ELLIPSES

Problem: Find the points on the locus
\[Q(x, y) = 865x^2 - 294xy + 585y^2 = 1450 \]
closest to, and farthest from, the origin.

Answer.

This is a Lagrange multiplier problem: we want to extremize \(f(x, y) = x^2 + y^2 \) subject to the constraint \(Q(x, y) = 1450 \). To do this we look for points on the locus where the gradient of \(f + \lambda Q \) is zero: this amounts to solving the system
\[
\nabla (f + \lambda Q) = (2x + \lambda(1730x - 294y), 2y + \lambda(-294x + 1070y)) = (0, 0)
\]
(together with the constraint equation: that gives us three equations in three unknowns \((x, y, \lambda)\). But if we stare at this for a minute, we start to suspect that it might be easier to deal algebraically with the related problem, of finding the maximum of the function \(Q \) on the unit circle \(f(x, y) = 1 \): that question requires us to find the points where the gradient of \(Q + \lambda f \) vanishes which is pretty much what we would get if we multiplied our original problem by \(\lambda^{-1} \). After eliminating superfluous factors of two, the new problem gives us the system
\[
\lambda x + 865x - 147y = 0 \ , \ \lambda y - 147x + 565y = 0
\]
which can be rewritten in matrix notation in the form
\[
(A + \lambda \mathbf{1})\mathbf{x} = 0
\]
where \(\mathbf{x} \) denotes the vector \((x, y)\), \(\mathbf{1} \) denotes the two-by-two 'identity' matrix (with ones down the diagonal, and zero elsewhere), and
\[
A = \begin{bmatrix}
865 & -147 \\
-147 & 585
\end{bmatrix}
\]
Now it’s useful to recall that square matrices are invertible (ie, have inverse matrices, in the sense the the matrix product of a matrix and its inverse equals the identity matrix) if and only if its determinant is nonzero. [This is related to the geometric interpretation of determinants as volumes: if the determinant vanishes, the linear transformation defined by the (square) matrix squashes a rectangle flat.] So if the determinant of the matrix \(A + \lambda \mathbf{1} \) is not zero, there can be no nontrivial solutions to our system of equations – because we can then multiply our equation on the left by the inverse matrix \((A + \lambda \mathbf{1})^{-1}\), to obtain (only) the trivial solution
\[
(A + \lambda \mathbf{1})^{-1}(A + \lambda \mathbf{1})\mathbf{x} = \mathbf{1} \cdot \mathbf{x} = \mathbf{x} = 0
\]
Thus in order for a nontrivial solution to exist, \(\lambda \) must satisfy the quadratic equation
\[
\det(A + \lambda \mathbf{1}) = 0, \text{ ie } \det \left[\begin{array}{cc}
865 + \lambda & -147 \\
-147 & 585 + \lambda
\end{array} \right] = (\lambda + 865)(\lambda + 585) - (-147)^2 = 0,
\]
which multiplies out to
\[
\lambda^2 + 1450\lambda + [(865 \times 585 - 147^2) = 484, 416] = 0.
\]
According to the quadratic formula, then,
\[\lambda = \frac{1}{2}[-1450 \pm \sqrt{(1450^2 - 4 \times 484,416)}] ; \]
but
\[1450^2 - 4 \times 484,416 = 2,102,500 - 1,937,664 = 164,836 = 406^2 , \]
so
\[\lambda = \frac{1}{2}[-1450 \pm 406] = -522 (= -9 \cdot 58) \text{ or } -928 (= -16 \cdot 58) . \]
Substituting the first of these values into our original matrix equation gives us
\[\begin{bmatrix} 865 - 522 & -147 \\ -147 & 585 - 522 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 , \]
but the matrix factors as
\[\begin{bmatrix} 343 & -147 \\ -147 & 63 \end{bmatrix} = \begin{bmatrix} 7 \cdot 49 & -3 \cdot 49 \\ -7 \cdot 21 & 3 \cdot 21 \end{bmatrix} , \]
and thus kills the vector \((3, 7)\) – as well as its normalized multiple
\[x_+ = \frac{1}{\sqrt{58}}(3, 7) . \]
Similarly: substituting in the second root yields the matrix
\[\begin{bmatrix} 865 - 928 & -147 \\ -147 & 585 - 928 \end{bmatrix} = \begin{bmatrix} -63 & -147 \\ -147 & -343 \end{bmatrix} , \]
which admits a similar factorization, and consequently kills the normalized vector
\[x_- = \frac{1}{\sqrt{58}}(-7, 3) . \]
We can use these to answer the original question, about points on the curve \(Q = 1450\) at greatest and least distance from the origin, by noting that the function \(Q\) is quadratic, in the sense that for any real number \(t\), we have
\[Q(tx, ty) = t^2Q(x, y) , \]
The points on the locus \(Q = 1450\) where \(f\) is greatest are just multiples \(tx_+\) of the points on the unit circle where \(Q\) is greatest, by the argument above (about inverting \(\lambda\)); so all we need to do is find the right scaling factor \(t\). It’s not hard to calculate that
\[Q(x_+) = 58 \cdot 9 , \quad Q(x_-) = 58 \cdot 16 , \]
from which it follows easily that \(\frac{3}{5}x_+\) and \(\frac{1}{5}x_-\) lie on the locus \(Q = 1450 = 25 \cdot 58\): they are the extreme points we sought. Note by the way that these vectors (like \(x_+\) and \(x_-\)) are \textbf{perpendicular}: their dot product is
\[\frac{25}{12 \cdot 58} (3 \cdot (-7) + 7 \cdot 3) = 0 . \]
In other words: the locus \(Q = 1450\) is an ellipse, with the first vector above as the semimajor, and the second vector the semiminor, axes. It can be obtained from the standard ellipse
\[9X^2 + 16Y^2 = 25 \]
by applying the \textbf{rotation matrix}
\[[x_+x_-] := \frac{1}{\sqrt{58}} \begin{bmatrix} 3 & -7 \\ 7 & 3 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} := R(\theta) \]
through the angle satisfying \(\tan \theta = \sin \theta / \cos \theta = 7/3 \). [Note that
\[
R(\theta) \cdot e_1 = x_+, \quad R(\theta) \cdot e_2 = x_-
\]
where \(e_1 = (1, 0), e_2 = (0, 1) \) are the standard unit vectors.] In fact
\[
Q(x, y) = 9(3x + 7y)^2 + 16(-7x + 3y)^2;
\]
writing this out gives
\[
9(9x^2 + 42xy + 49y^2) + 16(49x^2 - 42xy + 9y^2),
\]
which equals
\[
[9 \cdot 9 + 16 \cdot 49 = 865]x^2 + [42 \cdot (9 - 16)]xy + [9 \cdot 49 + 16 \cdot 9 = 585]y^2.
\]
For clarity, here is another example, this time with smaller numbers:

Problem: Find the **principal axes** (i.e., the semimajor and semiminor axes) for the ellipse
\[
Q(x, y) = 23x^2 + 14xy + 23y^2 = 17.
\]

Solution: We need to find the **eigenvectors** of the matrix
\[
\begin{bmatrix}
23 & 7 \\
7 & 23
\end{bmatrix} = B;
\]
these are the (nontrivial) vectors \(v_\pm \) satisfying the **eigenvalue** equation \((B + \lambda)v_\pm = 0\). [**Eigen** comes from German, where it signifies something like ‘proper’ or ‘characteristic’. It has become standard in mathematics (and in quantum mechanics) in this and related contexts.] Thus we need to solve the quadratic equation
\[
\det\begin{bmatrix}
23 + \lambda & 7 \\
7 & 23 + \lambda
\end{bmatrix} = (23 + \lambda)^2 - 7^2 = \lambda^2 + 46\lambda + [529 - 49 = 480] = 0.
\]
This has solutions
\[
\lambda_\pm = \frac{1}{4}[{-46 \pm \sqrt{(46^2 - 4 \cdot 480)}];
\]
but the term under the square root sign equals 2116 - 1920 = 196 = 13², so \(\lambda_+ = -16 \) and \(\lambda_- = -30 \). It follows that
\[
B + \lambda_+ = \begin{bmatrix}
23 - 16 & 7 \\
7 & 23 - 16
\end{bmatrix} = \begin{bmatrix}
7 & 7 \\
7 & 7
\end{bmatrix}
\]
which kills the normalized vector \(v_+ = \frac{1}{\sqrt{2}}(1, -1) \), while
\[
B + \lambda_- = \begin{bmatrix}
23 - 30 & 7 \\
7 & 23 - 30
\end{bmatrix} = \begin{bmatrix}
-7 & 7 \\
7 & -7
\end{bmatrix}
\]
kills the vector \(v_- = \frac{1}{\sqrt{2}}(1, 1) \). In this case the rotation matrix is
\[
R(\phi) = \frac{1}{\sqrt{2}}\begin{bmatrix}
1 & 1 \\
-1 & 1
\end{bmatrix},
\]
defined by a 45-degree rotation (since \(\tan \phi = 1 \)), and the original equation can be rewritten as
\[
\lambda_+(v_+ \cdot x)^2 + \lambda_-(v_- \cdot x)^2 = 8(x - y)^2 + 15(x + y)^2.
\]
In general the normalized eigenvectors satisfy \(Q(v_+) = -\lambda_+ \), so by rescaling (as in the previous problem) we find that the principal axes of the ellipse \(Q = 17 \) are defined by the vectors
\[
\frac{\sqrt{34}}{8}(1, 1) \text{ and } \frac{\sqrt{1120}}{60}(1, -1).
In general, the n-dimensional Lagrange multiplier problem for a quadratic function
\[\mathbf{x} \mapsto (\mathbf{A}\mathbf{x}) \cdot \mathbf{x} : \mathbb{R}^n \to \mathbb{R} \]
defined by a symmetric $n \times n$ matrix \mathbf{A} will have n nontrivial (normalized, mutually orthogonal) eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ satisfying the eigenvalue equation $\mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k$, and the formula above generalizes to
\[Q(\mathbf{x}) = \sum_{k=1}^{k=n} \lambda_k (\mathbf{v}_k \cdot \mathbf{x})^2 . \]
Astronomers use this, for example, to study elliptical galaxies (which, being three-dimensional objects, have three principal axes).

I don’t want to give the (false) impression, that the quadratic equations for such problems always work out so neatly; they don’t. The problems above were cooked up using the equation
\[(ax + by)^2 + (bx + ay)^2 = Ex^2 + 2Fxy + Gy^2 , \]
where
\[E = a^2 A + b^2 B, \quad F = ab(A - B), \quad G = b^2 A + a^2 B ; \]
for example in problem 1, $A = 9$, $B = 16$, $a = 3$, and $b = 7$. If you chase through the quadratic formula in this generality, you find that for problems of this sort,
\[\lambda_{\pm} = -\frac{(a^2 + b^2)}{A \text{ or } B} . \]

4 The condition that the matrix \mathbf{A} be symmetric is important. The symmetry condition [that the coefficient A_{ik} of the matrix equals the coefficient A_{ki}, with the order of indices reversed] implies that for any two vectors \mathbf{v} and \mathbf{v}', we have
\[(\mathbf{A}\mathbf{v}') \cdot \mathbf{v} = \sum_{i,k=1}^{i,k=n} A_{ik} v'_k v_i = \sum_{i,k=1}^{i,k=n} A_{ki} v_i v'_k = (\mathbf{A}\mathbf{v}) \cdot \mathbf{v}' . \]
But now if \mathbf{v} and \mathbf{v}' are eigenvectors of a symmetric matrix \mathbf{A}, with associated eigenvalues λ and λ' which are distinct, ie $\lambda \neq \lambda'$, then \mathbf{v} and \mathbf{v}' must be orthogonal: for
\[\mathbf{A}\mathbf{v} = \lambda \mathbf{v}, \quad \mathbf{A}\mathbf{v}' = \lambda' \mathbf{v}' , \]
so on one hand
\[(\mathbf{A}\mathbf{v}') \cdot \mathbf{v} = (\lambda' \mathbf{v}') \cdot \mathbf{v} = \lambda' \mathbf{v}' \cdot \mathbf{v} ; \]
while on the other hand, the symmetry of \mathbf{A} implies that
\[(\mathbf{A}\mathbf{v}') \cdot \mathbf{v} = (\mathbf{A}\mathbf{v}) \cdot \mathbf{v}' = (\lambda \mathbf{v}) \cdot \mathbf{v}' = \lambda \mathbf{v} \cdot \mathbf{v}' . \]
Thus these two quantities are equal, ie
\[\lambda' \mathbf{v}' \cdot \mathbf{v} = \lambda \mathbf{v} \cdot \mathbf{v}' ; \]
but the dot product itself is symmetric $[\mathbf{v}' \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{v}']$ so
\[(\lambda' - \lambda) \mathbf{v}' \cdot \mathbf{v} = 0 . \]
But λ and λ' are distinct, so their difference is nonzero, and we conclude that $\mathbf{v}' \cdot \mathbf{v} = 0$ – which is to say that the eigenvectors \mathbf{v} and \mathbf{v}' are perpendicular.

This has applications in quantum mechanics: in that theory observable physical quantities are supposed to be represented by (things very much like) symmetric matrices, and the result of a measurement of the physical quantity in question is
thought to be an eigenvalue of that matrix. A state of the physical system is interpreted as a vector, and to say that a measurement of a physical quantity A in the state \mathbf{v} yields the result λ is interpreted as saying that the state \mathbf{v} is an eigenvector of A, with eigenvalue λ: in other words,

$$A\mathbf{v} = \lambda \mathbf{v}.$$

The fact that eigenvectors corresponding to distinct eigenvalues are orthogonal is a kind of quantum-mechanical analog of the law of the excluded middle in logic: there is a certain amount of indeterminacy in quantum mechanics - an experiment might yield λ for a measurement, or it might yield λ' - but it can't yield both: the experiment yields a `pure' state, in which the value of the measured quantity is well-defined.

This is a difficult and important notion, which lies at the heart of quantum mechanics, and it's really because I thought you might be interested in this, rather than because of the considerable intrinsic mathematical beauty of the theory of principal axes, that I have written up these notes.