^{D_{N}}} \frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}
\end{aligned}
$$

where $D_{N}=\binom{N+m}{m}$ and $\delta_{\mathbb{R}^{D_{N}}}$ is the delta measure on $\mathbb{R}^{D_{N}} \subset \mathbb{C}^{D_{N}}$. Then we have the following result.

Theorem 1.1. Let $K \subseteq \mathbb{C}^{m} \backslash \mathbb{R}^{m}$ be compact, let λ_{z} be a positive constant. Then

$$
E_{\gamma_{\text {real }}}\left(Z_{h_{N}(z)}\right)=E_{\gamma_{c x}}\left(Z_{h_{N}(z)}\right)+O\left(e^{-\lambda_{z} N}\right),
$$

for all $z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}$.
Here $d \gamma_{c x}$ corresponds to the standard complex Gaussian coefficients case, where we are considering

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}
$$

where the c_{J}^{q},s are standard complex Gaussian random variables, and $d \gamma_{\text {real }}$ corresponds to the standard real Gaussian coefficients case, where we have

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}=\sum_{|J|=0}^{N} a_{J}^{q}\binom{N}{J}^{1 / 2} z^{J},
$$

where $c_{J}^{q}=a_{J}^{q}+i 0$ is a standard real Gaussian random variable.
We prove this result using the Poincare-Lelong formula, which is similar to that which was used in [BSZ00a], but has the added complication that the coefficients are real. The proof uses 2-point Szego kernel asymptotics, which still applies to the polynomials with real coefficients because we are viewing them as functions of complex variables.

Shiffman and Zelditch [SZ99] and Bleher, Shiffman and Zelditch ([BSZ00a], [BSZ00b]) have generalized many results about random polynomials on \mathbb{C}^{m} or \mathbb{R}^{m} to complex manifolds, and they have several results relating to the statistics of zeros of holomorphic sections of powers of a line bundle over a complex manifold. In particular, in [BSZ00a] the authors use the Poincare-Lelong formula to find a formula for density of zeros and correlations between zeros.
2. Expected density of critical points. In [DSZ04], Douglas, Shiffman, and Zelditch look at the critical points of a holomorphic section of a line bundles over a complex manifold, motivated by applications in string theory. They use a generalized Kac-Rice formula to find statistics of these critical points, namely the density of zeros and correlations between zeros. In this paper, we also study critical points in the special case \mathbb{C}^{m} and generalize the result in Theorem 1 for critical points in several variables. That is, we prove the following:

Theorem 2.2. Let $K \subseteq \mathbb{C}^{m} \backslash \mathbb{R}^{m}$ be compact, let λ_{z} be a positive constant, and let $h, \gamma_{c x}$, and $\gamma_{\text {real }}$ be defined as above. We have

$$
E_{\gamma_{\text {real }}}\left(C_{h_{N}(z)}\right)=E_{\gamma_{c x}}\left(C_{h_{N}(z)}\right)+O\left(e^{-\lambda_{z} N}\right),
$$

for all $z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}$.
The formula for $E_{\gamma_{c x}}\left(C_{h_{N}(z)}\right)$ is covered by [DSZ04]. Note that finding the critical points of h is equivalent to finding the statistics of zeros of the m partial derivatives of h. However, it is more difficult than the zeros case above in Theorem 1 because of the fact that the m partial derivatives are not independent random functions. This fact makes the Poincare-Lelong method much more difficult to apply. So we use the Kac-Rice formula to get a strong limit to further generalize Theorem 1 to critical points in several variables, and we also get an exact formula.
3. Current and Future work. The following is a list of current work and possibilities for future work.
(1) Non-zero mean coefficients, and applications in engineering - Rice's original motivation for studying zeros random polynomials was zero crossings of noisy signals [Ric54]. Schober and Gerstacker [SG02] discussed using results on random polynomials for the purposes of filter design. It would be interesting to me to use my background in electrical engineering to find other applications of random polynomials in electrical engineering, and to let problems in that and other engineering fields guide my future work. These problems would likely involve random polynomials whose coefficients are non-zero mean random variables. While some results are known for such polynomials in one variable, the case of polynomials in two or more variables with non-zero mean coefficients has not been well-studied.
(2) Variance - One could consider variance of the number of zeros within a region. Shiffman and Zelditch have done this in the complex manifolds case using asymptotics of Szego kernels (see [SZ06a], [SZ06b], [SZ07]). We have shown a result for variance analogous to the results regarding average zeros above, namely that the variance of the number of zeros in a subset U of \mathbb{C} for a real random $\mathrm{SO}(2)$ polynomial approaches that of the complex random $\mathrm{SU}(2)$ polynomial as the degree of the polynomials goes to infinity.
(3) Higher moments and asymptotic normality - We also have shown an analagous result for higher moments, and hope to be able to show that the random variables $\left(Z_{f}, \phi\right)$ where ϕ compactly supported test function, are asymptotically normal. The complex coefficients case is found in [ST04].
(4) Polynomials with coefficients of different variances or distributions Prosen's result was for Gaussian coefficients of arbitrary variances. One could generalize my results for arbitrary Gaussian coefficients or non-Guassian coefficients, e.g. [Mas75], [IZ97].
4. Outline. The paper is organized as follows:

- Section 3 - Density of zeros - One variable case .
- Section 4 - Density of critical points - One variable case .
- Section 5 - Density of zeros - Several variables case .
- Section 6 - Density of critical points - Several variables case.
- References

3. Density of zeros in one variable

Consider the real random polynomial

$$
f_{N}(z)=\sum_{\ell=0}^{N} \tilde{a}_{\ell} z^{\ell}
$$

where the $\tilde{a_{j}}$'s are real independent Gaussian random variable with mean 0 and variance $\binom{N}{\ell}$. Alternatively, one often writes

$$
f_{N}(z)=\sum_{\ell=0}^{N} a_{\ell}\binom{N}{\ell}^{1 / 2} z^{\ell}
$$

where a_{ℓ} is a standard real Gaussian random variable. Instead, we choose to think of the random polynomial

$$
f_{N}(z)=\sum_{\ell=0}^{N} c_{\ell}\binom{N}{\ell}^{1 / 2} z^{\ell}
$$

where c_{ℓ} is a more general complex random variable with associated measure $d \gamma$. We then consider two special cases

$$
\begin{aligned}
d \gamma_{c x} & =\frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{N+1} \\
d \gamma_{\text {real }} & =\delta_{S} \frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{N+1}
\end{aligned}
$$

where δ_{S} is the delta function on $S \subset \mathbb{C}^{N+1}$, the set of points $c=a+i b \in \mathbb{C}^{N+1}$ where $b=0 \in \mathbb{R}^{N+1}$. Here $d \gamma_{c x}$ corresponds to the standard complex Gaussian coefficients case, where we are considering

$$
f_{N}(z)=\sum_{\ell=0}^{N} c_{\ell}\binom{N}{\ell}^{1 / 2} z^{\ell}
$$

where the c_{ℓ} 's are standard complex Gaussian random variables, and $d \gamma_{\text {real }}$ corresponds to the standard real Gaussian coefficients case, where we have

$$
f_{N}(z)=\sum_{\ell=0}^{N} c_{\ell}\binom{N}{\ell}^{1 / 2} z^{\ell}=\sum_{\ell=0}^{N} a_{\ell}\binom{N}{\ell}^{1 / 2} z^{\ell}
$$

where $c_{\ell}=a_{\ell}+i 0$ is a standard real Gaussian random variable. We let $E(\cdot)$ denote expectation with respect to $d \gamma_{\text {real }}$ and $E_{\gamma_{c x}}(\cdot)$ denote expectation with respect to $d \gamma_{c x}$. The goal of this section is to show the following results about the density of zeros of $f_{N}(z)$ using the Poincare-Lelong formula: we write

$$
E\left(Z_{f_{N}}(z)\right)=E_{\gamma_{c x}}\left(Z_{f_{N}}(z)\right)+E_{2, N}(z)
$$

where

$$
E_{\gamma_{c x}}\left(Z_{f_{N}}(z)\right)=\frac{N}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} d x \wedge d y
$$

and $E_{2, N}(z)$ is some "error term," and we show that

$$
E_{2, N}(z)=\frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{\left(1+z^{2}\right)^{N}}{\left(1+|z|^{2}\right)^{N}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C}
$$

and

$$
E_{2, N}(z)=O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}, \lambda>0
$$

or, in other words,

$$
\frac{1}{N} E\left(Z_{f_{N}}(z)\right)=\frac{1}{N} E_{\gamma_{c x}}\left(Z_{f_{N}}(z)\right)+O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
$$

and uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$. We find the scaling limit of the second term to be

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{e^{z^{2}}}{e^{\left.z\right|^{2}}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C} \backslash \mathbb{R}
$$

Setting $z=x+i y$, we can write

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{4 \pi} \frac{\partial^{2}}{\partial y^{2}} \log \left(1+\sqrt{1-e^{-4 y^{2}}}\right) d x \wedge d y, y \neq 0
$$

which after adding to $\frac{1}{N} E_{\gamma c x}\left(Z_{f\left(\frac{z}{\sqrt{N}}\right)}\right) \rightarrow \frac{1}{\pi}$, we recover Prosen's result:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{\gamma_{\text {real }}}\left(Z_{f\left(\frac{z}{\sqrt{N}}\right)}\right)=\frac{1}{\pi} \frac{1-\left(4 y^{2}+1\right) e^{-4 y^{2}}}{\left(1-e^{-4 y^{2}}\right)^{3 / 2}}
$$

We also show that the error term goes to 0 weakly on compact sets $K \subset \mathbb{C}$:

$$
\frac{1}{N} E_{2, N}(z)=O\left(N^{-1}\right), \text { weakly on compact sets } K \subset \mathbb{C}
$$

by which we mean that for any $\phi \in C^{\infty}(K)$,

$$
\frac{1}{N}\left(E_{2, N}(z), \phi(z)\right)=\frac{1}{N} \int_{K} E_{2, N}(z) \phi(z) d z=O\left(N^{-1}\right)
$$

Note that K could contain some points in \mathbb{R}, whereas the strong convergence result excludes points in \mathbb{R}.

The first result was given by Prosen as mentioned, but we do it here using a different method that we will be generalizing in later sections. The approach is similar to that described in [BSZ00a], where they find the limit of the pair correlations of zeros of random holomorphic sections of powers of a line bundle of a complex manifold. While we only deal with density of zeros in this section, the condition that the coefficients a_{j} are real causes the method in [BSZ00a] to be useful.

1. Pointwise limit for $E\left(Z_{f_{N}}\right)$. We write $a=\left(a_{0}, \ldots, a_{N}\right)$ and

$$
F_{N}=\left(\binom{N}{0}^{1 / 2} z^{0},\binom{N}{1}^{1 / 2} z^{1}, \ldots,\binom{N}{N}^{1 / 2} z^{N}\right)
$$

so that $f_{N}=a \cdot F_{N}$. By the Poincare-Lelong formula, the density of the zeros of $f, E\left(Z_{f_{N}}\right)$, satisfies

$$
E\left(Z_{f_{N}}\right)=E\left(\frac{i}{\pi} \partial \bar{\partial} \log |f|\right)=E\left(\frac{i}{\pi} \partial \bar{\partial} \log |a \cdot F|\right)
$$

We write $F_{N}(z)=\left\|F_{N}(z)\right\| u_{N}(z)$, where $u_{N}(z)$ is a unit vector. We have

$$
\begin{aligned}
E\left(Z_{f_{N}}\right) & =E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left\|F_{N}(z)\right\|\right)+E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right) \\
& =E_{1, N}(z)+E_{2, N}(z)
\end{aligned}
$$

The first term is what we want. First, note that from [BSZ00a] we can see that $E_{1, N}(z)=$ $E_{c x}\left(Z_{f_{N}}(z)\right)$. Since F does not depend on a, we have

$$
\begin{aligned}
E_{1, N}(z) & =E\left(\frac{i}{\pi} \partial \bar{\partial} \log \| F_{N}| |\right) \\
& =\frac{i}{\pi} \int_{\mathbb{R}^{N+1}} \partial \bar{\partial} \log \left\|F_{N}\right\| d \mu(a)=\frac{i}{\pi} \partial \bar{\partial} \log \left\|F_{N}\right\|=\frac{i}{2 \pi} \partial \bar{\partial} \log \left\|F_{N}\right\|^{2} \\
& =\frac{i}{2 \pi} \partial \bar{\partial} \log \sum_{\ell=0}^{N}\binom{N}{\ell} z^{\ell} \bar{z}^{\ell} \\
& =\frac{i}{2 \pi} \partial \bar{\partial} \log \left(1+|z|^{2}\right)^{N}=\frac{i}{2 \pi} \frac{\partial^{2}}{\partial \bar{z} \partial z} \log \left(1+|z|^{2}\right)^{N} d z \wedge d \bar{z} \\
& =\frac{i}{2 \pi} \frac{\partial^{2}}{\partial \bar{z} \partial z} N \log \left(1+|z|^{2}\right) d z \wedge d \bar{z}=\frac{i}{2 \pi} N \frac{\partial}{\partial \bar{z}} \frac{\bar{z}}{\left(1+|z|^{2}\right)} d z \wedge d \bar{z} \\
& =\frac{N}{2 \pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} i d z \wedge d \bar{z}=\frac{N}{2 \pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} i(-2 i) d x \wedge d y \\
& =\frac{N}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} d x \wedge d y
\end{aligned}
$$

So we have

$$
E\left(Z_{f}\right)=E_{\gamma_{c x}}\left(Z_{f}\right)+E_{2, N}(z)
$$

and we just need to show

$$
\begin{aligned}
E_{2, N}(z) & =E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right) \\
& =\int_{\mathbb{R}^{N+1}} \frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right| d \mu(a)=O\left(e^{-\lambda N}\right) .
\end{aligned}
$$

2. Limit of the second term. In the case that c_{j} is a standard complex Gaussian random variable, this second term is zero for all N (not just as $N \rightarrow \infty$). Because of the $\mathrm{SU}(2)$-invariance of the standard complex Gaussian measure, one can perform a unitary change of variables so that u becomes $(1,0, \ldots, 0)$ and the integral $\int_{\mathbb{C}^{N+1}} \partial \bar{\partial} \log |c \cdot u| d \mu(c)$ becomes a single integral that evaluates to 0 :

$$
\int_{\mathbb{C}^{N+1}} \partial \bar{\partial} \log |c \cdot(1,0, \ldots, 0)| d \mu(c)=\int_{\mathbb{C}} \partial \bar{\partial} \log \left|c_{0}\right| d \mu\left(c_{0}\right)=0 .
$$

In the case where a_{j} is real, the second term is not zero for all N. Because only real rotations can be performed, u can not be rotated to $(1,0, \ldots, 0)$, giving a single integral. But we can still use the rotational invariance of real Gaussian measures to obtain a double integral over \mathbb{R}^{2} which is a little more manageable than the integral over \mathbb{R}^{N+1}.

Let $u=\operatorname{Re} u+i \operatorname{Im} u=\left(\operatorname{Re} u_{1}, \ldots, \operatorname{Re} u_{N}\right)+i\left(\operatorname{Im} u_{1}, \ldots, \operatorname{Im} u_{N}\right)$. Note that $u, \operatorname{Re} u$, and $\operatorname{Im} u$ depend on z and N but we frequently omit these arguments for convenience. Since we need to do real rotations, the real and imaginary parts of u must be rotated the same. (explain that better?). Therefore, as mentioned, we can not rotate u to (1, 0 , $\ldots, 0)$. However, we can rotate so that either the real part or the imaginary part of u is of the form $(r, 0, \ldots, 0)$, where $r=r_{N}(z)$ is some (non-zero) constant less than 1 . So we choose to perform a (real) rotation of $a_{0}, a_{1}, \ldots, a_{N}$ so that

$$
\tilde{u}=\operatorname{Re} \tilde{u}+i \operatorname{Im} \tilde{u}=(r, 0, \ldots, 0)+i\left(\operatorname{Im} \tilde{u_{1}}, \ldots, \operatorname{Im} \tilde{u_{N}}\right)
$$

Then one can perform a rotation of the a_{1}, \ldots, a_{N} variables so that $\operatorname{Re} u$ is unaffected and u becomes

$$
\begin{align*}
& \left(r_{N}(z), 0, \ldots, 0\right)+i\left(s_{N}(z), t_{N}(z), 0, \ldots, 0\right) \tag{2.1}\\
= & \left(r_{N}(z)+i s_{N}(z), i t_{N}(z), 0, \ldots, 0\right) . \tag{2.2}
\end{align*}
$$

Note that since u is a unit vector, and rotations preserve length, r, s, and t have the condition $r^{2}+s^{2}+t^{2}=1$. Note also that r, s, and t all depend on z and N but we frequently omit these. We are now concerned with the limit of the simpler integral,

$$
\begin{aligned}
& \frac{i}{\pi} \int_{\mathbb{R}^{N+1}} \partial \bar{\partial} \log \left|\left(a_{0}, a_{1}, \ldots, a_{N}\right) \cdot(r+i s, i t, 0, \ldots, 0)\right| d \mu(a) \\
= & \frac{i}{\pi} \int_{\mathbb{R}^{2}} \partial \bar{\partial} \log \left|a_{0}(r+i s)+a_{1}(i t)\right| d \mu\left(a_{0}\right) d \mu\left(a_{1}\right) \\
= & \frac{i}{\pi} \partial \bar{\partial} \int_{\mathbb{R}^{2}} \log \left|a_{0}(r+i s)+a_{1}(i t)\right| \frac{1}{2 \pi} e^{-\left(a_{0}^{2}+a_{1}^{2}\right) / 2} d a_{0} d a_{1} .
\end{aligned}
$$

3. Formula for r. First, we know that since $u(z)=\frac{F(z)}{\|F(z)\|}$, and since the length of $\operatorname{Re} u$ doesn't change from a rotation, we can write

$$
r^{2}=\|\operatorname{Re} \tilde{u}\|^{2}=\|\operatorname{Re} u\|^{2}=\frac{\|\operatorname{Re} F\|^{2}}{\|F\|^{2}} .
$$

Note that we are assuming $\operatorname{Im} z \neq 0$. We now state a fact that we will use repeatedly.
Fact 3.3. For complex numbers z and w,
(1) $(\operatorname{Re} z)^{2}=\frac{1}{2}\left(|z|^{2}+\operatorname{Re} z^{2}\right)$
(2) $\operatorname{Re} z \operatorname{Re} w=\frac{1}{2}(\operatorname{Re} z w+\operatorname{Re} z \bar{w})$
(3) $\operatorname{Re} z \operatorname{Im} w=\frac{1}{2}(\operatorname{Im} z w-\operatorname{Im} z \bar{w})$
(4) $\operatorname{Im} z \operatorname{Re} w=\frac{1}{2}(\operatorname{Im} z w+\operatorname{Im} z \bar{w})$
(5) $\operatorname{Im} z \operatorname{Im} w=\frac{1}{2}(\operatorname{Re} z \bar{w}-\operatorname{Re} z w)$

Proof. (1) Special case of (2) with $w=z$.
(2) Let $z=x+i y, w=u+i v$. Then

$$
\begin{aligned}
& \operatorname{Re} z w+\operatorname{Re} z \bar{w} \\
= & \operatorname{Re}(x+i y)(u+i v)+\operatorname{Re}(x+i y)(u-i v) \\
= & \operatorname{Re}(x u+i x v+i y u-y v)+\operatorname{Re}(x u+i x v+i y u+y v)=2 x u .
\end{aligned}
$$

(3) and (4) are proved similarly.

By the fact we have $\left(\operatorname{Re} z^{\ell}\right)^{2}=\frac{1}{2}|z|^{2 \ell}+\frac{1}{2} \operatorname{Re} z^{2 \ell}$, which gives us

$$
\begin{aligned}
{\left[r_{N}(z)\right]^{2} } & =\frac{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\operatorname{Re} z^{\ell}\right)^{2}}{\sum_{\ell=0}^{N}\binom{N}{\ell}|z|^{2 \ell}}=\frac{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{1}{2}|z|^{2 \ell}+\frac{1}{2} \operatorname{Re} z^{2 \ell}\right)}{\sum_{\ell=0}^{N}\binom{N}{\ell}|z|^{2 \ell}} \\
& =\frac{\sum_{\ell=0}^{N}\binom{N}{\ell} \frac{1}{2}|z|^{2 \ell}}{\sum_{\ell=0}^{N}\binom{N}{\ell}|z|^{2 \ell}}+\frac{\sum_{\ell=0}^{N}\binom{N}{\ell} \frac{1}{2} \operatorname{Re} z^{2 \ell}}{\sum_{\ell=0}^{N}\binom{N}{\ell}|z|^{2 \ell}} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Re} \frac{\sum_{\ell=0}^{N}\binom{N}{\ell} z^{2 \ell}}{\sum_{\ell=0}^{N}\binom{N}{\ell}|z|^{2 \ell}}=\frac{1}{2}+\frac{1}{2} \operatorname{Re}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N}
\end{aligned}
$$

4. Formula for s. Next, we have the relationship $\operatorname{Re} \tilde{u} \cdot \operatorname{Im} \tilde{u}=r s$, so since the angle between $\operatorname{Re} u$ and $\operatorname{Im} u$ doesn't change under a rotation, we have

$$
s=\frac{\operatorname{Re} \tilde{u} \cdot \operatorname{Im} \tilde{u}}{r}=\frac{\operatorname{Re} u \cdot \operatorname{Im} u}{r}=\frac{\operatorname{Re} \frac{F}{\|F\|} \cdot \operatorname{Im} \frac{F}{\|F\|}}{r}=\frac{\operatorname{Re} F \cdot \operatorname{Im} F}{\|F\|^{2}} \cdot \frac{1}{r}
$$

Using the identity $\operatorname{Im} w^{2}=2 \operatorname{Re} w \operatorname{Im} w$, for any complex number w, we can write

$$
\begin{aligned}
\operatorname{Re} F \cdot \operatorname{Im} F & =\left(\operatorname{Re}\binom{N}{0}^{1 / 2} z^{0}, \ldots, \operatorname{Re}\binom{N}{N}^{1 / 2} z^{N}\right) \cdot\left(\operatorname{Im}\binom{N}{0}^{1 / 2} z^{0}, \ldots, \operatorname{Im}\binom{N}{N}^{1 / 2} z^{N}\right) \\
& =\sum_{\ell=0}^{N} \operatorname{Re}\binom{N}{\ell}^{1 / 2} z^{\ell} \operatorname{Im}\binom{N}{\ell}^{1 / 2} z^{\ell}=\sum_{\ell=0}^{N}\binom{N}{\ell} \frac{1}{2} \operatorname{Im} z^{2 \ell} \\
& =\frac{1}{2} \operatorname{Im} \sum_{\ell=0}^{N}\binom{N}{\ell} z^{2 \ell}=\frac{1}{2} \operatorname{Im}\left(1+z^{2}\right)^{N}
\end{aligned}
$$

So we have

$$
\begin{aligned}
s_{N}(z) & =\frac{\frac{1}{2} \operatorname{Im}\left(1+z^{2}\right)^{N}}{\|F\|^{2}} \cdot \frac{1}{r}=\frac{\frac{1}{2} \operatorname{Im}\left(1+z^{2}\right)^{N}}{\left(1+|z|^{2}\right)^{N}} \cdot \frac{1}{r} \\
& =\frac{1}{2} \operatorname{Im}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N} \cdot \frac{1}{r}
\end{aligned}
$$

5. Formula for \mathbf{t}. Since $r^{2}+s^{2}+t^{2}=1$, we have t easily:

$$
\left[t_{N}(z)\right]^{2}=1-\left[r_{N}(z)\right]^{2}-\left[s_{N}(z)\right]^{2}
$$

6. Limits of r and its derivatives. We have

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left[r_{N}(z)\right]^{2} & =\lim _{N \rightarrow \infty} \frac{1}{2}+\frac{1}{2} \operatorname{Re}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Re} \lim _{N \rightarrow \infty}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N}
\end{aligned}
$$

Since $\left|\frac{1+z^{2}}{1+|z|^{2}}\right| \leq 1$ by the triangle inequality. Equality holds only when $z \in \mathbb{R}$, so we have that

$$
\begin{aligned}
& \left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N}=O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R} \\
& \left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N} \equiv 1(\text { for all } \mathrm{N}), z \in \mathbb{R}
\end{aligned}
$$

which gives

$$
\begin{aligned}
& {\left[r_{N}(z)\right]^{2}=\frac{1}{2}+O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}} \\
& {\left[r_{N}(z)\right]^{2} \equiv 1, z \in \mathbb{R}}
\end{aligned}
$$

As a consequence, $\frac{\partial}{\partial z} r_{N}(z), \frac{\partial^{2}}{\partial z \partial \bar{z}} r_{N}(z)=O\left(e^{-\lambda N}\right)$, for $z \in \mathbb{C} \backslash \mathbb{R}$:

$$
\begin{aligned}
\frac{\partial}{\partial \bar{z}}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N} & =N\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N-1} \psi(z)=O\left(e^{-\lambda N}\right) \\
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N} & =N(N-1)\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N-2}[\psi(z)]^{2}\left(* * * \text { not quite } \psi^{2}\right) \\
& +N\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N-1} \frac{\partial}{\partial z} \psi(z) \\
& =O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
\end{aligned}
$$

where the $\psi(z)$ is the derivative of the term inside the parentheses with respect to \bar{z}. Indeed, all derivatives of r are $O\left(e^{-\lambda N}\right)$. Also note that all derivatives converge uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$.
7. Limits of s, t, and their derivatives. Recall

$$
s_{N}(z)=\frac{1}{2} \operatorname{Im}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N} \cdot \frac{1}{r_{N}(z)}
$$

Since

$$
\begin{aligned}
& \left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N}=O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R} \\
& \frac{1}{r_{N}(z)}=\frac{1}{\sqrt{1 / 2}+O\left(e^{-\lambda N}\right)}, z \in \mathbb{C} \backslash \mathbb{R}
\end{aligned}
$$

we have that

$$
s_{N}(z)=O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
$$

for all z such that $\operatorname{Im} z \neq 0$. As we had with r, the derivatives of s go to 0 exponentially fast as well when $z \in \mathbb{C} \backslash \mathbb{R}$. Since $r^{2}+s^{2}+t^{2}=1$, and $\left[r_{N}(z)\right]^{2}=1, z \in \mathbb{R}$, we have that

$$
s_{N}(z)=0, z \in \mathbb{R}
$$

Since $r^{2}+s^{2}+t^{2}=1$ we have $t=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}$, and uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, as well as $t \equiv 0, z \in \mathbb{R}$.
8. Switch to polar coordinates. We now use Jensen's formula to evaluate the integral

$$
\frac{i}{\pi} \partial \bar{\partial} \int_{\mathbb{R}^{2}} \log \left|a_{0}(r+i s)+a_{1}(i t)\right| \frac{1}{2 \pi} e^{-\left(a_{0}^{2}+a_{1}^{2}\right) / 2} d a_{0} d a_{1} .
$$

First, we switch to polar coordinates, so the integral becomes

$$
\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{\infty} \log |(\rho \sin \theta)(r+i s)+(\rho \cos \theta)(i t)| e^{-\rho^{2} / 2} \rho d \rho d \theta
$$

We may factor out a ρ from the argument of the log and get

$$
\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{\infty}(\log \rho+\log |(\sin \theta)(r+i s)+(\cos \theta)(i t)|) e^{-\rho^{2} / 2} \rho d \rho d \theta
$$

Since

$$
\int_{\theta=0}^{2 \pi} \int_{\rho=0}^{\infty} \log \rho e^{-\rho^{2}} \rho d \rho d \theta
$$

doesn't depend on z, it gets killed by $\partial \bar{\partial}$, so we are left with

$$
\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{\infty} \log |(\sin \theta)(r+i s)+(\cos \theta)(i t)| e^{-\rho^{2} / 2} \rho d \rho d \theta
$$

The log term doesn't depend on ρ, so we may pull that term outside the integral, and integrate with respect to ρ to get

$$
\begin{aligned}
& \frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log |(\sin \theta)(r+i s)+(\cos \theta)(i t)|\left[\int_{\rho=0}^{\infty} e^{-\rho^{2} / 2} \rho d \rho\right] d \theta \\
= & \frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log |(\sin \theta)(r+i s)+(\cos \theta)(i t)|\left[-e^{-\rho^{2} / 2}\right]_{0}^{\infty} d \theta \\
= & \frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log |(\sin \theta)(r+i s)+(\cos \theta)(i t)|[1] d \theta \\
= & \frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log |(\sin \theta)(r+i s)+(\cos \theta)(i t)| d \theta
\end{aligned}
$$

9. Jensen's Formula. Using the fact that $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$ and $\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$, we can write

$$
-\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log \frac{1}{2}\left|\left(e^{i \theta}-e^{-i \theta}\right)(-i)(r+i s)+\left(e^{i \theta}+e^{-i \theta}\right) i t\right| d \theta
$$

We can bring out a $\log \frac{1}{2}$, and since $\partial \bar{\partial} \log \frac{1}{2}=0$, we have

$$
-\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log \left|\left(e^{i \theta}-e^{-i \theta}\right)(-i r+s)+\left(e^{i \theta}+e^{-i \theta}\right) i t\right| d \theta
$$

We can factor out $e^{-i \theta}$, and since $\log \left|e^{-i \theta}\right|=0$, we get

$$
\begin{aligned}
& -\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log \left|\left(e^{i 2 \theta}-1\right)(-i r+s)+\left(e^{i 2 \theta}+1\right) i t\right| d \theta \\
= & -\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int_{\theta=0}^{2 \pi} \log \left|(s+i(t-r)) e^{i 2 \theta}+(-s+i(t+r))\right| d \theta
\end{aligned}
$$

We can now use Jensen's formula to evaluate the inner integral. Recall that Jensen's formula states that, assuming $\phi(0) \neq 0$, and ϕ is non-zero on $\partial D(0,1)$, then

$$
\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta=\log |\phi(0)|+\sum_{\substack{\phi\left(w_{j}\right)=0 \\\left|w_{j}\right|<1}} \log \frac{1}{\left|w_{j}\right|}
$$

In our case, $\phi(w)=(s+i(t-r)) w^{2}+(-s+i(t+r))$ so that

$$
\begin{aligned}
\phi\left(e^{i \theta}\right) & =(s+i(t-r)) e^{i 2 \theta}+(-s+i(t+r)) \\
\phi(0) & =-s+i(t+r) \\
\phi\left(w_{j}\right) & =0 \Longleftrightarrow\left[w_{j}(z)\right]^{2}=-\frac{-s+i(t+r)}{s+i(t-r)}
\end{aligned}
$$

Note that since $|\phi(0)|^{2}=|-s+i(t+r)|^{2}=s^{2}+(t+r)^{2}=s^{2}+r^{2}+2 r t+t^{2}=1+2 r t$, and r and t are non-negative (by construction), $\phi(0) \neq 0$. We show that $\left|w_{j}(z)\right|^{2} \geq 1$, for all z, implying that $\left|w_{j}(z)\right| \geq 1$ and that all the zeros $w_{j}(z)$ of ϕ are outside the unit disk for every z.

We have

$$
\left|w_{j}(z)\right|^{4}=\left|\frac{-s+i(t+r)}{s+i(t-r)}\right|^{2}=\frac{s^{2}+t^{2}+2 r t+r^{2}}{s^{2}+t^{2}-2 r t+r^{2}} \geq 1
$$

for $z \in \mathbb{C}$ since r and t are non-negative by construction. Note that the only time $r t$ is zero is when $z \in \mathbb{R}$. In this case, $r_{N}(z)=1$ and $s_{N}(z)=t_{N}(z)=0$ for all N, and $\left|w_{j}(z)\right|=1$.
10. Exact formula for $E_{2, N}(z)$. So since all of the zeros of ϕ are outside the unit disk, we have for $z \in \mathbb{C}$,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta & =\log |\phi(0)|=\log |-s+i(t+r)| \\
& =\frac{1}{2} \log |-s+i(t+r)|^{2}=\frac{1}{2} \log (1+2 r t)
\end{aligned}
$$

or

$$
\frac{1}{2 \pi} \int \log \left|a_{0}(r+i s)+a_{1}(i t)\right| e^{-a_{0}^{2}-a_{1}^{2}} d a_{0} d a_{1}=\frac{1}{2} \log (1+2 r t)
$$

and

$$
\begin{aligned}
E_{2, N}(z)=-\frac{i}{2 \pi^{2}} \partial \bar{\partial} \int \log \left|\phi\left(e^{i \theta}\right)\right| d \theta & =-\frac{i}{2 \pi^{2}} \partial \bar{\partial}(2 \pi) \frac{1}{2} \log (1+2 r t) \\
& =-\frac{i}{2 \pi} \partial \bar{\partial} \log (1+2 r t) \\
& =\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log (1+2 r t) d x \wedge d y, z \in \mathbb{C} \backslash \mathbb{R}
\end{aligned}
$$

After some simplification of $2 r t$ we have

$$
E_{2, N}(z)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{\left(1+z^{2}\right)^{N}}{\left(1+|z|^{2}\right)^{N}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C} \backslash \mathbb{R}
$$

11. Limit for $E_{2, N}(z)$. Since we found that $r=r_{N}(z)=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right), t=t_{N}(z)=$ $\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right)$, and $s=s_{N}(z)=O\left(e^{-\lambda N}\right)$ and all derivatives (in particular, the first and second derivatives) of r, s, and t are $O\left(e^{-\lambda N}\right)$ uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, we can say that

$$
\begin{aligned}
E_{2, N}(z) & =E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right) \\
& =-\frac{i}{2 \pi} \partial \bar{\partial} \log (1+2 r t)=O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
\end{aligned}
$$

and uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, which is our desired result.
12. Scaling limit for $E_{2, N}(z)$. By the chain rule we have for any differentiable function $f(z)$

$$
\left.\frac{\partial^{2}}{\partial z \partial \bar{z}} f(z)\right|_{\frac{z}{\sqrt{N}}}=N \frac{\partial^{2}}{\partial z \partial \bar{z}}\left[f\left(\frac{z}{\sqrt{N}}\right)\right]
$$

So we have

$$
\begin{aligned}
\frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right) & =\left.\frac{1}{N \pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left[1+2 r_{N}(z) t_{N}(z)\right]\right|_{\frac{z}{\sqrt{N}}} d x \wedge d y \\
& =\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left[1+2 r_{N}\left(\frac{z}{\sqrt{N}}\right) t_{N}\left(\frac{z}{\sqrt{N}}\right)\right] d x \wedge d y, z \in \mathbb{C} \backslash \mathbb{R}
\end{aligned}
$$

and after some simplification we get

$$
\frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{\left(1+\left(\frac{z}{\sqrt{N}}\right)^{2}\right)^{N}}{\left(1+\left|\frac{z}{\sqrt{N}}\right|^{2}\right)^{N}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C} \backslash \mathbb{R}
$$

We now take the limit and get

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{e^{z^{2}}}{e^{\left.z\right|^{2}}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C} \backslash \mathbb{R}
$$

Setting $z=x+i y$, we can write

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{4 \pi} \frac{\partial^{2}}{\partial y^{2}} \log \left(1+\sqrt{1-e^{-4 y^{2}}}\right) d x \wedge d y, y \neq 0
$$

and after simplification and adding to $\frac{1}{N} E_{1, N}\left(\frac{z}{\sqrt{N}}\right) \rightarrow \frac{1}{\pi}$, we recover Prosen's result in [Pro96]:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{\gamma_{\text {real }}}\left(Z_{f\left(\frac{z}{\sqrt{N}}\right)}\right)=\frac{1}{\pi} \frac{1-\left(4 y^{2}+1\right) e^{-4 y^{2}}}{\left(1-e^{-4 y^{2}}\right)^{3 / 2}} .
$$

13. Weak limit for $E_{2, N}(z)$. Let $K \subset \mathbb{C}$ be a compact set. Note that unlike before, we are including points on the real line. We now show that $\frac{1}{N} E_{2}$ goes to 0 weakly on K. More specifically, we show that for any $\phi \in C^{\infty}(K)$,

$$
\frac{1}{N}\left(E_{2, N}(z), \phi(z)\right)=\frac{1}{N} \int_{K} E_{2, N}(z) \phi(z) d z=O\left(N^{-1}\right)
$$

Recall that $E_{2, N}(z)=E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right)$ By the definition of the expectation of a distribution, we have

$$
\begin{aligned}
\left(E_{2, N}(z), \phi(z)\right) & =\left(E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right), \phi(z)\right) \\
& =E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|, \phi(z)\right)
\end{aligned}
$$

By the definition of the derivative of a distribution, we have

$$
E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|, \phi(z)\right)=E\left(\log \left|a \cdot u_{N}(z)\right|, \frac{i}{\pi} \partial \bar{\partial} \phi(z)\right)
$$

By the definition of a distribution, we have that this term equals

$$
E\left(\int_{K} \log \left|a \cdot u_{N}(z)\right| \frac{i}{\pi} \partial \bar{\partial} \phi(z)\right)
$$

Recall that E denotes expectation with respect to the Gaussian measure $d \mu(a)$. We then have by definition of expected value that this equals

$$
\int_{\mathbb{R}^{\mathbb{N}}}\left(\int_{K} \log \left|a \cdot u_{N}(z)\right| \frac{i}{\pi} \partial \bar{\partial} \phi(z)\right) d \mu(a) .
$$

Since the integrand is bounded, and since $\phi(z)$ does not depend on a, we can switch the order of the integrals and get

$$
\int_{K}\left(\int_{\mathbb{R}^{\mathbb{N}}} \log \left|a \cdot u_{N}(z)\right| d \mu(a)\right) \frac{i}{\pi} \partial \bar{\partial} \phi(z) .
$$

Recall that by our calculation above we have that the inner integral is $\frac{1}{2} \log (1+2 r t)$, so we have

$$
\int_{K}\left(\int_{\mathbb{R}^{\mathbb{N}}} \log \left|a \cdot u_{N}(z)\right| d \mu(a)\right) \frac{i}{\pi} \partial \bar{\partial} \phi(z)=\int_{K} \frac{i}{2 \pi} \log (1+2 r t) \partial \bar{\partial} \phi(z)
$$

Recall also that $r_{N}(z)$ and $t_{N}(z)$ are both non-negative by construction, and both are bounded by 1 since $r^{2}+s^{2}+t^{2}=1$. Both of these conditions are true even on the real line, where $r_{N}=0$ and $t_{N}=0$ for all N. This implies the crude estimate $1 \leq(1+2 r t) \leq 3$, everywhere on \mathbb{C} and, in particular, on K. Since $\phi \in C^{\infty}(K)$, we can write

$$
\begin{aligned}
\int_{K} \frac{i}{2 \pi} \log (1+2 r t) \partial \bar{\partial} \phi(z) & \leq \int_{K} C \frac{i}{\pi} \partial \bar{\partial} \phi(z) \\
& =C\left\|\frac{i}{\pi} \partial \bar{\partial} \phi(z)\right\|_{L^{1}(K)}
\end{aligned}
$$

where C is independent of N, K, and z, including z on the real line, and the L^{1} norm $\left\|\frac{i}{\pi} \partial \bar{\partial} \phi(z)\right\|_{L^{1}(K)}$ depends only on K. So then we have that

$$
\left(E_{2, N}(z), \phi(z)\right) \leq C_{K}
$$

where C_{K} is a constant which depends only on K. We now have want we want:

$$
\frac{1}{N}\left(E_{2, N}(z), \phi(z)\right) \leq \frac{1}{N} C_{K}=O\left(N^{-1}\right)
$$

Note that when we consider compact sets K that include part of the real line, the weak limit is the only result we have. This is because the derivatives of r, s, t, and therefore E_{2} blow up near the real line. When we find the weak limit and move the $\partial \bar{\partial}$ from the \log term to the ϕ term as we did above, we avoid this problem: only the derivatives of r and t blow up near the real line, not the values of the functions themselves.

4. Density of critical points in one variable

In this section we study the density of critical points of

$$
h_{N}(z)=\sum_{\ell=0}^{N} a_{\ell}\binom{N}{\ell}^{1 / 2} z^{\ell}
$$

where the a_{j} 's are real independent standard Gaussian random variables. This corresponds to the zeros of

$$
f_{N}(z)=\frac{\partial h}{\partial z}=\sum_{\ell=0}^{N} a_{\ell}\binom{N}{\ell}^{1 / 2} \frac{\partial}{\partial z} z^{\ell}
$$

The goal of this section is to show the following results about the density of critical using the Poincare-Lelong formula: we write

$$
E\left(C_{f_{N}}(z)\right)=E_{\gamma_{c x}}\left(C_{f_{N}}(z)\right)+E_{2, N}(z)
$$

(1) We show that

$$
\frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}(z)\right)=\frac{1}{\pi}\left(\frac{1}{\left(1+|z|^{2}\right)^{2}}-\frac{2}{N\left(1+|z|^{2}\right)^{2}}+\frac{1}{\left(1+N|z|^{2}\right)^{2}}\right) d x \wedge d y
$$

so that

$$
\begin{aligned}
\frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}(z)\right) & =\frac{1}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} d x \wedge d y+O\left(N^{-1}\right), z \neq 0 \\
\frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}(z)\right) & =\frac{2}{\pi} d x \wedge d y+O\left(N^{-1}\right), z=0
\end{aligned}
$$

(2) We also show that

$$
\begin{aligned}
E_{2, N}(z) & =\partial \bar{\partial} \log \left(1+\sqrt{1-\left|\frac{\left(N^{2} z^{2}+N\right)\left(1+z^{2}\right)^{N-2}}{\left(N^{2}|z|^{2}+N\right)\left(1+|z|^{2}\right)^{N-2}}\right|^{2}}\right) \\
& =O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}, \lambda>0
\end{aligned}
$$

so that

$$
E\left(C_{f_{N}}(z)\right)=E_{\gamma_{c x}}\left(C_{f_{N}}(z)\right)+O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
$$

and uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, giving

$$
E\left(C_{f_{N}}(z)\right)=\frac{1}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} d x \wedge d y+O\left(N^{-1}\right), z \in \mathbb{C} \backslash \mathbb{R}
$$

Note that we get the same limit $\frac{1}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}}$ that we did for the density of zeros, but the rate of convergence $O\left(N^{-1}\right)$ is slower than the rate $O\left(e^{-\lambda N}\right)$ that we got for the density of zeros. We still have that $E\left(C_{h}\right)$ approaches $E_{\gamma_{c x}}$ exponentially fast, but $E_{\gamma_{c x}}$ is now only asymptotically equal to the limit $\frac{1}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}}$.
(3) We find the following scaling limits:

$$
\begin{aligned}
& \frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}\right)\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{N} E_{1, N}\left(\frac{z}{\sqrt{N}}\right)=1+\frac{1}{\left(1+|z|^{2}\right)^{2}}+O\left(N^{-1}\right), z \in \mathbb{C} \\
& \lim _{N \rightarrow \infty} \frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{\left(1+z^{2}\right) e^{z^{2}}}{\left(1+|z|^{2}\right) e^{\left.2 z\right|^{2}}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C}
\end{aligned}
$$

(4) Finally, we show that the error term $E_{2, N}(z)$ goes to 0 weakly on compact sets $K \subset \mathbb{C}$ (including points in \mathbb{R}):

$$
\frac{1}{N} E_{2, N}(z)=O\left(N^{-1}\right), \text { weakly on compact sets } K \subset \mathbb{C}
$$

by which we mean that for any $\phi \in C^{\infty}(K)$,

$$
\frac{1}{N}\left(E_{2, N}(z), \phi(z)\right)=\frac{1}{N} \int_{\mathbb{K}} E_{2, N}(z) \phi(z) d z=O\left(N^{-1}\right)
$$

The proofs are very similar to the density of zeros in one variable case, so we will leave out some of the details.

1. Application of the Poincare-Lelong formula. We write $a=\left(a_{0}, \ldots, a_{N}\right)$ and

$$
F=F_{N}(z)=\left(0,\binom{N}{1}^{1 / 2} \frac{\partial}{\partial z} z^{1},\binom{N}{2}^{1 / 2} \frac{\partial}{\partial z} z^{2}, \ldots,\binom{N}{N}^{1 / 2} \frac{\partial}{\partial z} z^{N}\right)
$$

so that $f_{N}=a \cdot F_{N}$. By the Poincare-Lelong formula, the density of the zeros of $f, E\left(Z_{f}\right)$, satisfies

$$
\begin{aligned}
E\left(C_{f_{N}}\right)=E\left(\frac{i}{2 \pi} \partial \bar{\partial} \log \left|f_{N}\right|^{2}\right) & =E\left(\frac{i}{2 \pi} \partial \bar{\partial} \log \left|a \cdot F_{N}\right|^{2}\right) \\
& =E\left(\frac{i}{2 \pi} \partial \bar{\partial} \log \left\|F_{N}(z)\right\|^{2}\right)+E\left(\frac{i}{\pi} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right) \\
& =E_{1, N}(z)+E_{2, N}(z)
\end{aligned}
$$

where $u=u_{N}(z)=\frac{F_{N}(z)}{\left\|F_{N}(z)\right\|}$.
The first term is a known result. First, from [BSZ00a] and the section on density of zeros in one variable, we have that $E_{1, N}(z)=E_{\gamma_{c x}}\left(C_{f_{N}}\right)$. Next, recall that $F_{N}(z)=$ $\frac{\partial}{\partial z} H_{N}(z)$, so we have

$$
\left\|F_{N}\right\|^{2}=\left\|\frac{\partial}{\partial z} H_{N}(z)\right\|^{2}=\frac{\partial}{\partial z} H_{N}(z) \frac{\partial}{\partial \bar{z}} \overline{H(z)}
$$

and since $H(z)$ is holomorphic, this equals

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} H_{N}(z) \overline{H_{N}(z)}=\frac{\partial^{2}}{\partial z \partial \bar{z}}\left\|H_{N}(z)\right\|^{2}
$$

A quick calculation gives

$$
\left\|F_{N}\right\|^{2}=\frac{\partial^{2}}{\partial z \partial \bar{z}}\left\|H_{N}(z)\right\|^{2}=N\left(1+|z|^{2}\right)^{N-2}\left(1+N|z|^{2}\right)
$$

Using this formula, we get

$$
\begin{aligned}
\frac{1}{N} E_{1, N}(z) & =\frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}\right) \\
& =\frac{1}{N} E\left(\frac{i}{2 \pi} \partial \bar{\partial} \log \left\|F_{N}(z)\right\|^{2}\right)=\frac{i}{2 \pi} \frac{1}{N}\left(\frac{N-2}{\left(1+|z|^{2}\right)^{2}}+\frac{N}{\left(1+N|z|^{2}\right)^{2}}\right) d z \wedge d \bar{z} \\
& =\frac{1}{\pi}\left(\frac{1}{\left(1+|z|^{2}\right)^{2}}-\frac{2}{N\left(1+|z|^{2}\right)^{2}}+\frac{1}{\left(1+N|z|^{2}\right)^{2}}\right) d x \wedge d y
\end{aligned}
$$

Note that

$$
\frac{1}{\pi}\left(-\frac{2}{N\left(1+|z|^{2}\right)^{2}}+\frac{1}{\left(1+N|z|^{2}\right)^{2}}\right) d x \wedge d y=O\left(N^{-1}\right), z \neq 0
$$

So we have that

$$
\frac{1}{N} E_{1, N}(z)=\frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}\right)=\frac{1}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} d x \wedge d y+O\left(N^{-1}\right), z \neq 0
$$

We remark that when $z=0$,

$$
\begin{aligned}
\frac{1}{N} E_{1, N}(z) & =\frac{1}{\pi}\left(\frac{1}{\left(1+|z|^{2}\right)^{2}}-\frac{2}{N\left(1+|z|^{2}\right)^{2}}+\frac{1}{\left(1+N|z|^{2}\right)^{2}}\right) d x \wedge d y \\
& =\frac{1}{\pi}\left(2-\frac{2}{N\left(1+|z|^{2}\right)^{2}}\right) d x \wedge d y=\frac{1}{\pi}\left(2-\frac{2}{N}\right) d x \wedge d y
\end{aligned}
$$

and

$$
\frac{1}{N} E_{1, N}(z)=\frac{2}{\pi} d x \wedge d y+O\left(N^{-1}\right), z=0
$$

So we have so far that

$$
E\left(C_{f_{N}}\right)=\frac{1}{\pi} \frac{1}{\left(1+|z|^{2}\right)^{2}} d x \wedge d y+O\left(N^{-1}\right)+E_{2, N}(z)
$$

and it reamins to show that

$$
E_{2, N}(z)=\frac{i}{\pi} E\left(\partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right|\right)=O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
$$

2. Scaling limit for $E_{\gamma_{c x}}\left(C_{f_{N}}\right)$. We have

$$
\frac{1}{N} E_{\gamma_{c x}}\left(C_{f_{N}}\right)\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{N} E_{1, N}\left(\frac{z}{\sqrt{N}}\right)=1+\frac{1}{\left(1+|z|^{2}\right)^{2}}+O\left(N^{-1}\right), z \in \mathbb{C} .
$$

3. Pointwise Limit of $E_{2, N}(z)$. By the definition of expected value,

$$
E_{2, N}(z)=\frac{i}{\pi} \int_{\mathbb{R}^{N+1}} \partial \bar{\partial} \log \left|a \cdot u_{N}(z)\right| d \mu(a) .
$$

As in the density of zeros case, we can perform rotations of a_{0}, \ldots, a_{N} and then a_{1}, \ldots, a_{N} so that we have

$$
\begin{aligned}
E_{2, N}(z) & =\frac{i}{\pi} \int_{\mathbb{R}^{N+1}} \partial \bar{\partial} \log \left|\left(a_{0}, a_{1}, \ldots, a_{N}\right) \cdot\left(r_{N}(z)+i s_{N}(z), i t_{N}(z), 0, \ldots, 0\right)\right| d \mu(a) \\
= & \frac{i}{\pi} \int_{\mathbb{R}^{2}} \partial \bar{\partial} \log \left|a_{0}(r+i s)+a_{1}(i t)\right| d \mu\left(a_{0}\right) d \mu\left(a_{1}\right)
\end{aligned}
$$

which is of the same form as we had in the zeros case. The formulas $r=r_{N}(z), s=s_{N}(z)$, and $t=t_{N}(z)$ are different here in the critical points case than they were in the zeros case, but the formulas are similar and a simple fact will show that we still have the same asympotic results, namely, for $z \in \mathbb{C} \backslash \mathbb{R}$,

$$
\begin{aligned}
{\left[r_{N}(z)\right]^{2} } & =\frac{1}{2}+O\left(e^{-\lambda N}\right), \\
s_{N}(z) & =O\left(e^{-\lambda N}\right) \\
{\left[t_{N}(z)\right]^{2} } & =\frac{1}{2}+O\left(e^{-\lambda N}\right),
\end{aligned}
$$

and for $z \in \mathbb{R}$,

$$
\begin{aligned}
{\left[r_{N}(z)\right]^{2} } & \equiv 1(\text { for all } N), \\
s_{N}(z) & \equiv 0(\text { for all } N), \\
{\left[t_{N}(z)\right]^{2} } & \equiv 0(\text { for all } N) .
\end{aligned}
$$

4. Formula for $r_{N}(z)$. Recall that have

$$
\left[r_{N}(z)\right]^{2}=\frac{\left|\operatorname{Re} F_{N}(z)\right|^{2}}{\left|F_{N}(z)\right|^{2}}
$$

Also, recall that $(\operatorname{Re} z)^{2}=\frac{1}{2}|z|^{2}+\frac{1}{2} z^{2}$, so that we have

$$
\left(\operatorname{Re} z^{k-1}\right)^{2}=\frac{1}{2}|z|^{2(k-1)}+\frac{1}{2} \operatorname{Re} z^{2(k-1)} .
$$

This fact gives

$$
\begin{aligned}
{\left[r_{N}(z)\right]^{2} } & =\frac{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\operatorname{Re} \frac{\partial}{\partial z} z^{\ell}\right)^{2}}{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial \bar{z}} \bar{z}^{\ell}\right)}=\frac{\sum_{\ell=0}^{N}\binom{N}{\ell}\left[\frac{1}{2}\left|\frac{\partial}{\partial z} z^{\ell}\right|^{2}+\frac{1}{2} \operatorname{Re}\left(\frac{\partial}{\partial z} z^{\ell}\right)^{2}\right]}{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial \bar{z}} \bar{z}^{\ell}\right)} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Re} \frac{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial z} z^{\ell}\right)}{\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial \bar{z}} \bar{z}^{\ell}\right)}
\end{aligned}
$$

We state a brief fact. It will be more general than what we need here, but the more general form will be used later when we do the several variables case.

Fact 4.4. For complex numbers z, w, \tilde{z}, and \tilde{w}, we have the following:
(1) $\sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}}\left(\frac{\partial}{\partial z} z^{\ell_{1}} w^{\ell_{2}}\right)\left(\frac{\partial}{\partial \tilde{z}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}}\right)=\left[N^{2} z \tilde{z}+N(1+w \tilde{w})\right](1+z \tilde{z}+w \tilde{w})^{N-2}$
(2) $\sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}}\left(\frac{\partial}{\partial w} z^{\ell_{1}} w^{\ell_{2}}\right)\left(\frac{\partial}{\partial \tilde{w}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}}\right)=\left[N^{2} w \tilde{w}+N(1+z \tilde{z})\right](1+z \tilde{z}+w \tilde{w})^{N-2}$
(3) $\sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}}\left(\frac{\partial}{\partial z} z^{\ell_{1}} w^{\ell_{2}}\right)\left(\frac{\partial}{\partial \tilde{w}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}}\right)=\left(N^{2}-N\right) \tilde{z} w(1+z \tilde{z}+w \tilde{w})^{N-2}$
(4) $\sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}}\left(\frac{\partial}{\partial w} z^{\ell_{1}} w^{\ell_{2}}\right)\left(\frac{\partial}{\partial \tilde{z}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}}\right)=\left(N^{2}-N\right) z \tilde{w}(1+z \tilde{z}+w \tilde{w})^{N-2}$

Proof. See Appendix.
We use (1) with $w=\tilde{w}=0$, and we evaluate at $\tilde{z}=z$ to get

$$
\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial z} z^{\ell}\right)=\left(N^{2} z^{2}+N\right)\left(1+z^{2}\right)^{N-2}
$$

and we use (1) with $w=\tilde{w}=0$, and we evaluate at $\tilde{z}=\bar{z}$ to get

$$
\sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial \bar{z}} \bar{z}^{\ell}\right)=\left(N^{2}|z|^{2}+N\right)\left(1+|z|^{2}\right)^{N-2}
$$

So we have

$$
\left[r_{N}(z)\right]^{2}=\frac{1}{2}+\frac{1}{2} \operatorname{Re} \frac{\left[N^{2} z^{2}+N\right]\left(1+z^{2}\right)^{N-2}}{\left[N^{2}|z|^{2}+N\right]\left(1+|z|^{2}\right)^{N-2}}=\frac{1}{2}+O\left(e^{-\lambda N}\right), \text { for } z \in \mathbb{C} \backslash \mathbb{R}
$$

and uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, and

$$
\left[r_{N}(z)\right]^{2} \equiv 1, z \in \mathbb{R}
$$

5. Formula for $s_{N}(z)$. Next, recall that

$$
s_{N}(z)=\frac{\operatorname{Re} u_{N}(z) \cdot \operatorname{Im} u_{N}(z)}{r_{N}(z)}=\frac{\operatorname{Re} F_{N}(z) \cdot \operatorname{Im} F_{N}(z)}{\left\|F_{N}(z)\right\|^{2}} \cdot \frac{1}{r_{N}(z)}
$$

Using the identity $\operatorname{Im} w^{2}=2 \operatorname{Re} w \operatorname{Im} w$, for any complex number w (Fact ???), we can write

$$
\begin{aligned}
\operatorname{Re} F_{N}(z) \cdot \operatorname{Im} F_{N}(z) & =\sum_{\ell=0}^{N} \operatorname{Re}\left[\binom{N}{\ell}^{1 / 2} \frac{\partial}{\partial z} z^{\ell}\right] \operatorname{Im}\left[\binom{N}{\ell}^{1 / 2} \frac{\partial}{\partial z} z^{\ell}\right] \\
& =\sum_{\ell=0}^{N}\binom{N}{\ell} \frac{1}{2} \operatorname{Im}\left(\frac{\partial}{\partial z} z^{\ell}\right)^{2} \\
& =\frac{1}{2} \operatorname{Im} \sum_{\ell=0}^{N}\binom{N}{\ell}\left(\frac{\partial}{\partial z} z^{\ell}\right)\left(\frac{\partial}{\partial z} z^{\ell}\right) \\
& =\frac{1}{2} \operatorname{Im}\left[\left(N^{2} z^{2}+N\right)\left(1+z^{2}\right)^{N-2}\right]
\end{aligned}
$$

using the Fact again. We have

$$
\begin{aligned}
s_{N}(z) & =\frac{\frac{1}{2} \operatorname{Im}\left[\left(N^{2} z^{2}+N\right)\left(1+z^{2}\right)^{N-2}\right]}{\|\left. F\right|^{2}} \cdot \frac{1}{r_{N}(z)} \\
& =\frac{1}{2} \operatorname{Im}\left[\frac{\left(N^{2} z^{2}+N\right)\left(1+z^{2}\right)^{N-2}}{\left(N^{2}|z|^{2}+N\right)\left(1+|z|^{2}\right)^{N-2}}\right] \cdot \frac{1}{r_{N}(z)} \\
& =\frac{1}{2} \operatorname{Im}\left[\frac{N^{2} z^{2}+N}{N^{2}|z|^{2}+N}\left(\frac{1+z^{2}}{1+|z|^{2}}\right)^{N-2}\right] \cdot \frac{1}{r_{N}(z)}=O\left(e^{-\lambda N}\right), \text { for } z \in \mathbb{C} \backslash \mathbb{R},
\end{aligned}
$$

and

$$
s_{N}(z) \equiv 0, z \in \mathbb{R}
$$

6. Formula for \mathbf{t}. Since $r^{2}+s^{2}+t^{2}=1$, we have t easily:

$$
\left[t_{N}(z)\right]^{2}=1-\left[r_{N}(z)\right]^{2}-\left[s_{N}(z)\right]^{2}=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right), z \in \mathbb{C} \backslash \mathbb{R}
$$

and uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, and

$$
t \equiv 0, z \in \mathbb{R}
$$

Also, note that all derivatives of $r_{N}(z), s_{N}(z)$ and $t_{N}(z)$ are $O\left(e^{-\lambda N}\right)$ and that all derivatives converge uniformly on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$.
7. Exact Formula for $E_{2, N}(z)$. Recall that

$$
E_{2, N}(z)=\frac{i}{\pi} \int_{\mathbb{R}^{2}} \partial \bar{\partial} \log \left|a_{0}(r+i s)+a_{1}(i t)\right| d \mu\left(a_{0}\right) d \mu\left(a_{1}\right),
$$

and note that it is of the same form as the formula for $E_{2, N}(z)$ in the zeros case. The only difference is the formulae for r, s, and t. If we can write our integral in polar coordinate and use Jensen's formula the same way as before, we get that

$$
E_{2, N}(z)=-\frac{i}{2 \pi} \partial \bar{\partial} \log (1+2 r t)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log (1+2 r t) d x \wedge d y
$$

After further simplification of $2 r t$, we have that

$$
E_{2, N}(z)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{\left(N^{2} z^{2}+N\right)\left(1+z^{2}\right)^{N-2}}{\left(N^{2}|z|^{2}+N\right)\left(1+|z|^{2}\right)^{N-2}}\right|^{2}}\right) d x \wedge d y
$$

8. Limit for $E_{2, N}(z)$. Though we got different formulas for r, s, and t, we still had that $r=r_{N}(z)=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right), t=t_{N}(z)=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right)$, and $s=s_{N}(z)=O\left(e^{-\lambda N}\right)$ and all derivatives (in particular, the first and second derivatives) of r, s, and t are $O\left(e^{-\lambda N}\right)$ on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$. So we can still say that

$$
E_{2, N}(z)=-\frac{i}{2 \pi} \partial \bar{\partial} \log (1+2 r t)=O\left(e^{-\lambda N}\right)
$$

on compact sets $K \subset \mathbb{C} \backslash \mathbb{R}$, which is our desired result.
9. Scaling limit for $E_{2, N}(z)$. We have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E_{2, N}\left(\frac{z}{\sqrt{N}}\right)=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1+\sqrt{1-\left|\frac{\left(1+z^{2}\right) e^{z^{2}}}{\left(1+|z|^{2}\right) e^{|z|^{2}}}\right|^{2}}\right) d x \wedge d y, z \in \mathbb{C}
$$

10. Weak limit for $E_{2, N}(z)$. Let $K \subset \mathbb{C}$ be a compact set. We now show that $\frac{1}{N} E_{2}$ goes to 0 weakly on K. More specifically, we show that for any $\phi \in C^{\infty}(K)$,

$$
\frac{1}{N}\left(E_{2, N}(z), \phi(z)\right)=\frac{1}{N} \int_{\mathbb{K}} E_{2, N}(z) \phi(z) d z=O\left(N^{-1}\right)
$$

We have shown that

$$
\begin{aligned}
\left(E_{2, N}(z), \phi(z)\right) & =\int_{\mathbb{K}}\left(\int_{\mathbb{R}^{\mathbb{N}}} \log \left|a \cdot u_{N}(z)\right| d \mu(a)\right) \frac{i}{\pi} \partial \bar{\partial} \phi(z) d z \\
& =\int_{\mathbb{K}}\left(\frac{1}{2} \log (1+2 r t)\right)\left(\frac{i}{\pi} \partial \bar{\partial} \phi(z)\right) d z
\end{aligned}
$$

In the zeros case, we used the fact that $1 \leq(1+2 r t) \leq 3$, everywhere on \mathbb{C} and, in particular, on K. Here, r and t are different, but we still have that both are non-negative
by construction, and both are bounded by 1 since $r^{2}+s^{2}+t^{2}=1$. So we still have the rough bound $1 \leq(1+2 r t) \leq 3$, and we therefore have

$$
\begin{aligned}
\int_{\mathbb{K}}\left(\frac{1}{2} \log (1+2 r t)\right)\left(\frac{i}{\pi} \partial \bar{\partial} \phi(z)\right) d z & \leq \int_{\mathbb{K}} C \frac{i}{\pi} \partial \bar{\partial} \phi(z) d z \\
& =C\left\|\frac{i}{\pi} \partial \bar{\partial} \phi(z)\right\|_{L^{1}(K)} \leq C_{K}
\end{aligned}
$$

where C_{K} is independent of z and N and depends only on K. We now have want we want:

$$
\frac{1}{N}\left(E_{2, N}(z), \phi(z)\right) \leq \frac{1}{N} C_{K}=O\left(N^{-1}\right)
$$

11. Appendix-Proof of Fact.

Proof. We prove just (1) and (3).
(1)

$$
\begin{aligned}
& \sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}}\left(\frac{\partial}{\partial z} z^{\ell_{1}} w^{\ell_{2}}\right)\left(\frac{\partial}{\partial \tilde{z}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}}\right)=\frac{\partial}{\partial z} \frac{\partial}{\partial \tilde{z}} \sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}} z^{\ell_{1}} w^{\ell_{2}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}} \\
& =\frac{\partial}{\partial z} \frac{\partial}{\partial \tilde{z}}(1+z \tilde{z}+w \tilde{w})^{N}=\frac{\partial}{\partial z} N(1+z \tilde{z}+w \tilde{w})^{N-1} z \\
& =N(N-1)(1+z \tilde{z}+w \tilde{w})^{N-2} z \tilde{z}+N(1+z \tilde{z}+w \tilde{w})^{N-1} \\
& =N^{2}(1+z \tilde{z}+w \tilde{w})^{N-2} z \tilde{z}-N(1+z \tilde{z}+w \tilde{w})^{N-2} z \tilde{z}+N(1+z \tilde{z}+w \tilde{w})^{N-2}(1+z \tilde{z}+w \tilde{w}) \\
& =N^{2}(1+z \tilde{z}+w \tilde{w})^{N-2} z \tilde{z}+N(1+z \tilde{z}+w \tilde{w})^{N-2}(1+w \tilde{w}) \\
& =\left[N^{2} z \tilde{z}+N(1+w \tilde{w})\right](1+z \tilde{z}+w \tilde{w})^{N-2}
\end{aligned}
$$

(2) Similar to (1).

$$
\begin{align*}
& \sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}}\left(\frac{\partial}{\partial z} z^{\ell_{1}} w^{\ell_{2}}\right)\left(\frac{\partial}{\partial \tilde{w}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}}\right)=\frac{\partial}{\partial z} \frac{\partial}{\partial \tilde{w}} \sum_{\ell_{1}+\ell_{2}=0}^{N}\binom{N}{\ell_{1}, \ell_{2}} z^{\ell_{1}} w^{\ell_{2}} \tilde{z}^{\ell_{1}} \tilde{w}^{\ell_{2}} \tag{3}\\
& =\frac{\partial}{\partial z} \frac{\partial}{\partial \tilde{w}}(1+z \tilde{z}+w \tilde{w})^{N}=\frac{\partial}{\partial z} N(1+z \tilde{z}+w \tilde{w})^{N-1} w \\
& =N(N-1)(1+z \tilde{z}+w \tilde{w})^{N-2} \tilde{z} w
\end{align*}
$$

(4) Similar to (3).

5. Density of zeros - m VARIABLES CASE

In this section we are concerned with the zeros of $h_{m, N}=\left(f_{1, N}, \ldots, f_{m, N}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$, where $f_{q, N}$ is a polynomial of the form

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} a_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}
$$

where a_{J}^{q} is a real standard Gaussian random variable, and where we use the following multi-index notation:

$$
\begin{aligned}
z & =\left(z_{1}, \ldots, z_{m}\right) \\
|J| & =j_{1}+\cdots+j_{m} \\
a_{J}^{q} & =a_{j_{1} \ldots j_{m}}^{q} \in \mathbb{R} \\
\binom{N}{J} & =\binom{N}{j_{1}, \ldots, j_{m}}=\frac{N!}{\left(N-j_{1}-\ldots-j_{m}\right)!j_{1}!\ldots j_{m}!} \\
z^{J} & =z_{1}^{j_{1}} \ldots z_{m}^{j_{m}}
\end{aligned}
$$

Instead, we choose to think of the random polynomials

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}
$$

where c_{J}^{q} is a more general complex random variable with associated measure $d \gamma$ for each q. We then consider two special cases

$$
\begin{aligned}
d \gamma_{c x} & =\frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}, D_{N}=\binom{N+m}{m} \\
d \gamma_{\text {real }} & =\delta_{S} \frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}
\end{aligned}
$$

where δ_{S} is the delta function on $S \subset \mathbb{C}^{D_{N}}$, the set of points $c=a+i b \in \mathbb{C}^{D_{N}}$ where $b=0 \in \mathbb{R}^{D_{N}}$. Here $d \gamma_{c x}$ corresponds to the standard complex Gaussian coefficients case, where we are considering

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}
$$

where the c_{J}^{q} 's are standard complex Gaussian random variables, and $d \gamma_{r e a l}$ corresponds to the standard real Gaussian coefficients case, where we have

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}=\sum_{|J|=0}^{N} a_{J}^{q}\binom{N}{J}^{1 / 2} z^{J}
$$

where $c_{J}^{q}=a_{J}^{q}+i 0$ is a standard real Gaussian random variable. We let $E(\cdot)$ denote expectation with respect to $d \gamma_{r e a l}$ and $E_{\gamma_{c x}}(\cdot)$ denote expectation with respect to $d \gamma_{c x}$.

Let $K \subseteq \mathbb{C}^{m} \backslash \mathbb{R}^{m}$ be compact, and let λ be a positive constant. The goal of this section is to show the following results about the density of zeros of h_{N} using the Poincare-Lelong formula: we write

$$
E\left(Z_{h_{N}}\right)(z)=E_{\gamma_{c x}}\left(Z_{h_{N}}\right)(z)+\tilde{E}_{N}(z) d \omega
$$

where

$$
E_{\gamma_{c x}}\left(Z_{h_{N}}\right)(z)=\frac{m N^{m}}{\pi^{m}} \frac{1}{\left(1+\|z\|^{2}\right)^{m+1}} d \omega
$$

where

$$
d \omega=d x_{1} \wedge d y_{1} \ldots \wedge d x_{m} \wedge d y_{m}
$$

$\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}$, and $\tilde{E}_{N}(z)$ is some "error" term. We give an exact formula for $\tilde{E}_{N}(z)$, and show that it goes to zero rapidly, i.e.,

$$
\tilde{E}_{N}(z)=O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}, \text { and uniformly on } K,
$$

so that we have

$$
E\left(Z_{h_{N}}\right)(z)=E_{\gamma_{c x}}\left(Z_{h_{N}}\right)(z)+O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m} \text {, and uniformly on } K
$$

and,

$$
\frac{1}{N^{k}} E\left(Z_{h_{N}}\right)(z)=\frac{k}{\pi^{m}} \frac{1}{\left(1+|z|^{2}\right)^{m+1}} d \omega+O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}, \text { and uniformly on } K .
$$

In other words, at any point away from \mathbb{R}^{m}, the expected density of zeros in the real coefficients case approaches the expected density of zeros in the complex coefficients case as N gets large.

We also give a formula for the scaling limit of $\tilde{E}_{N}(z)$, which we denote $\tilde{E}_{\infty}(z)$, and show that as $|\operatorname{Im} z| \rightarrow \infty, \tilde{E}_{\infty}(z) \rightarrow 0$. In words, the scaled density of zeros in the real coefficients case approaches the scaled density of zeros in the complex coefficients case as you move far away from \mathbb{R}^{m}.

We follow the proof in the one and two variable case and begin by writing

$$
\left.\begin{array}{rl}
a^{q} & =\left(a_{0, \ldots, 0}^{q}, \ldots, a_{J}^{q}, \ldots, a_{0, \ldots, 0, N}^{q}\right) \in \mathbb{R}^{D_{N}} \\
F_{q, N}(z) & =F_{N}(z)=\left(\binom{N}{0, \ldots, 0}^{1 / 2}, \ldots,\binom{N}{J}^{1 / 2} z^{J}, \ldots,\binom{N}{0, \ldots, 0, N}^{1 / 2} z_{1}^{0} \ldots z_{m}^{N}\right.
\end{array}\right) \in \mathbb{R}^{D_{N}} . ~ l
$$

where $D_{N}=\binom{N+m}{m}$, so that we can write $f_{q, N}=a^{q} \cdot F_{q, N}=a^{q} \cdot F_{N}$.
By the Poincare-Lelong formula, we have

$$
\begin{aligned}
E\left(Z_{f_{1}}(z) \times \ldots \times Z_{f_{m}}(z)\right) & =E\left(\frac{i}{2 \pi} \partial \bar{\partial} \log \left|f_{1}\right|^{2} \wedge \ldots \wedge \frac{i}{2 \pi} \partial \bar{\partial} \log \left|f_{m}\right|^{2}\right) \\
& =E\left[\left(\frac{i}{2 \pi}\right)^{m}\left(\partial \bar{\partial} \log \left|a^{1} \cdot F\right|^{2} \wedge \ldots \wedge \partial \bar{\partial} \log \left|a^{m} \cdot F\right|^{2}\right)\right]
\end{aligned}
$$

which we can write more succinctly as

$$
=\left(\frac{i}{2 \pi}\right)^{m} E\left(\bigwedge_{q=1}^{m} \partial \bar{\partial} \log \left|a^{q} \cdot F\right|^{2}\right)
$$

Writing $F=\frac{F}{\|F\|}\|F\|$ and $u=\frac{F}{\|F\|}$, we can write this as

$$
\begin{aligned}
& \left(\frac{i}{2 \pi}\right)^{m} E\left(\bigwedge_{q=1}^{m} \partial \bar{\partial} \log \left\lvert\, a^{q} \cdot \frac{F}{\|F\|}\|F\|\right. \|^{2}\right) \\
= & \left(\frac{i}{2 \pi}\right)^{m} E\left[\bigwedge_{q=1}^{m}\left(\partial \bar{\partial} \log \|F\|^{2}+\partial \bar{\partial} \log \left|a^{q} \cdot u\right|^{2}\right)\right]
\end{aligned}
$$

Since $\partial \bar{\partial} \log \|F\|^{2}+\partial \bar{\partial} \log \left|a^{q} \cdot u\right|^{2}$ is independent of a^{ℓ} for $l \neq q$, then by a lemma in SZ [???] we can write this term as

$$
\begin{aligned}
& \left(\frac{i}{2 \pi}\right)^{m} \bigwedge_{q=1}^{m} E\left[\partial \bar{\partial} \log \|F\|^{2}+\partial \bar{\partial} \log \left|a^{q} \cdot u\right|^{2}\right] \\
= & \left(\frac{i}{2 \pi}\right)^{m} \bigwedge_{q=1}^{m}\left(\partial \bar{\partial} \log \|F\|^{2}+E\left[\partial \bar{\partial} \log \left|a^{q} \cdot u\right|^{2}\right]\right) .
\end{aligned}
$$

At this point, we could find the large N limit; we have essentially reduced the m-variables case to the same calculation as the 1 -variable case, namely showing that $E\left[\partial \bar{\partial} \log \left|a^{q} \cdot u\right|^{2}\right]$ is $O\left(e^{-\lambda N}\right)$. If this term is indeed $O\left(e^{-\lambda N}\right)$, then all but one term in the wedge product goes to zero exponentially fast. Since we want an exact formula for the density of zeros, we delay the proof of the large N limit, and we first work out the details of writing an exact formula more explicitly. From that formula, the large N limit and the scaling limit will follow easily.

We write
$\left(\frac{i}{2 \pi}\right)^{m} E\left[\bigwedge_{q=1}^{m}\left(\partial \bar{\partial} \log | | F| |^{2}+\partial \bar{\partial} \log \left|a^{q} \cdot u\right|^{2}\right)\right]=\left(E_{1, N}(z)+E_{2, N}(z)+\ldots+E_{2^{m}, N}(z)\right) d \omega$
where

$$
\begin{gathered}
E_{1, N}(z) d \omega:=\left(\frac{i}{2 \pi}\right)^{m} E\left(\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log \|F\|^{2} \wedge \ldots \wedge \partial \bar{\partial} \log \|F\|^{2}\right) \\
E_{2, N}(z) d \omega:=\left(\frac{i}{2 \pi}\right)^{m} E\left(\partial \bar{\partial} \log \left|a^{1} \cdot u\right| \wedge \partial \bar{\partial} \log \|F\|^{2} \wedge \ldots \wedge \partial \bar{\partial} \log \|F\|^{2}\right) \\
\vdots \\
E_{2^{m}, N}(z) d \omega:=\left(\frac{i}{2 \pi}\right)^{m} E\left(\partial \bar{\partial} \log \left|a^{1} \cdot u\right| \wedge \partial \bar{\partial} \log \left|a^{2} \cdot u\right| \wedge \ldots \wedge \partial \bar{\partial} \log \left|a^{m} \cdot u\right|\right)
\end{gathered}
$$

We look at these 2^{m} terms and we claim that only the first term is non-zero in the limit. The first term is known:

$$
\begin{aligned}
E_{1, N}(z) d \omega & =E\left(Z_{h_{N}}\right)=\left(\frac{i}{2 \pi}\right)^{m} E\left(\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log \|F\|^{2} \wedge \ldots \wedge \partial \bar{\partial} \log \|F\|^{2}\right) \\
& =\frac{m N^{m}}{\pi^{m}} \frac{1}{\left(1+\left|z_{1}\right|^{2}+\ldots+\left|z_{m}\right|^{2}\right)^{m+1}} d \omega=\frac{m N^{m}}{\pi^{m}} \frac{1}{\left(1+\|z\|^{2}\right)^{m+1}} d \omega
\end{aligned}
$$

1. The remaining terms. We know show that the remaining terms $E_{2}, \ldots, E_{2^{m}}$ are $O\left(e^{-\lambda N}\right)$. Consider the i-th term, E_{q}. This term is of the form

$$
E_{q, N}(z) d \omega=E\left(\partial \bar{\partial} \phi_{1}^{q} \wedge \ldots \wedge \partial \bar{\partial} \phi_{m}^{q}\right)
$$

where $\phi_{l, N}^{q}(z)$ is either $\log \left\|F_{N}(z)\right\|$ or $\log \left|a^{\ell} \cdot u_{N}(z)\right|$ for each ℓ. For example, for $E_{2, N}(z)$ we have $\phi_{1}^{2}=\log \left|a^{1} \cdot u\right|$ and $\phi_{\ell}^{2}=\log \left\|F_{N}(z)\right\|$ for $1<\ell \leq k$. Writing out the wedge product we get

$$
E_{q, N}(z)=E\left[\sum_{\sigma, \tau}(-1)^{\sigma+\tau}\left(\frac{\partial^{2}}{\partial z_{\sigma(1)} \partial \bar{z}_{\tau(1)}} \phi_{1}^{q}\right) \cdots\left(\frac{\partial^{2}}{\partial z_{\sigma(m)} \partial \bar{z}_{\tau(m)}} \phi_{m}^{q}\right)\right]
$$

where the sum is over all permutations σ and τ of $\{1,2, \ldots, m\}$, and where $(-1)^{\sigma}$ denotes the sign associated to the permutation σ. Since the sum is finite, we can write

$$
E_{q, N}(z)=\sum_{\sigma, \tau}(-1)^{\sigma+\tau} E\left[\left(\frac{\partial^{2}}{\partial z_{\sigma(1)} \bar{z}_{\tau(1)}} \phi_{1}^{q}\right) \cdots\left(\frac{\partial^{2}}{\partial z_{\sigma(m)} \partial \bar{z}_{\tau(m)}} \phi_{m}^{q}\right)\right]
$$

or

$$
\begin{aligned}
E_{q, N}(z) & =\sum_{\sigma, \tau}(-1)^{\sigma+\tau} E_{q, N}^{\sigma, \tau}(z) \\
\text { where } E_{q, N}^{\sigma, \tau}(z) & =E\left[\prod_{\ell=1}^{m}\left(\frac{\partial^{2}}{\partial z_{\sigma(\ell)} \partial \bar{z}_{\tau(\ell)}} \phi_{\ell}^{q}(z)\right)\right]
\end{aligned}
$$

To simplify notation even more, let

$$
D_{\ell}=\frac{\partial^{2}}{\partial z_{\sigma(\ell)} \partial \bar{z}_{\tau(\ell)}}
$$

so that we have

$$
E_{q, N}^{\sigma, \tau}(z)=E\left[\prod_{\ell=1}^{m} D_{\ell} \phi_{\ell}^{q}(z)\right]
$$

Now, note that $\phi_{\ell}^{q}(z)$ does not depend on all of a^{1}, \ldots, a^{m}, but only depends at most on a^{ℓ}. (If $\phi_{\ell}^{q}(z)=\log \left\|F_{N}(z)\right\|$, then it doesn't depend on a^{ℓ} either.) So because $\phi_{\ell}^{q}(z)$ is independent of $a^{\ell^{\prime}}$ for all $\ell^{\prime} \neq \ell$, we will write this integral over $\mathbb{R}^{D_{N}} \times \cdots \times \mathbb{R}^{D_{N}}$ as a product of integrals over $\mathbb{R}^{D_{N}}$. To do this, we first let

$$
L_{q}=\left\{\ell: \phi_{\ell}^{q} \text { is of the form } \log \left\|F_{N}(z)\right\|\right\} \subset\{1, \ldots, m\}
$$

and

$$
L_{q}^{\prime}=\left\{\ell: \phi_{\ell}^{q} \text { is of the form } \log \left|a^{\ell} \cdot u_{N}(z)\right|\right\}=\{1, \ldots, m\} \backslash L
$$

We can now we split the product to get

$$
\begin{aligned}
E_{q, N}^{\sigma, \tau}(z) & =E\left[\left(\prod_{\ell \in L} D_{\ell} \phi_{\ell}^{q}(z)\right)\left(\prod_{\ell \in L^{\prime}} D_{\ell} \phi_{\ell}^{q}(z)\right)\right] \\
& =E\left[\left(\prod_{\ell \in L} D_{\ell} \log \left\|F_{N}(z)\right\|\right)\left(\prod_{\ell \in L^{\prime}} D_{\ell} \log \left|a^{\ell} \cdot u_{N}(z)\right|\right)\right]
\end{aligned}
$$

By the definition of expected value, we have

$$
E_{q, N}^{\sigma, \tau}(z)=\int_{\mathbb{R}^{D_{N}}}\left[\left(\prod_{\ell \in L} D_{\ell} \log \left\|F_{N}(z)\right\|\right)\left(\prod_{\ell \in L^{\prime}} D_{\ell} \log \left|a^{\ell} \cdot u_{N}(z)\right|\right)\right] d \mu\left(a^{1}\right) \cdots d \mu\left(a^{m}\right)
$$

Note that the first product is independent of a^{ℓ} for all $\ell \in L^{\prime}$, and the second product is independent of all $\ell \in L$, so we can write $E_{q, N}^{\sigma, \tau}(z)$ as

$$
\left[\int_{\mathbb{R}^{|L| D_{N}}} \prod_{\ell \in L} D_{\ell} \log \left\|F_{N}(z)\right\| d \mu\left(a^{\ell}\right)\right]\left[\int_{\mathbb{R}^{\left|L^{\prime}\right| D_{N}}} \prod_{\ell \in L^{\prime}} D_{\ell} \log \left|a^{\ell} \cdot u_{N}(z)\right| d \mu\left(a^{\ell}\right)\right]
$$

The first product is also independent of a^{ℓ} for all $\ell \in L$, and since $\int_{\mathbb{R}^{D_{N}}} d \mu\left(a^{\ell}\right)=1$, we have for the first integral

$$
\prod_{\ell \in L} D_{\ell} \log \left\|F_{N}(z)\right\|
$$

Even more, the ℓ-th factor in the second product depends only on ℓ and is therefore independent of all $\ell^{\prime} \in L^{\prime}$ not equal to ℓ. So the integral of this product becomes a product of the integrals:

$$
\prod_{\ell \in L^{\prime}} \int_{\mathbb{R}^{D_{N}}} D_{\ell} \log \left|a^{\ell} \cdot u_{N}(z)\right| d \mu\left(a^{\ell}\right)
$$

and we can switch the derivatives and the integral to get

$$
\prod_{\ell \in L^{\prime}} D_{\ell} \int_{\mathbb{R}^{D_{N}}} \log \left|a^{\ell} \cdot u_{N}(z)\right| d \mu\left(a^{\ell}\right)
$$

Putting everything together we have

$$
E_{q, N}^{\sigma, \tau}(z)=\left[\prod_{\ell \in L} D_{\ell} \log \left\|F_{N}(z)\right\|\right]\left[\prod_{\ell \in L^{\prime}} D_{\ell} \int_{\mathbb{R}^{D_{N}}} \log \left|a^{\ell} \cdot u_{N}(z)\right| d \mu\left(a^{\ell}\right)\right]
$$

Now, consider the integral

$$
\int_{\mathbb{R}^{D_{N}}} \log \left|a^{\ell} \cdot u_{N}(z)\right| d \mu\left(a^{\ell}\right)
$$

Note that the form of the integral is the same as what we got in the one variable case, so we proceed in a similar manner. We rotate $\left(a_{0 \cdots 0}, \ldots, a_{0 \cdots 0 N}\right)$ and then $\left(a_{10 \cdots 0}, \ldots, a_{0 \cdots 0 N}\right)$ so that the integral becomes
$\int_{\mathbb{R}^{D_{N}}} \log \left|a^{\ell} \cdot(r+i s, i t, 0, \ldots, 0)\right| d \mu\left(a^{\ell}\right)=\int_{\mathbb{R}^{2}} \log \left|a_{0 \ldots 0}(r+i s)+a_{10 \cdots 0} i t\right| d \mu\left(a_{0 \ldots 0}\right) d \mu\left(a_{10 \cdots 0}\right)$ where $r=r_{N}(z), s=s_{N}(z)$, and $t=t_{N}(z)$.

We have similar formulae and large N limits for r, s, and t :

$$
\begin{aligned}
{\left[r_{N}(z)\right]^{2} } & =\frac{1}{2}+\frac{1}{2} \operatorname{Re}\left(\frac{1+z_{1}^{2}+\cdots+z_{m}^{2}}{1+\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}}\right)^{N}=\frac{1}{2}+O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}, \text { and uniformly on } K \\
s_{N}(z) & =\frac{1}{2} \operatorname{Im}\left(\frac{1+z_{1}^{2}+\cdots+z_{m}^{2}}{1+\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}}\right)^{N} \frac{1}{r_{N}(z)}=O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}, \text { and uniformly on } K \\
{\left[t_{N}(z)\right]^{2} } & =1-\left[r_{N}(z)\right]^{2}-\left[s_{N}(z)\right]^{2}=\frac{1}{2}+O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}, \text { and uniformly on } K .
\end{aligned}
$$

Also, all derivatives of r, s and t are $O\left(e^{-\lambda N}\right)$ uniformly on K.
2. Exact formula for $\tilde{E}_{N}(z)$. By the calculation we did before, we can write

$$
\int_{\mathbb{R}^{2}} \log \left|a_{0 \cdots 0}(r+i s)+a_{10 \cdots 0} i t\right| d \mu\left(a_{0 \cdots 0}\right) d \mu\left(a_{10 \cdots 0}\right)=\frac{1}{2} \log (1+2 r t),
$$

which gives us

$$
E_{q, N}^{\sigma, \tau}(z)=\left[\prod_{\ell \in L} D_{\ell} \log \left\|F_{N}(z)\right\|\right]\left[\prod_{\ell \in L^{\prime}} D_{\ell} \frac{1}{2} \log (1+2 r t)\right]
$$

Further simplification gives

$$
E_{q, N}^{\sigma, \tau}(z)=\left[\prod_{\ell \in L} D_{\ell} \frac{1}{2} \log \left(1+\|z\|^{2}\right)^{N}\right]\left[\prod_{\ell \in L^{\prime}} D_{\ell} \frac{1}{2} \log \left(1+\sqrt{1-\left|\frac{(1+z \cdot z)^{N}}{\left(1+\|z\|^{2}\right)^{N}}\right|^{2}}\right)\right]
$$

where we use the notation $z \cdot z=z_{1}^{2}+\cdots+z_{m}^{2},\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}$. Finally,

$$
E_{q, N}(z)=\sum_{\sigma, \tau}(-1)^{\sigma+\tau} E_{q, N}^{\sigma, \tau}(z)
$$

and

$$
\tilde{E}_{N}(z)=\sum_{q=2}^{2^{m}} E_{q, N}(z)
$$

3. Large \mathbf{N} limit for $\tilde{E}_{N}(z)$. All derivatives of $\log \|F\|$ are bounded. Next, $r=$ $r_{N}(z)=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right), t=t_{N}(z)=\sqrt{\frac{1}{2}}+O\left(e^{-\lambda N}\right)$, and $s=s_{N}(z)=O\left(e^{-\lambda N}\right)$ and all derivatives (in particular, the first and second derivatives) of r, s, and t are $O\left(e^{-\lambda N}\right)$ on $\mathbb{C}^{m} \backslash \mathbb{R}^{m}$. So we can say that all second derivatives of $\log (1+2 r t)$ are $O\left(e^{-\lambda N}\right)$ on $\mathbb{C}^{m} \backslash \mathbb{R}^{m}$. This means that

$$
E_{q, N}^{\sigma, \tau}(z)=O\left(e^{-\lambda N}\right), z \in K
$$

Since this is true for each i, σ, and τ, we have

$$
\tilde{E}_{N}(z)=\sum_{q=2}^{2^{m}} \sum_{\sigma, \tau}(-1)^{\sigma+\tau} E_{q, N}^{\sigma, \tau}(z)=O\left(e^{-\lambda N}\right), z \in K
$$

4. Scaling limit for $\tilde{E}_{N}(z)$. We have

$$
\frac{1}{N^{k}} E_{q, N}^{\sigma, \tau}\left(\frac{z}{\sqrt{N}}\right) \rightarrow E_{q, \infty}^{\sigma, \tau}(z):=\left[\prod_{\ell \in L} D_{\ell}\|z\|^{2}\right]\left[\prod_{\ell \in L^{\prime}} D_{\ell} \frac{1}{2} \log \left(1+\sqrt{1-\left|\frac{e^{z \cdot z}}{e^{\|z\|^{2}}}\right|^{2}}\right)\right]
$$

where we use the notation $z \cdot z=z_{1}^{2}+\cdots+z_{m}^{2},\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}$. If we write $z=x+i y$, then $z \cdot z=|x|^{2}+2 i(x \cdot y)+|y|^{2}$. Since $\left|e^{2 i(x \cdot y)}\right|=1$, we can write the second product as

$$
\prod_{\ell \in L^{\prime}} D_{\ell} \frac{1}{2} \log \left(1+\sqrt{1-e^{-4|y|^{2}}}\right)
$$

Since the first product is bounded (it is either 1 or 0 for each ℓ, depending on $\sigma(\ell)$ and $\tau(\ell)$), and the second product goes to zero exponentially fast as $|y| \rightarrow \infty$, we have

$$
E_{q, \infty}^{\sigma, \tau}(z) \rightarrow 0, \text { as }|y| \rightarrow \infty
$$

Since this is true for each i, σ, and τ we have

$$
\tilde{E}_{\infty}(z)=\sum_{q=2}^{2^{m}} \sum_{\sigma, \tau}(-1)^{\sigma+\tau} E_{q, \infty}^{\sigma, \tau}(z) \rightarrow 0, \text { as }|y| \rightarrow \infty
$$

5. Exact formula and Scaling limit for the $\mathbf{2}$ variable case. When $m=2$, the formulas for the density of zeros and the scaling limit of the density of zeros are simple enough to be written as a sum of 3 terms, and we work out the details now. We have $h_{N}(z, w)=\left(f_{N}(z, w), g_{N}(z, w)\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, where

$$
\begin{aligned}
& f_{N}(z, w)=\sum_{j+k=0}^{N} a_{j k}\binom{N}{j, k}^{1 / 2} z^{j} w^{k} \\
& g_{N}(z, w)=\sum_{i+l=0}^{N} b_{i l}\binom{N}{i, l}^{1 / 2} z^{i} w^{l}
\end{aligned}
$$

We write

$$
\begin{aligned}
a & =\left(a_{00}, a_{10}, a_{20}, \ldots, a_{N 0}, a_{01}, a_{11}, \ldots, a_{0 N}\right) \in \mathbb{R}^{N(N+1) / 2} \\
b & =\left(b_{00}, b_{10}, b_{20}, \ldots, b_{N 0}, b_{01}, b_{11}, \ldots, b_{0 N}\right) \in \mathbb{R}^{N(N+1) / 2} \\
F_{N}(z, w)=G_{N}(z, w) & =\left(\binom{N}{0,0}^{1 / 2} z^{0} w^{0},\binom{N}{1,0}^{1 / 2} z^{1} w^{0}, \ldots,\binom{N}{0, N}^{1 / 2} z^{0} w^{N}\right) \in \mathbb{R}^{N(N+1) / 2}
\end{aligned}
$$

so that $f=a \cdot F$ and $g=b \cdot G=b \cdot F$. After some algebra (see Appendix), we have for the first term, $E_{1, N}(z, w)$,

$$
\begin{aligned}
E_{1, N}(z, w) & =-N^{2} \frac{1}{2 \pi^{2}} \frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}} \\
& =N^{2} \frac{2}{\pi^{2}} \frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}}
\end{aligned}
$$

Next, note that since a and b are identically distributed,

$$
E_{2, N}(z, w) d \omega=E\left(\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log |b \cdot u|^{2}\right)=E\left(\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log |a \cdot u|^{2}\right)
$$

and since the $\partial \bar{\partial}$-terms are all 2 -forms, we have that

$$
E\left(\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log |a \cdot u|^{2}\right)=E\left(\partial \bar{\partial} \log |a \cdot u|^{2} \wedge \partial \bar{\partial} \log \|F\|^{2}\right)=E_{3, N}(z, w) d \omega
$$

which means

$$
E_{2, N}(z, w)=E_{3, N}(z, w)
$$

Writing $z_{1}=z$ and $z_{2}=w$, we have

$$
\begin{aligned}
& E_{2, N}\left(z_{1}, z_{2}\right)=E_{3, N}\left(z_{1}, z_{2}\right)=\sum_{\sigma, \tau} \frac{\partial^{2}}{\partial z_{\sigma(1)} \partial \bar{z}_{\tau(1)}} \frac{1}{2} \log (1+2 r t) \frac{\partial^{2}}{\partial z_{\sigma(2)} \partial \bar{z}_{\tau(2)}} \log \|F\|^{2} \\
& E_{4, N}\left(z_{1}, z_{2}\right)=\sum_{\sigma, \tau} \frac{\partial^{2}}{\partial z_{\sigma(1)} \partial \bar{z}_{\tau(1)}} \frac{1}{2} \log (1+2 r t) \frac{\partial^{2}}{\partial z_{\sigma(2)} \partial \bar{z}_{\tau(2)}} \frac{1}{2} \log (1+2 r t)
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{E}_{N}\left(z_{1}, z_{2}\right) & =E_{2, N}\left(z_{1}, z_{2}\right)+E_{3, N}\left(z_{1}, z_{2}\right)+E_{4, N}\left(z_{1}, z_{2}\right) \\
& =\sum_{\sigma, \tau} \frac{\partial^{2}}{\partial z_{\sigma(1)} \partial \bar{z}_{\tau(1)}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial z_{\sigma(2)} \partial \bar{z}_{\tau(2)}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) .
\end{aligned}
$$

We now write out the sum to get

$$
\begin{aligned}
E_{2, N}(z, w) & +E_{3, N}(z, w)+E_{4, N}(z, w) \\
& =\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial w \partial \bar{w}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) \\
& -\frac{\partial^{2}}{\partial z \bar{w}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial w \partial \bar{z}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) \\
& -\frac{\partial^{2}}{\partial w \partial \bar{z}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial z \partial \bar{w}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) \\
& +\frac{\partial^{2}}{\partial w \partial \bar{w}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right)
\end{aligned}
$$

Since

$$
\frac{\partial^{2}}{\partial w \partial \bar{z}} \psi(z, w)=\frac{\partial^{2}}{\partial \bar{z} \partial w} \psi(z, w)=\overline{\frac{\partial^{2}}{\partial z \partial \bar{w}} \psi(z, w)}
$$

for any real function $\psi(z, w)$, and since

$$
\frac{\partial^{2}}{\partial z \partial \bar{w}} \psi(z, w)+\overline{\frac{\partial^{2}}{\partial z \partial \bar{w}} \psi(z, w)}=2 \operatorname{Re} \frac{\partial^{2}}{\partial z \partial \bar{w}} \psi(z, w),
$$

we have

$$
\begin{array}{r}
E_{2, N}(z)+E_{3, N}(z)+E_{4, N}(z)=\frac{\partial^{2}}{\partial \partial \bar{z}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial w \partial \bar{w}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) \\
-2 \operatorname{Re} \frac{\partial^{2}}{\partial z \partial \bar{w}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial w \bar{z}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) \\
+\frac{\partial^{2}}{\partial w \partial \bar{w}}\left(\frac{1}{2} \log (1+2 r t)\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}\left(2 \log \|F\|^{2}+\frac{1}{2} \log (1+2 r t)\right) .
\end{array}
$$

where

$$
\begin{array}{r}
\|F\|^{2}=\left(1+|z|^{2}+|w|^{2}\right)^{N} \\
2 r t=\sqrt{1-\frac{\left(1+z^{2}+w^{2}\right)^{N}}{\left(1+|z|^{2}+|w|^{2}\right)^{N}}}
\end{array}
$$

This simplified formula is still messy, but it can at least be written in a couple lines, and is useful enough to plug into Maple, for example, and get a plot.
6. Scaling Limit for $\tilde{E}_{N}(z, w)$. Writing $z=x+i y$ and $w=u+i v$, we have

$$
\begin{aligned}
& \frac{1}{N^{2}} E_{2, N}\left(\frac{z}{\sqrt{N}}, \frac{w}{\sqrt{N}}\right)+E_{3, N}\left(\frac{z}{\sqrt{N}}, \frac{w}{\sqrt{N}}\right)+E_{4, N}\left(\frac{z}{\sqrt{N}}, \frac{w}{\sqrt{N}}\right) \rightarrow \\
& \frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\frac{1}{2} \log \left(1+\sqrt{1-e^{-4\left(y^{2}+v^{2}\right)}}\right)\right) \frac{\partial^{2}}{\partial w \partial \bar{w}}\left(2 \log \left(|z|^{2}+|w|^{2}\right)+\frac{1}{2} \log \left(1+\sqrt{1-e^{-4\left(y^{2}+v^{2}\right)}}\right)\right) \\
&-2 \operatorname{Re} \frac{\partial^{2}}{\partial z \partial \bar{w}}\left(\frac{1}{2} \log \left(1+\sqrt{1-e^{-4\left(y^{2}+v^{2}\right)}}\right)\right) \frac{\partial^{2}}{\partial w \partial \bar{z}}\left(2 \log \left(|z|^{2}+|w|^{2}\right)+\frac{1}{2} \log \left(1+\sqrt{1-e^{-4\left(y^{2}+v^{2}\right)}}\right)\right) \\
&+\frac{\partial^{2}}{\partial w \partial \bar{w}}\left(\frac{1}{2} \log \left(1+\sqrt{1-e^{-4\left(y^{2}+v^{2}\right)}}\right)\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}\left(2 \log \left(|z|^{2}+|w|^{2}\right)+\frac{1}{2} \log \left(1+\sqrt{1-e^{-4\left(y^{2}+v^{2}\right)}}\right)\right)
\end{aligned}
$$

7. Appendix - Calculation of $E_{1, N}(z, w)$.

$$
\begin{aligned}
& E_{1, N}(z, w) d \omega=\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log \|F\|^{2} \\
& =\left[2\left(\frac{\partial^{2}}{\partial z \partial \bar{z}} \log \|F\|^{2}\right)\left(\frac{\partial^{2}}{\partial w \partial \bar{w}} \log \|F\|^{2}\right)-2\left(\frac{\partial^{2}}{\partial z \partial \bar{w}} \log \|F\|^{2}\right)\left(\frac{\partial^{2}}{\partial w \partial \bar{z}} \log \|F\|^{2}\right)\right] d \omega \\
= & 2 N^{2}\left[\left(\frac{1+|z|^{2}}{\left(1+|z|^{2}+|w|^{2}\right)^{2}}\right)\left(\frac{1+|w|^{2}}{\left(1+|z|^{2}+|w|^{2}\right)^{2}}\right)\right. \\
& \left.-\left(\frac{-w \bar{z}}{\left(1+|z|^{2}+|w|^{2}\right)^{2}}\right)\left(\frac{-z \bar{w}}{\left(1+|z|^{2}+|w|^{2}\right)^{2}}\right)\right] d \omega \\
= & 2 N^{2} \frac{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)-|z w|^{2}}{\left(1+|z|^{2}+|w|^{2}\right)^{4}} d \omega \\
= & 2 N^{2} \frac{\left(1+|w|^{2}+|z|^{2}+|z w|^{2}\right)-|z w|^{2}}{\left(1+|z|^{2}+|w|^{2}\right)^{4}} d \omega \\
= & 2 N^{2} \frac{1+|w|^{2}+|z|^{2}}{\left(1+|z|^{2}+|w|^{2}\right)^{3}} d \omega=2 N^{2} \frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{2}} d \omega
\end{aligned}
$$

after some algebra. So we have

$$
\begin{aligned}
-\frac{1}{4 \pi^{2}} E\left(\partial \bar{\partial} \log \|F\|^{2} \wedge \partial \bar{\partial} \log \|F\|^{2}\right) & =-\frac{2 N^{2}}{4 \pi^{2}} E\left(\frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}} d \omega\right) \\
& =-\frac{N^{2}}{2 \pi^{2}} \int\left[\frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}} d \omega\right] d \mu(a) d \mu(b)
\end{aligned}
$$

and since the integrand is independent of a and b, and since $d \omega=d z \wedge d \bar{z} \wedge d w \wedge d \bar{w}$, this equals

$$
\begin{aligned}
& -\frac{N^{2}}{2 \pi^{2}} \frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}} d z \wedge d \bar{z} \wedge d w \wedge d \bar{w} \\
= & -\frac{N^{2}}{2 \pi^{2}} \frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}}(-2 i) d x \wedge d y \wedge(-2 i) d u \wedge d v \\
= & \frac{2 N^{2}}{\pi^{2}} \frac{1}{\left(1+|z|^{2}+|w|^{2}\right)^{3}} d x \wedge d y \wedge d u \wedge d v
\end{aligned}
$$

6. Density of Critical Points in m variables case using Kac-Rice method

We first consider $h_{m, N}: \mathbb{C}^{m} \rightarrow \mathbb{C}$ where $h_{m, N}$ is a complex random polynomial of the form

$$
h_{m, N}(z)=\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} z^{J}
$$

where the c_{J} 's are complex random variables, with associated measure $d \gamma$ and where we use the following multi-index notation:

$$
\begin{aligned}
z & =\left(z_{1}, \ldots, z_{m}\right) \\
|J| & =j_{1}+\cdots+j_{m} \\
c_{J} & =c_{j_{1} \ldots j_{m}} \in \mathbb{C} \\
\binom{N}{J} & =\binom{N}{j_{1}, \ldots, j_{m}}=\frac{N!}{\left(N-j_{1}-\ldots-j_{m}\right)!j_{1}!\ldots j_{m}!} \\
z^{J} & =z_{1}^{j_{1}} \ldots z_{m}^{j_{m}}
\end{aligned}
$$

We consider two special cases

$$
\begin{aligned}
d \gamma_{c x} & =\frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}, D_{N}=\binom{N+m}{m} \\
d \gamma_{r e a l} & =\delta_{S} \frac{1}{\pi^{N}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}
\end{aligned}
$$

where δ_{S} is the delta function on $S \subset \mathbb{C}^{D_{N}}$, the set of points $c=a+i b \in \mathbb{C}^{D_{N}}$ where $b=0 \in \mathbb{R}^{D_{N}}$. Here $d \gamma_{c x}$ corresponds to the standard complex Gaussian coefficients case, where we are considering

$$
h_{m, N}(z)=\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} z^{J}
$$

where the c_{J} 's are standard complex Gaussian random variables, and $d \gamma_{\text {real }}$ corresponds to the standard real Gaussian coefficients case, where we have

$$
h_{m, N}(z)=\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} z^{J}=\sum_{|J|=0}^{N} a_{J}\binom{N}{J}^{1 / 2} z^{J}
$$

where $c_{J}=a_{J}+i 0$ is a standard real Gaussian random variable. We let $E_{\gamma_{\text {real }}}(\cdot)$ denote expectation with respect to $d \gamma_{\text {real }}$ and $E_{\gamma_{c x}}(\cdot)$ denote expectation with respect to $d \gamma_{c x}$.

The goal of this section is to show the following result about the density of critical points of h_{N} using the Kac-Rice formula:

Theorem 0.5. Let $K \subseteq \mathbb{C}^{m} \backslash \mathbb{R}^{m}$ be compact, let λ be a positive constant, and let $h, \gamma_{c x}$, and $\gamma_{\text {real }}$ be defined as above. We have

$$
E_{\gamma_{\text {real }}}\left(C_{h_{N}}\right)(z)=E_{\gamma_{c x}}\left(C_{h_{N}}\right)(z)+O\left(e^{-\lambda N}\right)
$$

for all $z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}$, and uniformly on K.
In other words, at any point away from \mathbb{R}^{m}, the expected density of critical points in the real coefficients case rapidly approaches the expected density of critical points in the complex coefficients case as N gets large.

Instead of studying the critical points of this random polynomial h, we could equivalently study the zeros of $\left(f_{1, N}, \ldots, f_{m, N}\right): \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$, where $f_{q, N}$ is a complex polynomial of the form

$$
f_{q, N}(z)=\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J}, \quad 1 \leq q \leq m
$$

We'll consider $f_{q, N}(z)$ as a function from $\mathbb{R}^{2 m}$ to $\mathbb{R}^{2 m}$, use the fact that $C_{h}=Z_{f_{1} \cdots f_{m}}=$ $Z_{f_{1}^{r} \ldots f_{m}^{r} f_{1}^{i} \ldots f_{m}^{i}}$, where $f_{q}=f_{q}^{r}+i f_{q}^{i}$, and find $E_{\gamma}\left(Z_{f_{1}^{r} \ldots f_{m}^{r} f_{1}^{i} \ldots f_{m}^{i}}\right)$. Consider $x=\left(f_{1}^{r}, \ldots f_{m}^{r}, f_{1}^{i}, \ldots, f_{m}^{i}\right)$. Let ξ be the matrix of derivatives of the function

$$
\left(x_{1}, \ldots x_{m}, y_{1}, \ldots, y_{m}\right) \rightarrow x
$$

We can write

$$
\xi=\left(\begin{array}{ll}
\left(\frac{\partial f_{q}^{r}}{\partial x_{q^{\prime}}}\right)_{1 \leq q, q^{\prime} \leq m} & \left(\frac{\partial f_{q}^{r}}{\partial y_{q^{\prime}}}\right)_{1 \leq q, q^{\prime} \leq m} \\
\left(\frac{\partial f_{q}^{i}}{\partial x_{q^{\prime}}}\right)_{1 \leq q, q^{\prime} \leq m} & \left(\frac{\partial f_{q}^{i}}{\partial y_{q^{\prime}}}\right)_{1 \leq q, q^{\prime} \leq m}
\end{array}\right)
$$

Noting the Cauchy-Riemann equations hold, and that $\frac{\partial f_{q}^{r}}{\partial x_{q^{\prime}}}=\frac{\partial f_{q^{\prime}}^{r}}{\partial x_{q}}$ and $\frac{\partial f_{q}^{i}}{\partial x_{q^{\prime}}}=\frac{\partial f_{q^{\prime}}^{i}}{\partial x_{q}}$ we can choose a new basis and write ξ as a vector

$$
\hat{\xi}=[\xi]_{\mathcal{B}}=\left(\left(\frac{\partial f_{q}^{r}}{\partial x_{q^{\prime}}}\right)_{q \leq q^{\prime}},\left(\frac{\partial f_{q}^{i}}{\partial x_{q^{\prime}}}\right)_{q \leq q^{\prime}}\right) \in \mathbb{R}^{2 d_{m}}
$$

where $d_{m}=m(m+1) / 2$. Note also that because of Cauchy Riemann equations, $\operatorname{det} \xi$ is positive, and $\sqrt{\operatorname{det} \xi \xi^{T}}=\operatorname{det} \xi$. By the Kac-Rice formula, we have

$$
E_{\gamma}\left(Z_{f_{1}^{r} \cdots f_{m}^{r} f_{1}^{i} \cdots f_{m}^{i}}\right)=\int_{\mathbb{R}^{2 d_{m}}} \sqrt{\operatorname{det}\left(\xi \xi^{T}\right)} D_{\gamma}(0, \hat{\xi} ; z) d \hat{\xi}=\int_{\mathbb{R}^{2 d_{m}}} \operatorname{det} \xi D_{\gamma}(0, \hat{\xi} ; z) d \hat{\xi}
$$

where $D_{\gamma}(x, \hat{\xi} ; z)$ is the Gaussian density in $2 m+2 d_{m}$ variables given by

$$
D_{\gamma}(x, \hat{\xi} ; z)=\frac{1}{\pi^{m+d_{m}} \sqrt{\operatorname{det} \Delta_{\gamma}}} e^{-\frac{1}{2}\left\langle\Delta_{\gamma}^{-1}\binom{x}{\xi},\binom{x}{\xi}\right\rangle}
$$

and where Δ_{γ}, the covariance matrix of $\binom{x}{\hat{\xi}}$, is given in block form by
$\Delta_{\gamma}=\left(\begin{array}{cc}A_{\gamma} & B_{\gamma} \\ B_{\gamma}^{T} & C_{\gamma}\end{array}\right)$
$\left(\left(2 m+2 d_{m}\right) \times\left(2 m+2 d_{m}\right)\right.$ matrix $)$
$A_{\gamma}=\left(E_{\gamma}\left(x_{q} \bar{x}_{q^{\prime}}\right)\right)_{q, q^{\prime}}=A_{\gamma}^{T}$
$(2 m \times 2 m$ matrix $)$
$B_{\gamma}=\left(E_{\gamma}\left(x_{q} \overline{\hat{\xi}}_{j}\right)\right)_{q, j}$ $\left(2 m \times 2 d_{m}\right.$ matrix $)$
$C_{\gamma}=\left(E_{\gamma}\left(\hat{\xi}_{j} \overline{\hat{\xi}}_{j^{\prime}}\right)\right)_{j, j^{\prime}}=C_{\gamma}^{T}$ $\left(2 d_{m} \times 2 d_{m}\right.$ matrix $)$.
where $1 \leq q, q^{\prime} \leq 2 m, 1 \leq j, j^{\prime} \leq 2 d_{m}$. Note that we can also write A, B, and C in block form as

$$
\begin{aligned}
& A_{\gamma}=\left(\begin{array}{cc}
\left(E_{\gamma}\left(f_{q}^{r} f_{q^{\prime}}^{r}\right)\right)_{q, q^{\prime}} & \left(E_{\gamma}\left(f_{q}^{r} f_{q^{\prime}}^{i}\right)\right)_{q, q^{\prime}} \\
\left(E_{\gamma}\left(f_{q}^{i} f_{q^{\prime}}^{r}\right)\right)_{q, q^{\prime}} & \left(E_{\gamma}\left(f_{q}^{i} f_{q^{\prime}}^{i}\right)\right)_{q, q^{\prime}}
\end{array}\right) \\
& B_{\gamma}=\left(\begin{array}{cc}
\left(E_{\gamma}\left(f_{q}^{r} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right)\right)_{q, q^{\prime}, p^{\prime}} & \left(E_{\gamma}\left(f_{q}^{r} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)\right)_{q, q^{\prime}, p^{\prime}} \\
\left(E_{\gamma}\left(f_{q}^{i} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right)\right)_{q, q^{\prime}, p^{\prime}} & \left(E_{\gamma}\left(f_{q}^{i} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)\right)_{q, q^{\prime}, p^{\prime}}
\end{array}\right) \\
& C_{\gamma}=\left(\begin{array}{ll}
{\left[E_{\gamma}\left(\frac{\partial f_{q}^{r}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right)\right]_{q, p, q^{\prime}, p^{\prime}}} & {\left[E_{\gamma}\left(\frac{\partial f_{q}^{r}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)\right]_{q, p, q^{\prime}, p^{\prime}}} \\
{\left[E_{\gamma}\left(\frac{\partial f_{q}^{i}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right)\right]_{q, p, q^{\prime}, p^{\prime}}} & {\left[E_{\gamma}\left(\frac{\partial f_{q}^{i}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)\right]_{q, p, q^{\prime}, p^{\prime}}}
\end{array}\right)
\end{aligned}
$$

where $1 \leq q \leq p \leq m$, and $1 \leq q^{\prime} \leq p^{\prime} \leq m$.
Now, using the fact that for $D_{\gamma}(0, \hat{\xi} ; z)$ only the lower right block of Δ_{γ}^{-1} matters, we can write

$$
\begin{aligned}
D_{\gamma}(0, \hat{\xi} ; z) & =\frac{1}{\pi^{m+d_{m}} \sqrt{\operatorname{det} \Delta_{\gamma}}} \exp \left(-\frac{1}{2}\left\langle\Delta_{\gamma}^{-1}\binom{0}{\hat{\xi}},\binom{0}{\hat{\xi}}\right\rangle\right) \\
& =\frac{1}{\pi^{m} \sqrt{\operatorname{det} A_{\gamma}}} \frac{1}{\pi^{d_{m}} \sqrt{\operatorname{det} \Lambda_{\gamma}}} \exp \left(-\frac{1}{2}\left\langle\Lambda_{\gamma}^{-1} \hat{\xi}, \hat{\xi}\right\rangle\right)
\end{aligned}
$$

where Λ_{γ}^{-1} is the lower right block of Δ_{γ}^{-1} and is given by

$$
\Lambda_{\gamma}=C_{\gamma}-B_{\gamma}^{T} A_{\gamma}^{-1} B_{\gamma}
$$

We have also used the fact that

$$
\operatorname{det} \Delta_{\gamma}=\operatorname{det} A_{\gamma} \operatorname{det} \Lambda_{\gamma} .
$$

So now we have that

$$
\begin{aligned}
E_{\gamma}\left(C_{h}\right)=E_{\gamma}\left(Z_{f_{1} \cdots f_{m}}\right) & =\frac{1}{\pi^{m} \sqrt{\operatorname{det} A_{\gamma}}} \int_{\mathbb{R}^{d_{m}}}(\operatorname{det} \xi) \frac{1}{\pi^{d_{m}} \sqrt{\operatorname{det} \Lambda_{\gamma}}} \exp \left(-\frac{1}{2}\left\langle\Lambda_{\gamma}^{-1} \hat{\xi}, \hat{\xi}\right\rangle\right) d \hat{\xi} \\
& =\frac{1}{\pi^{m} \sqrt{\operatorname{det} A_{\gamma}}} E_{\Lambda_{\gamma}}(\operatorname{det} \xi),
\end{aligned}
$$

since $\operatorname{det} \xi \geq 0$. We now want to evaluate $E_{\Lambda_{\gamma}}(\operatorname{det} \xi)$ using the Wick formula, which states that if $X_{1}, \ldots, X_{2 m}$ are jointly Gaussian random variables, then

$$
E\left(\prod_{q=1}^{2 m} X_{q}\right)=\sum \prod_{q=1}^{m} E\left(X_{i_{q}} X_{j_{q}}\right)
$$

where the sum is over partition of $\{1, \ldots, 2 m\}$ into disjoint pairs $\left\{i_{q}, j_{q}\right\}$.
First we write

$$
\begin{aligned}
E_{\Lambda_{\gamma}}(\operatorname{det} \xi) & =E_{\Lambda_{\gamma}}\left(\sum_{\sigma \in S_{2 m}} \operatorname{sgn}(\sigma) \prod_{q=1}^{2 m} \xi_{q, \sigma(q)}\right)=\sum_{\sigma \in S_{2 m}} \operatorname{sgn}(\sigma) E_{\Lambda_{\gamma}}\left(\prod_{q=1}^{2 m} \xi_{q, \sigma(q)}\right) \\
& =\sum_{\sigma \in S_{2 m}} \operatorname{sgn}(\sigma) \sum \prod_{q=1}^{m} E_{\Lambda_{\gamma}}\left(\xi_{i_{q}, \sigma\left(i_{q}\right)} \xi_{j_{q}, \sigma\left(j_{q}\right)}\right)
\end{aligned}
$$

where σ is a permutation, and where the second sum is over partitions of $\{1, \ldots, 2 m\}$ into disjoint pairs $\left\{i_{q}, j_{q}\right\}$.

Note that terms of the form

$$
E_{\Lambda_{\gamma}}\left(\xi_{i_{q}, \sigma\left(i_{q}\right)} \xi_{j_{q}, \tau\left(j_{q}\right)}\right)
$$

are actually entries of Λ_{γ}. So we have written $E_{\Lambda_{\gamma}}(\operatorname{det} \xi)$ as a sum of products of entries in Λ_{γ}. More specifically, we have that $E_{\Lambda_{\gamma}}(\operatorname{det} \xi)=\phi\left(\Lambda_{\gamma}\right)$, where $\phi\left(\Lambda_{\gamma}\right)$ is a homogeneous polynomial in the entries of Λ_{γ}.

1. Two special cases. Suppose now that we have the measures

$$
\begin{aligned}
d \gamma_{c x} & =\frac{1}{\pi^{D_{N}}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}, D_{N}=\binom{N+m}{m} \\
d \gamma_{\text {real }} & =\delta_{S} \frac{1}{\pi^{D_{N}}} e^{-|c|^{2}} d c, c \in \mathbb{C}^{D_{N}}, D_{N}=\binom{N+m}{m}
\end{aligned}
$$

where δ_{S} is the delta function on $S \subset \mathbb{C}^{D_{N}}$, the set of points $c=a+i b \in \mathbb{C}^{D_{N}}$ where $b=0 \in \mathbb{R}^{D_{N}}$. Here $d \gamma_{c x}$ corresponds to the standard complex Gaussian coefficients case, where we are considering

$$
h_{m, N}(z)=\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} z^{J}
$$

where the c_{J} 's are standard complex Gaussian random variables, and $d \gamma_{\text {real }}$ corresponds to the standard real Gaussian coefficients case, where we have

$$
h_{m, N}(z)=\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} z^{J}=\sum_{|J|=0}^{N} a_{J}\binom{N}{J}^{1 / 2} z^{J}
$$

where $c_{J}=a_{j}+i 0$ is a standard real Gaussian random variable.
We now state three important lemmas.
Lemma 1.6. Let K be a compact set in $\mathbb{C}^{m} \backslash \mathbb{R}^{m}$. The following are true for all $q, q^{\prime}, p, p^{\prime}$ and for some $\lambda>0$:
(1) $E_{\gamma_{c x}}\left(f_{q} f_{q^{\prime}}\right)=0$
(2) $\frac{E_{\gamma_{\text {real }}}\left(f_{q} f_{q^{\prime}}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)$, uniformly on K
(3) $E_{\gamma_{c x}}\left(f_{q} \frac{\partial f_{q^{\prime}}}{\partial z_{p^{\prime}}}\right)=0$
(4) $\frac{E_{\gamma_{\text {real }}}\left(f_{q} \frac{\partial f_{q^{\prime}}}{\partial z_{p^{\prime}}}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)$, uniformly on K
(5) $E_{\gamma_{c x}}\left(\frac{\partial f_{q}}{\partial z_{p}} \frac{\partial f_{q^{\prime}}}{\partial z_{p^{\prime}}}\right)=0$
(6) $\frac{E_{\gamma_{\text {real }}}\left(\frac{\partial f_{q}}{\partial z_{p}} \frac{\partial f_{q^{\prime}}}{\partial z_{p^{\prime}}}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)$, uniformly on K

Proof. We prove just (1) and (2), the rest are proved similarly. For (1) we have

$$
\begin{aligned}
& E_{\gamma_{c x}}\left(f_{q} f_{q^{\prime}}\right) \\
& =E_{\gamma_{c x}}\left[\left(\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J}\right)\left(\sum_{|K|=0}^{N} c_{K}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q^{\prime}}} z^{K}\right)\right] \\
& =E_{\gamma_{c x}}\left(\sum_{|J|=0}^{N} \sum_{|K|=0}^{N} c_{J} c_{K}\binom{N}{J}^{1 / 2}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial z_{q^{\prime}}} z^{K}\right) \\
& =\sum_{|J|=0}^{N} \sum_{|K|=0}^{N} E_{\gamma_{c x}}\left(c_{J} c_{K}\right)\binom{N}{J}^{1 / 2}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial z_{q^{\prime}}} z^{K}=0
\end{aligned}
$$

since $E\left(c_{J} c_{K}\right)=0$ for all J, K. (Note that $E\left(c_{J} \overline{c_{K}}\right)=1$ when $J=K$, so $\left.E_{\gamma_{c x}}\left(f_{q} \bar{f}_{q^{\prime}}\right) \neq 0\right)$.
Similarly, for (2) we have

$$
\begin{aligned}
\frac{E_{\gamma_{\text {real }}}\left(f_{q} f_{q^{\prime}}\right)}{(1+z \cdot \bar{z})^{N}} & =\frac{1}{(1+z \cdot \bar{z})^{N}} \sum_{|J|=0}^{N} \sum_{|K|=0}^{N} E_{\gamma_{\text {real }}}\left(c_{J} c_{K}\right)\binom{N}{J}^{1 / 2}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial z_{q^{\prime}}} z^{K} \\
& =\frac{1}{(1+z \cdot \bar{z})^{N}} \sum_{|J|=0}^{N} \sum_{|K|=0}^{N} E_{\gamma_{\text {real }}}\left(a_{J} a_{K}\right)\binom{N}{J}^{1 / 2}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial z_{q^{\prime}}} z^{K} \\
& =\frac{1}{(1+z \cdot \bar{z})^{N}} \sum_{|J|=0}^{N}\binom{N}{J} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial z_{q^{\prime}}} z^{J}
\end{aligned}
$$

since $E_{\gamma_{\text {real }}}\left(a_{J} a_{K}\right)=1$, when $J=K$, and is zero otherwise. We can then write

$$
\begin{aligned}
\frac{E_{\gamma_{\text {real }}}\left(f_{q} f_{q^{\prime}}\right)}{(1+z \cdot \bar{z})^{N}} & =\frac{1}{(1+z \cdot \bar{z})^{N}} \sum_{|J|=0}^{N}\binom{N}{J} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial z_{q^{\prime}}} z^{J}=\left.\frac{1}{(1+z \cdot \bar{z})^{N}} \sum_{|J|=0}^{N}\binom{N}{J} \frac{\partial}{\partial z_{q}} z^{J} \frac{\partial}{\partial \tilde{z}_{q^{\prime}}} \tilde{z}^{J}\right|_{\tilde{z}=z} \\
& =\left.\frac{1}{(1+z \cdot \bar{z})^{N}} \frac{\partial}{\partial z_{q}} \frac{\partial}{\partial \tilde{z}_{q^{\prime}}} \sum_{|J|=0}^{N}\binom{N}{J}(z \tilde{z})^{J}\right|_{\tilde{z}=z}=\left.\frac{1}{(1+z \cdot \bar{z})^{N}} \frac{\partial}{\partial z_{q}} \frac{\partial}{\partial \tilde{z}_{q^{\prime}}}(1+z \cdot \tilde{z})^{N}\right|_{\tilde{z}=z} \\
& =\left.\frac{1}{(1+z \cdot \bar{z})^{N}} N(N-1) \tilde{z}_{q} z_{q^{\prime}}(1+z \cdot \tilde{z})^{N-2}\right|_{\tilde{z}=z}=N(N-1) z_{q} z_{q^{\prime}} \frac{(1+z \cdot z)^{N-2}}{(1+z \cdot \bar{z})^{N}} \\
& =\frac{N(N-1) z_{q} z_{q^{\prime}}}{(1+z \cdot \bar{z})^{2}}\left(\frac{1+z \cdot z}{1+z \cdot \bar{z}}\right)^{N-2}
\end{aligned}
$$

Since $|1+z \cdot z|<|1+z \cdot \bar{z}|=1+z \cdot \bar{z}$, for all $z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}$, we have that $\left|\frac{1+z \cdot z}{1+z \cdot \bar{z}}\right|<1$ which implies that $\left(\frac{1+z \cdot z}{1+z \cdot \bar{z}}\right)^{N-2}=O\left(e^{-\lambda N}\right), z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}$, and that

$$
\frac{E_{\gamma_{\text {real }}}\left(f_{q} f_{q^{\prime}}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right), \text { uniformly for all } z \in K \subset \mathbb{C}^{m} \backslash \mathbb{R}^{m}
$$

where K is compact.
Lemma 1.7. Let K be a compact set in $\mathbb{C}^{m} \backslash \mathbb{R}^{m}$. Using the results of the previous lemma, we have for all $q, q^{\prime}, p, p^{\prime}$:
(1) $E_{\gamma_{c x}}\left(f_{q}^{r} f_{q^{\prime}}^{i}\right)=0$
(2) $\frac{E_{\gamma_{\text {real }}}\left(f_{q}^{r} f_{q^{\prime}}^{i}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)$, uniformly on K
(3) $E_{\gamma_{c x}}\left(f_{q}^{r} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)=0$
(4) $\frac{E_{\gamma_{\text {real }}}\left(f_{q}^{r} \frac{\partial \frac{\partial q_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}}{}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)$, uniformly on K
(5) $E_{\gamma_{c x}}\left(\frac{\partial f_{q}^{r}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)=0$
(6) $\frac{E_{\gamma_{\text {real }}}\left(\frac{\partial f_{q}^{r}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)$, uniformly on K

Proof. We again prove just (1) and (2). Using $f_{q}^{r}=\frac{1}{2}\left(f_{q}+\bar{f}_{q}\right), f_{q}^{i}=\frac{1}{2 i}\left(f_{q}-\bar{f}_{q}\right)$, we can get that

$$
\begin{aligned}
E_{\gamma_{c x}}\left(f_{q}^{r} f_{q^{\prime}}^{i}\right) & =E_{\gamma_{c x}}\left(f_{q} f_{q^{\prime}}-f_{q} \bar{f}_{q^{\prime}}+\bar{f}_{q} f_{q^{\prime}}-\bar{f}_{q} \bar{f}_{q^{\prime}}\right)=0 \\
\frac{E_{\gamma_{\text {real }}}\left(f_{q}^{r} f_{q^{\prime}}^{i}\right)}{(1+z \cdot \bar{z})^{N}} & =\frac{E_{\gamma_{\text {real }}}\left(f_{q} f_{q^{\prime}}-f_{q} \bar{f}_{q^{\prime}}+\bar{f}_{q} f_{q^{\prime}}-\bar{f}_{q} \bar{f}_{q^{\prime}}\right.}{(1+z \cdot \bar{z})^{N}}=O\left(e^{-\lambda N}\right)
\end{aligned}
$$

for all $z \in \mathbb{C}^{m} \backslash \mathbb{R}^{m}$. Statements (3) through (6) could be proved similarly, noting that f_{q} is holomorphic so that $\frac{\partial f_{q}}{\partial z_{p}}=\frac{\partial f_{q}}{\partial x_{p}}$.

Lemma 1.8. We have for all $q, q^{\prime}, p, p^{\prime}$:
(1) $E_{\gamma_{c x}}\left(f_{q} \bar{f}_{q^{\prime}}\right)=E_{\gamma_{\text {real }}}\left(f_{q} \bar{f}_{q^{\prime}}\right)$
(2) $E_{\gamma_{c x}}\left(f_{q} \frac{\overline{\partial f_{q^{\prime}}}}{\partial z_{p^{\prime}}}\right)=E_{\gamma_{\text {real }}}\left(f_{q} \frac{\overline{\partial f_{q^{\prime}}}}{\partial z_{p^{\prime}}}\right)$
(3) $E_{\gamma_{c x}}\left(\frac{\partial f_{q}}{\partial z_{p}} \frac{\overline{\partial f_{q^{\prime}}}}{\partial z_{p^{\prime}}}\right)=E_{\gamma_{\text {real }}}\left(\frac{\partial f_{q}}{\partial z_{p}} \frac{\overline{\partial f_{q^{\prime}}}}{\partial z_{p^{\prime}}}\right)$

Proof. We prove (1), and (2) and (3) are proved similarly. We have

$$
\begin{aligned}
& E_{\gamma_{c x}}\left(f_{q} \bar{f}_{q^{\prime}}\right) \\
& =E_{\gamma_{c x}}\left[\left(\sum_{|J|=0}^{N} c_{J}\binom{N}{J}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J}\right)\left(\overline{\sum_{|K|=0}^{N} c_{K}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q^{\prime}}} z^{K}}\right)\right] \\
& =\sum_{|J|=0}^{N} \sum_{|K|=0}^{N} E_{\gamma_{c x}}\left(c_{J} \overline{c_{K}}\right)\binom{N}{J}^{1 / 2}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J} \overline{\frac{\partial}{\partial z_{q^{\prime}}} z^{K}} \\
& =\sum_{|J|=0}^{N}\binom{N}{J} \frac{\partial}{\partial z_{q}} z^{J} \overline{\frac{\partial}{\partial z_{q^{\prime}}} z^{J}}
\end{aligned}
$$

since $E_{\gamma_{c x}}\left(c_{J} \overline{c_{K}}\right)=1$, when $J=K$, and is zero otherwise. Likewise, since $E_{\gamma_{r e a l}}\left(c_{J} \overline{c_{K}}\right)=$ $E_{\gamma_{\text {real }}}\left(a_{J} \overline{a_{K}}\right)=E_{\gamma_{\text {real }}}\left(a_{J} a_{K}\right)$, we have

$$
\begin{aligned}
E_{\gamma_{\text {real }}}\left(f_{q} \bar{f}_{q^{\prime}}\right) & =\sum_{|J|=0}^{N} \sum_{|K|=0}^{N} E_{\gamma_{\text {real }}}\left(c_{J} \overline{c_{K}}\right)\binom{N}{J}^{1 / 2}\binom{N}{K}^{1 / 2} \frac{\partial}{\partial z_{q}} z^{J} \bar{\partial} \overline{\partial z_{q^{\prime}}} z^{K} \\
& =\sum_{|J|=0}^{N}\binom{N}{J} \frac{\partial}{\partial z_{q}} z^{J} \overline{\frac{\partial}{\partial z_{q^{\prime}}} z^{J}}=E_{\gamma_{c x}}\left(f_{q} \bar{f}_{q^{\prime}}\right)
\end{aligned}
$$

Using these 3 lemmas, we can write A, B, C and therefore Λ in more detail. We have

$$
\begin{aligned}
& \frac{A_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}=\left(\begin{array}{cc}
\left(\frac{E_{\gamma_{c x}}\left(f_{q}^{r} f_{q^{\prime}}^{r}\right)}{(1+z \cdot \bar{z})^{N}}\right)_{q, q^{\prime}} & 0 \\
0 & \left(\frac{E_{\gamma_{c x}}\left(f_{q}^{i} f_{q^{\prime}}^{i}\right.}{(1+z \cdot \bar{z})^{N}}\right)_{q, q^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right) \\
& \frac{A_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\left(\begin{array}{cc}
\left(\frac{E_{\gamma_{\text {real }}}\left(f_{q}^{r} f_{q^{\prime}}^{r}\right)}{(1+z \cdot \bar{z})^{N}}\right)_{q, q^{\prime}} & O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) & \left(\frac{E_{\gamma_{\text {real }}}\left(f_{q}^{i} f_{q^{\prime}}^{i}\right.}{(1+z \cdot \bar{z})^{N}}\right)_{q, q^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
A & O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) & -A
\end{array}\right)
\end{aligned}
$$

so that we get

$$
\frac{A_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\frac{A_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}+O\left(e^{-\lambda N}\right), \text { uniformly on } K .
$$

Likewise, we have

$$
\begin{aligned}
& \frac{B_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}=\left(\begin{array}{cc}
\left(\frac{E_{\gamma_{c x}}\left(f_{q}^{r} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right)}{(1+z \cdot \bar{z})^{N}}\right)_{q, q^{\prime}, p^{\prime}} & 0 \\
0 & \left(\frac{E_{\gamma_{c x}\left(f_{q}\left(f_{q} \frac{\partial f_{q^{\prime}}}{\partial x_{p^{\prime}}}\right)\right.}^{(1+z \cdot \bar{z})^{N}}}{}\right)_{q, q^{\prime}, p^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right) \\
& \frac{B_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\left(\begin{array}{cc}
\left(\frac{E_{\gamma_{\text {real }}}\left(f_{q}^{r} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right.}{(1+z \cdot \bar{z})^{N}}\right)_{q, q^{\prime}, p^{\prime}} & O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right)
\end{array}\binom{B}{(1+z \cdot \bar{z})^{N}}_{q, q^{\prime}, p^{\prime}}\right)=\left(\begin{array}{cc}
B\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) & -B
\end{array}\right)
\end{aligned}
$$

so that we get

$$
\frac{B_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\frac{B_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}+O\left(e^{-\lambda N}\right) \text {, uniformly on } K .
$$

and

$$
\begin{aligned}
& \frac{C_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}=\left(\begin{array}{cc}
\left(\frac{E_{\gamma_{c x}}\left(\frac{\partial f_{q}^{r}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{r}}{\partial x_{p^{\prime}}}\right)}{(1+z \cdot \bar{z})^{N}}\right)_{q, p, q^{\prime}, p^{\prime}} & 0 \\
0
\end{array}\left(\begin{array}{c}
\left(\frac{E_{\gamma_{c x}}\left(\frac{\partial f_{q}^{i}}{\partial x_{p}} \frac{\partial f_{q^{\prime}}^{i}}{\partial x_{p^{\prime}}}\right)}{(1+z \cdot \bar{z})^{N}}\right)_{q_{q, p, q^{\prime}, p^{\prime}}}
\end{array}\right)=\left(\begin{array}{cc}
C & 0 \\
0 & -C
\end{array}\right)\right. \\
& \frac{C_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\left(\begin{array}{cc}
\left(\frac{E_{\gamma_{\text {real }}}\left(\frac{\partial f_{q}^{r}}{\partial x_{p}}\right.}{(1+z \cdot \bar{z})^{r}} \frac{\partial q_{p^{\prime}}^{r}}{\partial x^{\prime}}\right)
\end{array}\right)_{q, p, q^{\prime}, p^{\prime}} \quad O\left(e^{-\lambda N}\right),\left(\begin{array}{cc}
C & O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) & -C
\end{array}\right)
\end{aligned}
$$

so that we get

$$
\frac{C_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\frac{C_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}+O\left(e^{-\lambda N}\right) \text {, uniformly on } K .
$$

Finally, using $\Lambda_{\gamma}=C_{\gamma}-B_{\gamma}^{T} A_{\gamma}^{-1} B_{\gamma}$, we have

$$
\begin{aligned}
\frac{\Lambda_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}} & =\left(\begin{array}{cc}
\frac{C_{\gamma_{c x}}-B_{\gamma_{c x}}^{T} A_{\gamma_{c x}}^{1} B_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}} & 0 \\
0 & -\frac{\left(C_{\gamma_{c x}}-B_{\gamma_{c x}}^{T} A_{\gamma_{c x}}^{-1} B_{\gamma_{c x}}\right)}{(1+z \cdot \bar{z})^{N}}
\end{array}\right)=\left(\begin{array}{cc}
\Lambda & 0 \\
0 & -\Lambda
\end{array}\right) \\
\frac{\Lambda_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}} & =\left(\begin{array}{cc}
\frac{C_{\gamma_{r e a l}}-B_{\gamma_{c x} A}^{T}-\gamma_{\text {real }}^{1} B_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}+O\left(e^{-\lambda N}\right) & O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) & -\frac{\left(C_{\gamma_{c x}}-B_{\gamma_{c x}}^{T} A_{\gamma_{\text {real }}}^{-1} B_{\left.\gamma_{c x}\right)}\right.}{\left(1+z \cdot \overline{)^{N}}\right.}+O\left(e^{-\lambda N}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\Lambda+O\left(e^{-\lambda N}\right) & O\left(e^{-\lambda N}\right) \\
O\left(e^{-\lambda N}\right) & -\Lambda+O\left(e^{-\lambda N}\right)
\end{array}\right)
\end{aligned}
$$

so that we get

$$
\frac{\Lambda_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{N}}=\frac{\Lambda_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{N}}+O\left(e^{-\lambda N}\right), \text { uniformly on } K .
$$

Note that each term in $E_{\Lambda_{\gamma_{c x}}}(\operatorname{det} \xi)$ has m factors each of which is an element of $\Lambda_{\gamma_{c x}}$, and likewise for $E_{\Lambda_{\gamma_{\text {real }}}}(\operatorname{det} \xi)$. This gives

$$
\frac{E_{\lambda_{\gamma_{\text {real }}}}(\operatorname{det} \xi)}{(1+z \cdot \bar{z})^{N m}}=\frac{E_{\Lambda_{\gamma_{c x}}}(\operatorname{det} \xi)}{(1+z \cdot \bar{z})^{N m}}+O\left(e^{-\lambda N}\right), \text { uniformly on } K .
$$

Also note that we have

$$
\frac{\operatorname{det} A_{\gamma_{\text {real }}}}{(1+z \cdot \bar{z})^{2 N m}}=\frac{\operatorname{det} A_{\gamma_{c x}}}{(1+z \cdot \bar{z})^{2 N m}}+O\left(e^{-\lambda N}\right), \text { uniformly on } K .
$$

This means that we have

$$
\begin{aligned}
E_{\gamma_{\text {real }}}\left(Z_{f_{1} \cdots f_{m}}\right) & =\frac{1}{\pi^{m}} \frac{E_{\Lambda_{\gamma_{\text {real }}}}(\operatorname{det} \xi)}{\sqrt{\operatorname{det} A_{\gamma_{\text {real }}}}}=\frac{1}{\pi^{m}} \frac{1}{\sqrt{\frac{\operatorname{det} A_{\gamma_{\text {real }}}^{(1+z \cdot \bar{z})^{2 N m}}}{}} \frac{E_{\Lambda_{\gamma_{\text {real }}}}(\operatorname{det} \xi)}{(1+z \cdot \bar{z})^{N m}}} \\
& =\frac{1}{\pi^{m}} \frac{1}{\sqrt{\frac{\operatorname{det} A_{\gamma_{c x}}}{\left(1+z \cdot \overline{)^{2 N m}}\right.}+O\left(e^{-\lambda N}\right)}}\left(\frac{E_{\Lambda_{\gamma_{c x}}}(\operatorname{det} \xi)}{(1+z \cdot \bar{z})^{N m}}+O\left(e^{-\lambda N}\right)\right) \\
& =\frac{1}{\pi^{m}} \frac{1}{\sqrt{\frac{\operatorname{det} A_{\gamma c x}}{\left(1+z \cdot \overline{)^{2 N m}}\right.}} \frac{E_{\Lambda_{\gamma_{c x}}}(\operatorname{det} \xi)}{(1+z \cdot \bar{z})^{N m}}+O\left(e^{-\lambda N}\right)} \\
& =\frac{1}{\pi^{m}} \frac{E_{\Lambda_{\gamma_{c x}}}(\operatorname{det} \xi)}{\sqrt{\operatorname{det} A_{\gamma_{c x}}}+O\left(e^{-\lambda N}\right)} \\
& =E_{\gamma_{c x}}\left(Z_{f_{1} \cdots f_{m}}\right)+O\left(e^{-\lambda N}\right), \text { uniformly on } K .
\end{aligned}
$$

References

[BBL92] E. Bogomolny, O. Bohigas, and P. Leboeuf. Distribution of roots of random polynomials. Physical Review Letters, 68(18):2726-2729, 1992.
[BBL96] E. Bogomolny, O. Bohigas, and P. Leboeuf. Quantum chaotic dynamics and random polynomials. Journal of Statistical Physics, 85(5):639-679, 1996.
[BSZ00a] P. Bleher, B. Shiffman, and S. Zelditch. Poincaré-Lelong Approach to Universality and Scaling of Correlations Between Zeros. Communications in Mathematical Physics, 208(3):771-785, 2000.
[BSZ00b] P. Bleher, B. Shiffman, and S. Zelditch. Universality and scaling of correlations between zeros on complex manifolds. Inventiones Mathematicae, 142(2):351-395, 2000.
[DSZ04] M.R. Douglas, B. Shiffman, and S. Zelditch. Critical Points and Supersymmetric Vacua I. Communications in Mathematical Physics, 252(1):325-358, 2004.
[EK95] A. Edelman and E. Kostlan. How many zeros of a random polynomial are real? American Mathematical Society, 32(1):1-37, 1995.
[Han96] JH Hannay. Chaotic analytic zero points: exact statistics for those of a random spin state. J. Phys. A: Math. Gen, 29(5):L101-L105, 1996.
[IZ97] I. Ibragimov and O. Zeitouni. On Roots of Random Polynomials. Transactions of the American Mathematical Society, 349(6):2427-2441, 1997.
[Kac48] M. Kac. On the Average Number of Real Roots of a Random Algebraic Equation (II). Proceedings of the London Mathematical Society, 2(6):401, 1948.
[Mas75] NB Maslova. On the Distribution of the Number of Real Roots of Random Polynomials. Theory of Probability and its Applications, 19:461, 1975.
[Pro96] T. Prosen. Exact statistics of complex zeros for Gaussian random polynomials with real coefficients. Journal of Physics A: Mathematical and General, 29(15):4417-4423, 1996.
[Ric54] SO Rice. Mathematical analysis of random noise. Selected Papers on Noise and Stochastic Processes, pages 133-294, 1954.
[SG02] R. Schober and WH Gerstacker. The zeros of random polynomials: further results and applications. Communications, IEEE Transactions on, 50(6):892-896, 2002.
[ST04] M. Sodin and B. Tsirelson. Random complex zeros, I. Asymptotic normality. Israel J. Math, 144:125-149, 2004.
[SV95] L.A. Shepp and R.J. Vanderbei. The Complex Zeros of Random Polynomials. Transactions of the American Mathematical Society, 347(11):4365-4384, 1995.
[SZ99] B. Shiffman and S. Zelditch. Distribution of Zeros of Random and Quantum Chaotic Sections of Positive Line Bundles. Communications in Mathematical Physics, 200(3):661-683, 1999.
[SZ06a] B. Shiffman and S. Zelditch. Number variance of random zeros. Arxiv preprint math.CV/0512652, 2006.
[SZ06b] B. Shiffman and S. Zelditch. Number variance of random zeros on complex manifolds. Arxiv preprint math.CV/0608743, 2006.
[SZ07] B. Shiffman and S. Zelditch. Number variance of random zeros on complex manifolds, II: smooth statistics. Arxiv preprint math.CV/07111840, 2007.

