
Initial value problem

� If besides the differential equation, the value of y at a specific

point, say x0 is given: y(x0) = y0 is given, we can determine the

value of C . For example, if y(0) = 3, then

y(0) = C + 1 = 3

implies that C = 2.
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Initial value problem

We call the condition y(x0) = y0 an initial value condition.

And we call a differential equation with a condition y(x0) = y0 an

initial value problem.
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Geometric meaning of general solution

Each solution is a graph (curve) on the xy -plane.

The set of general solution is a family of curves on the xy -plane.

See the picture.
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Geometric meaning of general solution

Geometrically, the initial condition has the effect of isolating the

integral curve that passes through the point (x0, y0).
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9.3: Separable Equations

An equation is separable if one can move terms so that each side

of the equation only contains 1 variable. Consider the 1st order

equation
dy

dx
= F (x , y).

When F (x , y) = f (x)g(y), this differential equation is separable.

We have a strategy called separation of variables to solve this type

of equations.

� Example 1. y ′ = x(y − 1)

Solution: Rewrite the equation as

dy

dx
= x(y − 1).

y = 1 is a solution. Suppose y 6= 1, then we separate the variables:

dy

y − 1
= xdx .
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Example 1

Integrate both sides, ∫
dy

y − 1
=

∫
xdx .

⇒ ln |y − 1|+ C1 =
x2

2
+ C2.

⇒ ln |y − 1| =
x2

2
+ C3.

Thus |y − 1| = eC3 · e
x2

2 .

⇒ y = 1± eC3e
x2

2 , for all constants C3.

⇒ y = 1 + C4e
x2

2 , for all constants C4.
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Example 2

Example 2. Find all the solutions to

y ′ = 2x(1− y)2.

Solution: First note that there is a constant solution y ≡ 1.

Next we use separation method as above

⇒ dy

(1− y)2
= 2xdx .

⇒ 1

1− y
= x2 + C .

⇒ y = 1− 1

x2 + C
.
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Example 2

Note that the special solution y ≡ 1 is ”lost” from the general one.

The problem comes in the separation step, as dy
(1−y)2 is valid only if

y 6= 1. In general,

y ′ = f (x)g(y).

We apply separation of variables to get

dy

g(y)
= f (x)dx .

All the values of y s.t. g(y) = 0 give rise to a ”lost” solutions.
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Population growth/decay

Example 3. y ′ = ky (for a constant k) can be solved by separation

of variables method.
dy

y
= kdt.

Integrate both sides,

ln |y | = kt + C1.

⇒ y = ±eC1ekt for all constant C1.

⇒ y = C2e
kt for all constant C2 6= 0.
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Population growth/decay

There is a lost solution in the separation of variable step, which is

y ≡ 0. When C2 = 0, we recover the lost solution. So the general

solutions are

y = C2e
kt

for all constant C2.
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Example 4

� Example 4. Heat diffusion. A body at temperature T sits in an

environment of temperature TE . Newton’s law of cooling models

the rate of change in temperature by

T ′ = −k(T − TE )

where k > 0 is a constant.
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Example 4

�

T ′ = −k(T − TE )

Solution:
dT

dt
= −k(T − TE )

⇒ dT

T − TE
= −kdt

⇒ ln |T − TE | = −kt + C1

⇒ T − TE = ±eC1 · e−kt

⇒ T = TE + C2e
−kt .
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