HWS8 Solutions

October 29, 2018

1 Observe that 0 < sin?z < 1 on [0,7/2], and therefore 0 < Sjﬂif < Tl/z; on (0,7/2]. Because
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by the comparison theorem, the original integral converges as well.
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1. There is a factorization 22 — 2 — 2 = (x — 2)(z + 1). Because on (2, 3], z +1 < 4, we have also
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37 = 3 and therefore 0 < -2 < o5—,—- But
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by the comparison theorem, the original integral diverges.

2. Here we have 22 — 4x + 4 = (z — 2)?. We can therefore shift the integral to a more familiar
form using a substitution u = x — 2. Now the integral becomes
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We know the first two terms do not converge, therefore the integral diverges.

3. Again, using a substitution u = x — 1 we get the integral to a more familiar form:

3 0 3
/ u_1/3du:/ u_l/gdu—l—/ w3y
—1 —1 0

Both of which we know to converge, thus the integral converges.
3 a,=(-1)"".2n
4 Q= (_1)n+1 . 42—n

5 a1 = 1,ay = 3 are the initial terms. Inductively, for n > 2, a,, = ap—1 + Gpn—2



. Repeat L’Hopital’s rule a number of times to see that this converges.
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. The sequence diverges. To see why, observe a,, = 1 + 3n, which clearly goes to infinity as n
approaches infinity.

. This limit can be computed directly using some algebra.
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In particular, the sequence converges.

. Observe that —m < arctann < 7, hence —I < 2tann < T Gince {—Z} and {Z} both

n
converge to 0, by the squeeze theorem, so does {a,}.

. Since —1 < sinn/2 < 1, apply squeeze theorem again with bounds {—1/n} and {1/n} to see
that {a,} also converges to 0.
. Simplifying notation we have a, = (m)l/?’. But because f(n) = a, for f(z) =

(m)l/?’7 and f(x) — 0 as x — 00, a,, converges to 0 as well.



