
9.3: Separable Equations

An equation is separable if one can move terms so that each side

of the equation only contains 1 variable. Consider the 1st order

equation
dy

dx
= F (x , y).

When F (x , y) = f (x)g(y), this differential equation is separable.

We have a strategy called separation of variables to solve this type

of equations.

� Example 1. y ′ = x(y − 1)

Solution: Rewrite the equation as

dy

dx
= x(y − 1).

y = 1 is a solution. Suppose y 6= 1, then we separate the variables:

dy

y − 1
= xdx .
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Example 1

Integrate both sides, ∫
dy

y − 1
=

∫
xdx .

⇒ ln |y − 1|+ C1 =
x2

2
+ C2.

⇒ ln |y − 1| =
x2

2
+ C3.

Thus |y − 1| = eC3 · e
x2

2 .

⇒ y = 1± eC3e
x2

2 , for all constants C3.

⇒ y = 1 + C4e
x2

2 , for all constants C4.
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Example 2

Example 2. Find all the solutions to

y ′ = 2x(1− y)2.

Solution: First note that there is a constant solution y ≡ 1.

Next we use separation method as above

⇒ dy

(1− y)2
= 2xdx .

⇒ 1

1− y
= x2 + C .

⇒ y = 1− 1

x2 + C
.
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Example 2

Note that the special solution y ≡ 1 is ”lost” from the general one.

The problem comes in the separation step, as dy
(1−y)2 is valid only if

y 6= 1. In general,

y ′ = f (x)g(y).

We apply separation of variables to get

dy

g(y)
= f (x)dx .

All the values of y s.t. g(y) = 0 give rise to a ”lost” solutions.
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Population growth/decay

Example 3. y ′ = ky (for a constant k) can be solved by separation

of variables method.
dy

y
= kdt.

Integrate both sides,

ln |y | = kt + C1.

⇒ y = ±eC1ekt for all constant C1.

⇒ y = C2e
kt for all constant C2 6= 0.
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Population growth/decay

There is a lost solution in the separation of variable step, which is

y ≡ 0. When C2 = 0, we recover the lost solution. So the general

solutions are

y = C2e
kt

for all constant C2.
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Example 4

� Example 4. Heat diffusion. A body at temperature T sits in an

environment of temperature TE . Newton’s law of cooling models

the rate of change in temperature by

T ′ = −k(T − TE )

where k > 0 is a constant.
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Example 4

�

T ′ = −k(T − TE )

Solution:
dT

dt
= −k(T − TE )

⇒ dT

T − TE
= −kdt

⇒ ln |T − TE | = −kt + C1

⇒ T − TE = ±eC1 · e−kt

⇒ T = TE + C2e
−kt .
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Example 5

Newton’s law of motion, constant gravity.

d2y

dt2
= −g .

where y is the height of the body and g is the acceleration rate

due to gravity, 9.8m/sec2

y = −1

2
g · t2 + C1t + C2.
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Example 6 Orthogonal trajectories.

Take a family of curves x = ky2, where k is any constant. Find

another family of curves such that any member of this family

intersects any given one at a right angle.

x = ky2

⇒ dy

dx
=

1

2ky
=

y

2x
.

The orthogonal trajectories satisfy the differential equation:

dy

dx
= −2x

y
.

⇒
∫

ydy = −
∫

2xdx .

⇒ x2 +
y2

2
= C , C > 0.
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Population growth/decay

We have talked about the population model: P ′(t) = kP with

P(0) = 105. can be solved by separation of variables method.

Solution: Case 1: P(t) = 0 is a solution.

Case 2: Suppose P(t) 6= 0, we can divide both sides of the

equation by P(t).

⇒ dP

P
= kdt.

Integrate both sides,

ln |P| = kt + C1.
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Population growth/decay

⇒ P(t) = ±eC1ekt for all constant C1.

⇒ P(t) = C2e
kt for all constant C2.

Since P(0) = 105, C2 = 105.

Thus P(t) = 105ekt .
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Logistic model of population

Modified model:

If P is small, dP
dt = kP.

If P > M, dP
dt < 0.

A simple modification would be

dP

dt
= kP(t)(1− P(t)

M
).
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Logistic model of population

Separation of variable method:

∫
dP

P(1− P/M)
=

∫
kdt.

Since
1

P(1− P/M)
=

1

P
+

1

M − P
.

Thus

ln |P| − ln |M − P| = kt + C .
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Logistic model of population

M − P

P
= Ae−kt .

Thus

P(t) =
M

1 + Ae−kt

where A = M−P0
P0

.
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Logistic model of population

� limt→∞ P(t) = M.

� Graph of P(t).

� Comparison with the natural growth model.
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