NOTES ON CHAPTER 3

1. Set-up

In what follows, \(f : \mathbb{R}^2 \to \mathbb{R} \) is continuous function, \(a = (x_0, y_0) \in \mathbb{R}^2 \) is a fixed point in \(\mathbb{R}^2 \).

2. First Taylor formula

If \(f \) is differentiable at \(a \), there exists a function \(\omega_1(x) : \mathbb{R}^2 \to \mathbb{R} \) (depending on \(a \) and \(f \)) such that

\[
\begin{align*}
\lim_{x \to a} f(x) &= f(a) + \nabla f(a) \cdot (x - a) + \|x - a\| \omega_1(x) \\
\lim_{x \to a} \omega_1(x) &= 0
\end{align*}
\]

This is an immediate consequence of the fact that \(f \) is differentiable at \(a \), which is the statement that

\[
\lim_{x \to a} \frac{f(x) - f(a) - \nabla f(a) \cdot (x - a)}{\|x - a\|} = 0.
\]

2.1. Corollary: first order approximation. For \(x = (x, y) \) near \(a = (x_0, y_0) \),

\[
f(x) \approx f(a) + \nabla f(a) \cdot (x - a)
\]

in other words

\[
f(x, y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)
\]

3. Second Taylor formula

If \(f \) is a \(C^2 \) function (it has second order partial derivatives and these are continuous) then there exists a (second order error) function \(\omega_2(x) \) (depending on \(f \) and \(a \)) such that

\[
\begin{align*}
f(x) &= f(a) + \nabla f(a) \cdot (x - a) + \frac{1}{2} H_f(a)[x - a] + \|x - a\|^2 \omega_2(x) \\
\lim_{x \to a} \omega_2(x) &= 0
\end{align*}
\]

where:

\[
H_f(a) = \begin{bmatrix} f_{xx}(a) & f_{xy}(a) \\ f_{yx}(a) & f_{yy}(a) \end{bmatrix}
\]

is the Hessian of \(f \) at \(a \), and notice that it is a symmetric matrix. Also, the square-bracket action is given by

\[
H_f(a)[x - a] = H_f(a)(x - a) \cdot (x - a)
\]

Note: The proof of the second Taylor formula is not as straight-forward as the one for the first Taylor formula. Consult the textbook for details.

3.1. Corollary: second order approximation. Let \(x = (x, y) \) near \(a = (x_0, y_0) \). Unravelling the term involving the Hessian

\[
H_f(a)[x - a] = [x - x_0, y - y_0] \cdot \begin{bmatrix} f_{xx}(a) & f_{xy}(a) \\ f_{yx}(a) & f_{yy}(a) \end{bmatrix} \cdot \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}
\]

we obtain the second order approximation near \(a = (x_0, y_0) \):

\[
f(x, y) \approx f(a) + \nabla f(a) \cdot (x - a) + \frac{1}{2} H_f(a)[x - a] \\
= f(a) + f_x(a)(x - x_0) + f_y(a)(y - y_0) \\
+ \frac{1}{2} \{ f_{xx}(a)(x - x_0)^2 + 2f_{xy}(a)(x - x_0)(y - y_0) + f_{yy}(a)(y - y_0)^2 \}
\]

4. Extrema of real-valued functions

4.1. Critical points. Definition \(a \) is a critical point for the function \(f : \mathbb{R}^2 \to \mathbb{R} \) if \(\nabla f(a) = 0 \) \((f'(a) = 0) \).
4.2. **Local extrema.** \(a \in \mathbb{R}^2 \) is a local maximum of \(f \) if there exists a positive number \(r > 0 \) such that:

\[
\text{for } x \in B_r(a), f(x) \leq f(a)
\]

Similarly for local minimum.

Theorem. If \(a \) is a local extremum for \(f \), then \(a \) is a critical point.

Consequence: when searching for local extrema we need to restrict our search to critical points.

4.3. **Classification of critical points.** Assume \(a \) is critical, \(\nabla f(a) = 0 \).

1. If \(\det H_f(a) > 0 \) and \(f_{xx}(a) > 0 \) then \(a \) is a local minimum for \(f \)
2. If \(\det H_f(a) > 0 \) and \(f_{xx}(a) < 0 \) then \(a \) is a local maximum for \(f \)
3. If \(\det H_f(a) < 0 \) then \(a \) is a saddle point for \(f \)
4. If \(\det H_f(a) = 0 \), \(a \) is a degenerate critical point (inconclusive situation)