Consider the surface (paraboloid) \(\Sigma \) given by \(x^2 + y^2 - z = 0 \), \(0 \leq z \leq 1 \).

1) Parametrize \(\Sigma \) using cylindrical coordinates (that is, viewing it as the surface obtained by rotating \(z = y^2 \) around the \(z \)-axis). Compute the flow of \(\mathbf{r} \) in two ways:

 A) by going through the following steps:

 - Compute the unit normal vector \(\mathbf{n}_\Sigma \) separately by normalizing the gradient of \(g(x, y, z) = x^2 + y^2 - z \). Make sure your unit normal vector is pointing outwards.
 - Compute \(\mathbf{r} \cdot \mathbf{n}_\Sigma \).
 - Compute the area element \(dS \).
 - Integrate \(\int \int_{\Sigma} (\mathbf{r} \cdot \mathbf{n}_\Sigma) dS \).

 B) by going through the following steps (assume one has parametrization \(x = x(u, v) \), etc. . .):

 - Use the determinant formula \(\mathbf{F} \cdot dS = \begin{vmatrix} F_1 & F_2 & F_3 \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} dudv \) (provided \(T_u \times T_v \) point in the direction of \(\mathbf{n}_\Sigma \)).
 - Compute the flow as \(\int \int_{\Sigma} \mathbf{F} \cdot dS = \int \int (\text{determinant}) dudv \).

2) Do the same thing as in 1), this time parametrizing \(\Sigma \) as a graph surface: \(x = x, y = y, z = x^2 + y^2 \) so the parameters are \((x, y) \in D \), the unit disk in \(\mathbb{R}^2 \).

3) Put a lid on \(\Sigma \) to enclose a solid region \(W \). Use Gauss divergence theorem to compute the flow of \(\mathbf{r} \) through \(\Sigma \). Compare your result with 1) and 2).