
Population of an animal

A mathematical model is an equation or a set of equations that

mimic the behavior of some phenomenon under certain

assumptions in nature. If the phenomena involve rates/ changes,

they can be likely modeled with differential equations.
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Population of an animal

Assumption: The population grows at a rate proportional to the

size of the population. (We assume to have unlimited environment,

adequate nutrition, absence of predators, immunity from disease.)

I t = time

I P(t) = the population at time t

I dP
dt = rate of growth

The population model is given by

dP

dt
= kP.

This is a separable equation.

Chapter 9: Differential Equations, Section 9.1: modeling with differential equations 11 / 42



Population of an animal

Separation of variable method: Suppose P(t) 6= 0, (we will discuss

the case P(t) = 0 later) then

dP

P
= kdt

Integrate both sides, we get

ln |P(t)| = C + kt.

Thus

P(t) = ±eCekt

Since C is an arbitrary constant, C̃ := ±eC is an arbitrary nonzero

constant. On the other hand, we still need to know what happens

to the case P(t) = 0. Notice P(t) = 0 is a solution, as we can plug

it into the differential equation to see it satisfies the equation.)
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Population of an animal

� In conclusion, the general solution is P(t) = C̃ ekt for an arbitrary

constant C̃ .

For example, k = 2, then P(t) = C̃ e2t .

� If in addition we have initial value condition, say P(2008) = 1010,

then we can determine the value of C̃ .
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Population of an animal

In nature, making assumptions that are the most suitable for the

reality is the key to understand the problem.

If P is small, dP
dt = kP.

If P > M, dP
dt < 0.

A simple modification would be

dP

dt
= kP(t)(1− P(t)

M
).

Solve this equation using separation of variable method after the

class. (Do not lose any solution!)
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9.2: Direction fields

For y ′ = F (x , y), there is a direction vector with slope F (x0, y0) at

each point (x0, y0). Without solving the equation, we can draw a

rough picture of the integral curves (graph of solutions).

� Example F (x , y) = x2 + y2 − 1. Take x0 = 1, y0 = 2, then

F (x0, y0) = 4. This tells us that if an integral curve for the

equation y ′ = F (x , y) exists, passing through (1, 2), then the curve

has slope 4 at (1, 2).
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9.2: Direction fields

� Example y ′ = x2 + y2 − 1.

I Draw a vector (line segment) with slope F (x , y) at many

points (x , y). Then connecting these line segments to get

connecting curves. They are approximation of the actual integral

curves (graph of solutions).

I The denser the chosen points are distributed on the plane, the

closer the connecting curves are to the actual integral curves.
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9.2: Direction fields

� This method gives numerical approximation of the integral curves

(without knowing how to solve the equation!). It allows us to

visualize the general shape of the solution curves by indicating the

direction in which the curves proceed at each point.

� It is easy to draw integral curves by connecting direction vectors.

Actual solutions may sometimes be too hard to find.
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