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4. First divide both sides by (2xy + 2). We now have M(z,y) = y and N(z,y) = z.
Since M, = N, = 0, the resulting equation is exact. Integrating M with respect to z,
while holding y constant, results in ¢(z, y) = 2y + h(y) . Differentiating with respect
toy, ¥, =z +h'(y). Setting ¢, = N, we find that A'(y) = 0, and hence h(y) = 0
is acceptable. Therefore the solution is defined implicitly as zy = c. Note that if

zy + 1 = 0, the equation is trivially satisfied.

5. Writing the equation in the form M(x,y)dx + N(x,y)dy = 0
gives M(x,y) = ax + by and N(x,y) = bx + cy. Now
M, = b = N, and the equation is exact. Integrating

M(x,y) with respect to x yields y(x,y) = (a/2)x2 + bxy +
h(y). Differentiating y with respect to y (x constant)
and setting u@(x,y) = N(x,y) we find that h’(y) = cy and

thus h(y) = (c/2)y2. Hence the solution is given by
(a/2)x” + bxy + (c/2)y® = k. |

6. Write the given equation as (az — by)dz + (bx — cy)dy. Now M(z, y) = az — by
and N(z,y) = bz — cy. Since M, # N, , the differential equation is nor exact.

7. My(x,y) = e*cosy - 2sinx = N.(x,y) and thus the D.E. is
exact. Integrating M(x,y) with respect to x gives
y(x,y) = e’siny + 2ycosx + h(y). Finding y,(x,y) from

this and setting that equal to N(x,y) yields h'(y) = 0
and thus h(y) is a constant. Hence an implicit solution
of the D.E. is e*siny + 2ycosx = c¢. The solution y = 0
is also valid since it satisfies the D.E. for all x.

8. M(z,y) = e*siny + 3y and N(z,y) = — 3z + e®siny. Note that M, # N,, and
hence the differential equation is not exact.

9. If you try to find V(x,y) by integrating M(x,y) with
respect to x you must integrate by parts. Instead find

V(x,y) by integrating N(x,y) with respect to Yy to obtain

é V(x,y) = eos2x - 3y + g(x). Now find g(x) by

differentiating V(x,y) with respect to x and set that
equal to M(x,y), which vields g’'(x) = 2x or g(x) = x°.

SRR



28

25. The equation is not exact so we must attempt to find an

2 2
, . } 1 3x" + 2x + 3y" - 2x
integrating factor. Since — (M-N,) = =
N

2 2
X +Yy

is a function of x alone there is an integrating factor
depending only on x, as shown in Eq. (26). Then du/dx =

34, and the integrating factor is H(x) = e Hence the

equation can be solved as in Example 4.

26. An integrating factor can be found which is a function

of x only, yielding p(x) = e * Alternatively, you might

recognize that y’ - y = e - 1 is a linear first order

equation which can be solved as in Section 2.1. |

27. Using the results of Problem 23, it can be shown that
p(y) = y is an integrating factor. Thus multiplying the
D.E. by y gives ydx + (x - ysiny)dy = 0, which can be
identified as an exact equation. Alternatively, one can
rewrite the last equation as (ydx + xdy) - ysiny dy = 0.
The first term is d(xy) and the last can be integrated by
parts. Thus we have xy + ycosy - siny = c.

e”siny dx + excosy dy + 2y dy = 0, and the first two
terms are just d(e*siny). Thus, e*siny + y2 = C.

§
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29. Multiplying by siny we obtain g
§

[

i

28. The equation is not exact, since N, — M, = 2y — 1. However, (N, = M)/ M =
= (2y — 1) /y is a function of y alone. Hence there exists © = p(y) , which is a solution
of the differential equation i’ = (2 — 1/y)u. The latter equation is separable, with
du/w=2—1/y. One solution is u(y) = exp(2y — iny) = e®/y. Now rewrite the
given ODE as e*dz + (2z % — 1/y)dy = 0. This equation is exact, and it is easy to
see that (z,y) = ze® — Iny. Therefore the solution of the given equation is defined
implicitly by ze® — Iny = ¢. :

3. The approximating functions are defined recursively by ¢, (t) = [12[¢.(s) + 1]ds.
Setting ¢(t) = 0, ¢,(t) = 2¢. Continuing, ¢,() = 2¢% + 2¢, ¢y () = $88 + 262 + 2¢,
$a(t) = ¢4 + S8+ 22 4+ 2, .... Given convergence, set

1) = 6:8) + > [bnlt) - he(t)
k=1



Comparing coefficients, a§/3! =4/3,a4/4! =2/3,---. It follows thataz; = 8,
ay = 16,
and so on. We find that in general, that a;, = 2. Hence
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6. The approximating functions are defined recursively by

¢n+1(t) = /U‘t[¢n(3) +1- s]ds .

Setting ¢o(t) = 0, ¢1(t) =t —t7/2, ¢(t) =t — 13/6, @s(t) = t — t4/24, 4,(t) =
=t —1°/120, ---. Given convergence, set

88) = hu(t) + > Traa(t) - (8]
k=1

=t—t*/24 [t*/2—£3/6] + [t*/6 — t*/24] + .-
=t+04+0+--.

Note that the terms can be rearranged, as long as the series converges uniformly.

airor
2-
1.6 1.84
1.44 1.6
1.2; 1.4
] 1.2
1-
g: /—\ 0.8
67 0.53
0.43 o 0.44 / ‘
0.29 # 0.24 _4--""/ )_',,_/‘/
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18. An algebraic equation with roots — 2 and — 1/2is 2r? + 57 + 2 = 0. This is the
characteristic equation for the ODE 2y” + 5y’ + 2 y=20.

22. The characteristic equation is 412 — 1 = 0, with roots r = +1/2. Hence the
general solution is y = c,e™*/2 + czet/?, with derivative y' = — C1e72/2 4 cpet’?/2,,
Invoking the initial conditions, we require that ¢, -+ a=2and —¢ +c=4.

The specific solution is y(t) = (1 — B)e~#/2 + (1 + B)e*’2. Based on the form of the
solution, it is evident that as t— oo , y(t)=0 aslongas B= —1.

"2

' cost sint
2. W(cost,sint) = = coszt + sinzt = 1.

-sint cost

esem————————"

e-Zt te-—?t —4t

W e—-2t’<t e—2t — v —
( )=|_ 2e7® (1-2p)e~%|~ ¢ o

7: Write the equation as y” + B/ =1. p@t) = 3/t is continuous forall ¢ > ( |
Since ¢y > 0, the IVP has a unique solution for all ¢ > 0.

21. From Section 3.1, et and e %t are two solutions, and

since W(et,e—Zt) # 0 they form a fundamental set of
solutions. To find the fundamental set specified by

Theorem 3.2.5, let y(t) = clet + cze'Zt, where c; and c,

satisfy

€y * ¢ =1and ¢y - 2¢, = 0 for y;. Solving, we find
_ 2 ¢ 1 ot . . .

yl--ge +-§e . Likewise, ¢, and c, satisfy

€1 + ¢ =0 and ¢; - 2¢c; = 1 for Y;, so that

1 ¢ 1 ¢
= —e - —e .
Y2 7 3 3

22. The general solution is y = c;e™% + ce™. W (e, e™) = 2%, and hence

the exponentials form a fundamental set of solutions. On the other hand, the fundamental
solutions must also satisfy the conditions y;(1) = 1, y/(1) = 0; 3,(1) = 0, Y (1)=1.
For y, , the initial conditions require ¢; +¢; = e, — 3¢; — ¢, = 0. The coefficients are

c = — e3/2 , ¢ = 3e/2. For the solution, Y2 » the initial conditions require ¢; +c; = 0
, — 3¢ — ¢ = e. The coefficients are ¢, = — &3 /2, ¢, = e/2. Hence the fundamental
solutions are {y; = — je 301 4 Je=C-1) o, = _ Lo=8¢-1) 4 ze -1,



