HW9 Solutions

November 12, 2018

1 We prove by induction on n. First notice that since $a_1 = 1 \le a_2 = 5/2 \le 4$, the sequence is increasing and bounded by 4 at n = 1. This fulfills the base case. Now assume $a_n \le a_{n+1}$ and $a_n \le 4$, then $a_{n+1} = (4 + a_n)/2 \le (4 + a_{n+1})/2 = a_{n+2}$, and $a_{n+1} = (4 + a_n)/2 \le (4 + 4)/2 = 4$. This proves the induction step.

Since the sequence is increasing and bounded from above, by monotone converge theorem, the sequence converges to a limit, say $\lim_{n\to\infty} a_n = L$. Then L satisfies L = (4+L)/2. Solving for L gives L = 4, hence the sequence converges to 4.

2 This is a geometric series with a = 4/3 and r = 1/3. Since |r| < 1, the series converges to a/(1-r) = 2.

3 Since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n^2}{n^2+4} = 1$, the series diverges by the divergence test.

4 This is geometric with a = 3/x and r = 3/x. This converges when and only when |3/x| < 1, i.e., 3 < |x|. If so, the limit is a/(1-r) = 3/(x-3).

6 By the integral test, it suffices to determine if $\int_1^\infty \frac{1}{x \ln x} dx$ converges. But using $u = \ln x$, we have $\int \frac{1}{x \ln x} dx = \int \frac{1}{x \ln x} dx = \ln \ln x$

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{u} du = \ln \ln x$$

Thus the indefinite integral evaluates as $\lim_{b\to\infty} \ln \ln b - 0 = \infty$, hence the series diverges.

7 Since $0 < n^4/2 \le n^4 - 1$ for $n \ge 2$, we have $\frac{2n}{n^4} = \frac{2}{n^3} \ge \frac{n}{n^4 - 1} \ge 0$. By the integral and p-test, $\sum_{n=2}^{\infty} \frac{2}{n^3}$ converges, and therefore by comparison theorem for series, the original series converges as well.

8 Since $0 \le \frac{3^{-n}}{4+3^{-n}} \le \frac{3^{-n}}{4}$, by comparison theorem, it suffices to prove $\sum_{n=1}^{\infty} \frac{3^{-n}}{4}$ converges. But this is a geometric series with r = 1/3, hence it converges, and therefore so does the original series.