CONTINUITY OF MULTIVARIABLE FUNCTIONS. EXAMPLES

1. Definitions

1.1. Limit. Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) some function, \(x_0 = (x_1, \ldots, x_n) \in \mathbb{R}^n \) and \(y_0 = (y_1, \ldots, y_m) \in \mathbb{R}^m \). Then

\[
\lim_{x \to x_0} f(x) = y_0
\]

if and only for \(x \) "close to" \(x_0 \), \(f(x) \) is "close to" \(y_0 \). In other words, given \(\epsilon > 0 \), there exists \(\delta \) depending on \(\epsilon \) and \(x_0 \) (so we write \(\delta = \delta(\epsilon, x_0) \)) such that

\[
d_{\mathbb{R}^n}(x, x_0) < \delta \Rightarrow d_{\mathbb{R}^m}(f(x), y_0) < \epsilon
\]

where the distance on the left is taken in \(\mathbb{R}^n \), whereas the one on the right-hand side is taken in the target space \(\mathbb{R}^m \). We will drop the subscript \(\mathbb{R}^n \) from \(d \), and we will often write \(\|x - x_0\| \) instead of \(d(x, x_0) \). We will also drop the bold-face notation.

Note: a function \(f : \mathbb{R}^n \to \mathbb{R}^m \) is clearly given by a row vector \(f = (f_1, \ldots, f_m) \) where \(f_i \)'s are the components of \(f \). In fact, \(f_i = p_i \circ f \) (see below). Then

\[
\lim_{x \to x_0} f(x) = y_0 \text{ if and only if } \lim_{x \to x_0} f_i(x) = y_i, \ i = 1, \ldots, m.
\]

1.2. Continuity. A function \(f : \mathbb{R}^n \to \mathbb{R}^m \) is continuous at \(x_0 \in \mathbb{R}^n \) iff

\[
\lim_{x \to x_0} f(x) = f(x_0)
\]

We say that \(f \) is continuous (everywhere) if it is continuous at every point of the domain \(\mathbb{R}^n \).

Note: if \(f = (f_1, \ldots, f_m) \), where \(f_1, \ldots, f_m \) are the components of \(f \), then \(f \) is continuous iff \(f_1, \ldots, f_m \) are continuous, as functions : \(\mathbb{R}^n \to \mathbb{R} \).

2. Tools

Operations with limits: addition, subtraction, multiplication, division (when possible), etc.

Components. If \(f : \mathbb{R}^n \to \mathbb{R}^m \), \(f = (f_1, \ldots, f_m) \), then \(\lim_{x \to x_0} f(x) = y_0 = (y_1, \ldots, y_m) \) iff \(\lim_{x \to x_0} f_i(x) = y_i \), for every \(i = 1, \ldots, m \).

Projections. The functions \(p_i : \mathbb{R}^n \to \mathbb{R}, \ p_i(x_1, \ldots, x_n) = x_i \) are continuous, and this can be easily checked with the \((\epsilon, \delta)\)-definition of continuity.

Composition of functions. If \(f : \mathbb{R}^n \to \mathbb{R}^m \) is continuous and \(g : \mathbb{R}^m \to \mathbb{R}^N \) is continuous, then \(g \circ f : \mathbb{R}^n \to \mathbb{R}^N \) is continuous, where \(g \circ f(x) := g(f(x)) \).
3. Examples

1. $f : \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = x \sin(z)$.
 Then $f = p_1 \circ (\sin \circ p_3)$ is continuous.

2. $f : \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = (xy, x + y + z^2)$.
 - $f_1(x, y) = xy = p_1 \circ p_2$ is cont.
 - $f_2(x, y) = x + y + z^2 = p_1 + p_2 + (p_3)^2$ is cont.
 Therefore $f = (f_1, f_2)$ is continuous.

3. $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$
 Proof that f is continuous.
 On $\mathbb{R}^2 - (0, 0)$, f is continuous since it is a ratio of continuous functions (with non-vanishing denominator), namely $f = \frac{p_1^3}{\sqrt{p_1^2 + p_2^2}}$ is continuous.

 NB: To make sure we understand why is the denominator continuous, we can write the denominator as the composition of functions $\mathbb{R}^2 - \{0, 0\} \to [0, \infty) \to \mathbb{R}$

 We are thus left to show that f is continuous at $(0, 0)$, in other words to prove that
 $$\lim_{(x,y) \to (0,0)} \frac{x^2}{\sqrt{x^2 + y^2}} = 0$$
 Squeeze:
 $$0 \leq \frac{x^2}{\sqrt{x^2 + y^2}} \leq \frac{x^2}{\sqrt{x^2}} = |x|$$
 However, as $(x, y) \to (0, 0)$ necessarily $x \to 0$ and hence $|x| \to 0$, therefore by the Pinching Lemma $\frac{x^2}{\sqrt{x^2 + y^2}} \to 0$ as $(x, y) \to 0$.

 Different way of saying it ((ε, δ)-proof). Note that
 $$d((x, y), (0, 0)) \leq \varepsilon \iff \sqrt{x^2 + y^2} \leq \varepsilon \Rightarrow |x| \leq \varepsilon \Rightarrow \frac{x^2}{\sqrt{x^2 + y^2}} \leq |x| \leq \varepsilon$$

4. $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$
 Proof that f is not continuous at $(0, 0)$. Consider the followin sequences of points in \mathbb{R}^2:
 $$x_k = (\frac{1}{k}, 0), \quad k \geq 1$$
 $$y_k = (\frac{1}{k}, \frac{1}{k}), \quad k \geq 1$$
 Then $x_k \to (0, 0)$ and $y_k \to (0, 0)$ as $k \to \infty$, and yet
 $$f(x_k) = 0 \to 0, \quad k \to \infty$$
 $$f(y_k) = \frac{1}{2} \to \frac{1}{2}, \quad k \to \infty$$
 which shows that the limit
 $$\lim_{x \to (0,0)} f(x)$$
 does not exist. In particular, the function f is not continuous at $(0, 0)$.
5. Let
\[g(x, y) = \begin{cases}
 x \sin(1/y), & y \neq 0 \\
 0, & y = 0
\end{cases} \]
Determine the points \((x, y) \in \mathbb{R}^2\) where \(g\) is continuous.

6. Tricky example. Let \(f: \mathbb{R}^2 \to \mathbb{R}\) defined by
\[f(x, y) = \begin{cases}
 \frac{xy^2}{x^2+y^2}, & (x, y) \neq (0, 0) \\
 0, & (x, y) = (0, 0)
\end{cases} \]
Show that \(\lim_{k \to \infty} f(x_k) = 0\), for any sequence \(x_k \to (0, 0)\) such that \(x_k, k \geq 1\) is on a fixed line passing through \((0, 0)\). Is \(f\) continuous at \((0, 0)\)?