HW8 Solutions

October 29, 2018

1 Observe that $0 \le \sin^2 x \le 1$ on $[0, \pi/2]$, and therefore $0 \le \frac{\sin^2 x}{x^{1/4}} \le \frac{1}{x^{1/4}}$ on $(0, \pi/2]$. Because

$$\int_0^{\pi/2} x^{-\frac{1}{4}} dx = \lim_{c \to 0} \int_c^{\pi/2} x^{-\frac{1}{4}} dx = \lim_{c \to 0} \frac{4}{3} (\frac{\pi}{2})^{\frac{3}{4}} - \frac{4}{3} c^{\frac{3}{4}} < \infty$$

by the comparison theorem, the original integral converges as well.

$\mathbf{2}$

1. There is a factorization $x^2 - x - 2 = (x - 2)(x + 1)$. Because on (2, 3], $x + 1 \le 4$, we have also $\frac{1}{x+1} \ge \frac{1}{4}$, and therefore $0 \le \frac{1}{4(x-2)} \le \frac{1}{x^2-x-2}$. But

$$\int_{2}^{3} \frac{1}{4(x-2)} dx = \frac{1}{4} \lim_{c \to 2^{+}} (\ln(1) - \ln(c-2)) \to \infty$$

by the comparison theorem, the original integral diverges.

2. Here we have $x^2 - 4x + 4 = (x - 2)^2$. We can therefore shift the integral to a more familiar form using a substitution u = x - 2. Now the integral becomes

$$\int_{-1}^{\infty} \frac{1}{u^2} du = \int_{-1}^{0} \frac{1}{u^2} du + \int_{0}^{1} \frac{1}{u^2} du + \int_{1}^{\infty} \frac{1}{u^2} du$$

We know the first two terms do not converge, therefore the integral diverges.

3. Again, using a substitution u = x - 1 we get the integral to a more familiar form:

$$\int_{-1}^{3} u^{-1/3} du = \int_{-1}^{0} u^{-1/3} du + \int_{0}^{3} u^{-1/3} du$$

Both of which we know to converge, thus the integral converges.

3
$$a_n = (-1)^{n+1} \cdot 2n$$

- 4 $a_n = (-1)^{n+1} \cdot 4^{2-n}$
- 5 $a_1 = 1, a_2 = 3$ are the initial terms. Inductively, for $n \ge 2, a_n = a_{n-1} + a_{n-2}$

1. Repeat L'Hopital's rule a number of times to see that this converges.

$$\lim_{n \to \infty} \frac{n^3}{2n^3 - n} = \lim_{n \to \infty} \frac{3n^2}{6n^2 - 1} = \lim_{n \to \infty} \frac{6n}{12n} = \lim_{n \to \infty} \frac{6}{12} = \frac{1}{2}$$

- 2. The sequence diverges. To see why, observe $a_n = 1 + 3n$, which clearly goes to infinity as n approaches infinity.
- 3. This limit can be computed directly using some algebra.

$$\lim_{n \to \infty} (e^{3n+4})^{1/n} = \lim_{n \to \infty} e^{4/n} \cdot e^3 = e^0 \cdot e^3 = e^3$$

In particular, the sequence converges.

7

- 1. Observe that $-\pi \leq \arctan n \leq \pi$, hence $-\frac{\pi}{n} \leq \frac{\arctan n}{n} \leq \frac{\pi}{n}$. Since $\{-\frac{\pi}{n}\}$ and $\{\frac{\pi}{n}\}$ both converge to 0, by the squeeze theorem, so does $\{a_n\}$.
- 2. Since $-1 \leq \sin n/2 \leq 1$, apply squeeze theorem again with bounds $\{-1/n\}$ and $\{1/n\}$ to see that $\{a_n\}$ also converges to 0.
- 3. Simplifying notation we have $a_n = (\frac{1}{(2n)(2n+1)})^{1/3}$. But because $f(n) = a_n$ for $f(x) = (\frac{1}{2x(2x+1)})^{1/3}$, and $f(x) \to 0$ as $x \to \infty$, a_n converges to 0 as well.