## 302 HW #3

26

- 4. First divide both sides by (2xy+2). We now have M(x,y)=y and N(x,y)=x. Since  $M_y=N_x=0$ , the resulting equation is *exact*. Integrating M with respect to x, while holding y constant, results in  $\psi(x,y)=xy+h(y)$ . Differentiating with respect to y,  $\psi_y=x+h'(y)$ . Setting  $\psi_y=N$ , we find that h'(y)=0, and hence h(y)=0 is acceptable. Therefore the solution is defined *implicitly* as xy=c. Note that if xy+1=0, the equation is trivially satisfied.
  - 5. Writing the equation in the form M(x,y) dx + N(x,y) dy = 0 gives M(x,y) = ax + by and N(x,y) = bx + cy. Now  $M_y = b = N_x$  and the equation is exact. Integrating M(x,y) with respect to x yields  $\psi(x,y) = (a/2)x^2 + bxy + h(y)$ . Differentiating  $\psi$  with respect to y (x constant) and setting  $\psi_y(x,y) = N(x,y)$  we find that h'(y) = cy and thus  $h(y) = (c/2)y^2$ . Hence the solution is given by  $(a/2)x^2 + bxy + (c/2)y^2 = k$ .
  - 6. Write the given equation as (ax-by)dx+(bx-cy)dy. Now M(x,y)=ax-by and N(x,y)=bx-cy. Since  $M_y\neq N_x$ , the differential equation is *not* exact.
  - 7.  $M_y(x,y) = e^x \cos y 2 \sin x = N_x(x,y)$  and thus the D.E. is exact. Integrating M(x,y) with respect to x gives  $\psi(x,y) = e^x \sin y + 2y \cos x + h(y)$ . Finding  $\psi_y(x,y)$  from this and setting that equal to N(x,y) yields h'(y) = 0 and thus h(y) is a constant. Hence an implicit solution of the D.E. is  $e^x \sin y + 2y \cos x = c$ . The solution y = 0 is also valid since it satisfies the D.E. for all x.
  - 8.  $M(x,y)=e^x\sin y+3y$  and  $N(x,y)=-3x+e^x\sin y$ . Note that  $M_y\neq N_x$ , and hence the differential equation is *not* exact.
    - 9. If you try to find  $\psi(x,y)$  by integrating M(x,y) with respect to x you must integrate by parts. Instead find  $\psi(x,y)$  by integrating N(x,y) with respect to y to obtain  $\psi(x,y) = e^{xy}\cos 2x 3y + g(x)$ . Now find g(x) by differentiating  $\psi(x,y)$  with respect to x and set that equal to M(x,y), which yields g'(x) = 2x or  $g(x) = x^2$ .

- 25. The equation is not exact so we must attempt to find an integrating factor. Since  $\frac{1}{N}\left(M_y-N_x\right) = \frac{3x^2+2x+3y^2-2x}{x^2+y^2} = 3$  is a function of x alone there is an integrating factor depending only on x, as shown in Eq.(26). Then  $d\mu/dx = 3\mu$ , and the integrating factor is  $\mu(x) = e^{3x}$ . Hence the equation can be solved as in Example 4.
- 26. An integrating factor can be found which is a function of x only, yielding  $\mu(x) = e^{-x}$ . Alternatively, you might recognize that  $y' y = e^{2x} 1$  is a linear first order equation which can be solved as in Section 2.1.
- 27. Using the results of Problem 23, it can be shown that  $\mu(y) = y$  is an integrating factor. Thus multiplying the D.E. by y gives  $ydx + (x y\sin y)dy = 0$ , which can be identified as an exact equation. Alternatively, one can rewrite the last equation as  $(ydx + xdy) y\sin y dy = 0$ . The first term is d(xy) and the last can be integrated by parts. Thus we have  $xy + y\cos y \sin y = c$ .
- 29. Multiplying by siny we obtain  $e^x \sin y \, dx + e^x \cos y \, dy + 2y \, dy = 0$ , and the first two terms are just  $d(e^x \sin y)$ . Thus,  $e^x \sin y + y^2 = c$ .
- 28. The equation is not exact, since  $N_x M_y = 2y 1$ . However,  $(N_x M_y)/M = (2y-1)/y$  is a function of y alone. Hence there exists  $\mu = \mu(y)$ , which is a solution of the differential equation  $\mu' = (2-1/y)\mu$ . The latter equation is separable, with  $d\mu/\mu = 2-1/y$ . One solution is  $\mu(y) = exp(2y-\ln y) = e^{2y}/y$ . Now rewrite the given ODE as  $e^{2y}dx + (2xe^{2y} 1/y)dy = 0$ . This equation is exact, and it is easy to see that  $\psi(x,y) = xe^{2y} \ln y$ . Therefore the solution of the given equation is defined implicitly by  $xe^{2y} \ln y = c$ .

28

3. The approximating functions are defined recursively by  $\phi_{n+1}(t)=\int_0^t 2[\phi_n(s)+1]ds$ . Setting  $\phi_0(t)=0$ ,  $\phi_1(t)=2t$ . Continuing,  $\phi_2(t)=2t^2+2t$ ,  $\phi_3(t)=\frac{4}{3}t^3+2t^2+2t$ ,  $\phi_4(t)=\frac{2}{3}t^4+\frac{4}{3}t^3+2t^2+2t$ ,  $\cdots$ . Given convergence, set

$$\phi(t) = \phi_1(t) + \sum_{k=1}^{\infty} [\phi_{k+1}(t) - \phi_k(t)]$$
$$= 2t + \sum_{k=2}^{\infty} \frac{a_k}{k!} t^k.$$

Comparing coefficients,  $a_3/3!=4/3$ ,  $a_4/4!=2/3$ ,  $\cdots$ . It follows that  $a_3=8$ ,  $a_4=16$ ,

and so on. We find that in general, that  $a_k = 2^k$ . Hence

$$\phi(t) = \sum_{k=1}^{\infty} \frac{2^k}{k!} t^k$$
$$= e^{2t} - 1.$$





6. The approximating functions are defined recursively by

$$\phi_{n+1}(t) = \int_0^t [\phi_n(s) + 1 - s] ds$$
.

Setting  $\phi_0(t)=0$ ,  $\phi_1(t)=t-t^2/2$ ,  $\phi_2(t)=t-t^3/6$ ,  $\phi_3(t)=t-t^4/24$ ,  $\phi_4(t)=t-t^5/120$ ,  $\cdots$ . Given convergence, set

$$\phi(t) = \phi_1(t) + \sum_{k=1}^{\infty} [\phi_{k+1}(t) - \phi_k(t)]$$

$$= t - t^2/2 + [t^2/2 - t^3/6] + [t^3/6 - t^4/24] + \cdots$$

$$= t + 0 + 0 + \cdots$$

Note that the terms can be rearranged, as long as the series converges uniformly.





- 18. An algebraic equation with roots -2 and -1/2 is  $2r^2 + 5r + 2 = 0$ . This is the characteristic equation for the ODE 2y'' + 5y' + 2y = 0.
- 22. The characteristic equation is  $4r^2-1=0$ , with roots  $r=\pm 1/2$ . Hence the general solution is  $y=c_1e^{-t/2}+c_2e^{t/2}$ , with derivative  $y'=-c_1e^{-t/2}/2+c_2e^{t/2}/2$ . Invoking the initial conditions, we require that  $c_1+c_2=2$  and  $-c_1+c_2=\beta$ . The specific solution is  $y(t)=(1-\beta)e^{-t/2}+(1+\beta)e^{t/2}$ . Based on the form of the solution, it is evident that as  $t\to\infty$ ,  $y(t)\to 0$  as long as  $\beta=-1$ .

3.2.

2. 
$$W(\cos t, \sin t) = \begin{vmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{vmatrix} = \cos^2 t + \sin^2 t = 1.$$

3.

$$W(e^{-2t}, t e^{-2t}) = \begin{vmatrix} e^{-2t} & t e^{-2t} \\ -2e^{-2t} & (1-2t)e^{-2t} \end{vmatrix} = e^{-4t}.$$

- 7. Write the equation as y'' + (3/t)y' = 1. p(t) = 3/t is continuous for all t > 0. Since  $t_0 > 0$ , the IVP has a unique solution for all t > 0.
  - 21. From Section 3.1,  $e^t$  and  $e^{-2t}$  are two solutions, and since  $W(e^t, e^{-2t}) \neq 0$  they form a fundamental set of solutions. To find the fundamental set specified by Theorem 3.2.5, let  $y(t) = c_1 e^t + c_2 e^{-2t}$ , where  $c_1$  and  $c_2$  satisfy  $c_1 + c_2 = 1$  and  $c_1 2c_2 = 0$  for  $y_1$ . Solving, we find  $y_1 = \frac{2}{3}e^t + \frac{1}{3}e^{-2t}$ . Likewise,  $c_1$  and  $c_2$  satisfy  $c_1 + c_2 = 0$  and  $c_1 2c_2 = 1$  for  $y_2$ , so that  $y_2 = \frac{1}{3}e^t \frac{1}{3}e^{-2t}$ .
    - 22. The general solution is  $y=c_1e^{-3t}+c_2e^{-t}$ .  $W(e^{-3t},e^{-t})=2e^{-4t}$ , and hence the exponentials form a fundamental set of solutions. On the other hand, the fundamental solutions must also satisfy the conditions  $y_1(1)=1$ ,  $y_1'(1)=0$ ;  $y_2(1)=0$ ,  $y_2'(1)=1$ . For  $y_1$ , the initial conditions require  $c_1+c_2=e$ ,  $-3c_1-c_2=0$ . The coefficients are  $c_1=-e^3/2$ ,  $c_2=3e/2$ . For the solution,  $y_2$ , the initial conditions require  $c_1+c_2=0$ ,  $-3c_1-c_2=e$ . The coefficients are  $c_1=-e^3/2$ ,  $c_2=e/2$ . Hence the fundamental solutions are  $\left\{y_1=-\frac{1}{2}e^{-3(t-1)}+\frac{3}{2}e^{-(t-1)}\right\}$ ,  $y_2=-\frac{1}{2}e^{-3(t-1)}+\frac{1}{2}e^{-(t-1)}\right\}$ .