TWO VECTOR FIELDS

1. Setup

1.1. In \(\mathbb{R}^3 \):

Functs. \(\phi \xrightarrow{\nabla} \) V. fields \(\vec{F} \xrightarrow{\text{curl}} \) V. fields \(\vec{G} \xrightarrow{\text{div}} \) Functs. \(f \)

Pts. \(\xrightarrow{\partial} \) Curves \(\gamma \xrightarrow{\partial} \) Surfaces \(\Sigma \xrightarrow{\partial} \) Solid domains \(W \)

Note that \(\partial(\partial W) = 0 \), \(\partial(\partial \Sigma) = 0 \)

and the analogue of this is \(\text{curl}(\nabla \phi) = 0 \), \(\text{div}(\text{curl} \vec{F}) = 0 \)

The three theorems of "integrals on the boundary" are:

\[
\int_{\gamma} \nabla \phi = \phi(Q) - \phi(P) \quad P, Q = \partial \gamma = \text{endpoints of } \gamma \\
\int_{\partial \Sigma} \vec{F} = \iint_{\Sigma} \text{curl} \vec{F} \cdot dS \quad \text{[Stokes]} \\
\int_{\partial W} \vec{G} \cdot dS = \iiint_{W} (\text{div} \vec{G}) dV \quad \text{[Gauss]}
\]

2. Two vector fields

2.1. Consider the vector field \(\vec{G} = \frac{r}{r^3} \) (the negative of the gravitational vector field).

a) Prove that \(\text{div} \vec{G} = 0 \) (\(\vec{G} \) is incompressible).

b) Prove that

\[
\int_{\Sigma_{R}} \vec{G} \cdot dS = 4\pi
\]

where \(\Sigma_{R} \) is the sphere of radius \(R \) centered at the origin.

c) Prove (using Stokes theorem) that \(\vec{G} \) is not the curl of another vector field \(\vec{F} \) (well-defined on \(\mathbb{R}^3 - (0,0,0) \)) such that \(\text{curl} \vec{F} = \vec{G} \).

d) What is so special about the geometry of \(\mathbb{R}^3 - (0,0,0) \) that a vector field with the properties of \(\vec{G} \) exists?

e) (Gauss’s law) Assume \(\Sigma \) is a closed (simple, oriented) surface in \(\mathbb{R}^3 \), not passing through the origin \((0,0,0) \). Use Gauss’ divergence theorem to prove that

\[
\int_{\Sigma} \vec{G} \cdot dS = \begin{cases} 4\pi, & \text{if } (0,0,0) \text{ is in the interior of } \Sigma \\ 0, & \text{otherwise} \end{cases}
\]

2.2. (Side computation) Let \(\vec{F} = P(x,y)i + Q(x,y)j \) a vector field in \(\mathbb{R}^2 \). Prove that \(\text{curl} \vec{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)k \).
2.2.1. Consider the following vector field in \mathbb{R}^2:

$$\vec{F} = \frac{-yi + xj}{x^2 + y^2}$$

a) Prove that curl $\vec{F} = 0$ (i.e. $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0$)

b) Compute the work of \vec{F} along C_R, the circle of radius R oriented counterclockwise.

c) Prove that \vec{F} is not a conservative vector field. In other words, prove that there does not exist a (potential) function ϕ (well defined on $\mathbb{R}^2 - (0, 0)$) such that $\vec{F} = \nabla \phi$.

d) What is so special about the geometry of $\mathbb{R}^2 - (0, 0)$ that a vector field with the properties of \vec{F} exists?

e) Let γ an arbitrary simple (without self-intersections) closed curve in \mathbb{R}^2, not passing through the origin (oriented counter-clockwise). Use Green’s formula to prove that

$$\frac{1}{2\pi} \int_{\gamma} \vec{F} = \begin{cases}
1, & \text{\gamma circles around the origin (0, 0)} \\
0, & \text{otherwise}
\end{cases}$$