
7.4: Integration of rational functions

Integrate each term of Case 1 and 2:

∫
A

ax + b
dx =

A

a
ln |ax + b|+ C .

∫
A1

ax + b
+ · · ·+ Ar

(ax + b)r
dx

=
A1

a
ln |ax + b|+ A2

a

(ax + b)−1

−1
+ · · ·+ Ar

a

(ax + b)−r+1

−r + 1
+ C .

(51)
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7.4: Integration of rational functions

Integrate each term in Case 3: The terms in Case 3 take the form∫
Ax + B

ax2 + bx + c
dx

We need to complete the square of denominator first, and the

break the numerator into two pieces:

� Example 11.
∫

3x+1
x2+2x+3

dx

3x + 6

x2 + 2x + 3
=

3x + 6

(x + 1)2 + 2
=

3(x + 1)− 3 + 6

(x + 1)2 + 2
.

We break the integral into two pieces:
∫ 3(x+1)

(x+1)2+2
dx and∫

3
(x+1)2+2

dx .
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7.4: Integration of rational functions

By substitution u = (x + 1)2, du = 2(x + 1)dx ,∫
3(x + 1)

(x + 1)2 + 2
dx =

3

2

∫
du

u + 2

=
3

2
ln |u + 2|+ C =

3

2
ln |(x + 1)2 + 2|+ C .

(52)∫
3

(x + 1)2 + 2
dx =

∫
3

2[( x+1√
2

)2 + 1]
dx (53)

Substitute u = x+1√
2

, and then du = 1√
2
dx ,∫

3

2[( x+1√
2

)2 + 1]
dx =

3

2

√
2

∫
1

u2 + 1
du

=
3

2

√
2 arctan u + C =

3

2

√
2 arctan(

x + 1√
2

) + C .
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7.4: Integration of rational functions

Integrate each term in Case 4: The terms in Case 4 take the form∫
Ax + B

(ax2 + bx + c)r
dx

The method is similar. We first complete the square in the

denominator, and break the numerator into two pieces according to

that. Then the first integral will be an integration of a power

function (with a negative power), which is easy to integrate. The

second integral needs to use the trig substitution: x = tan θ.

For example, we have showed how to do
∫

2x+3
[(x+1)2+1]2

in the class.
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Differential equations

� The equation involves derivatives.

� Solution is a function y = y(x).

� If the highest order of derivative appears in the equation is the n-th

order, we say such a differential equation an n-th order differential

equation.

I Example 1(a). dy
dx = y + e2x is a 1st order differential equation.

I Example 1(b). d2y
dx2 =

√
x2 + 1 is a 2nd order differential

equation.
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Example

What are solutions in Example 1(a) dy
dx = y + e2x?

I y(x) = e2x is a solution on the interval (−∞,∞).

I There are many more solutions: y(x) = Cex + e2x for all

constant C are solutions.
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Example

How to check y(x) = Cex + e2x is a solution?

We compute the derivative of y .

dy

dx
= Cex + 2e2x = (Cex + e2x) + e2x = y(x) + e2x . (1)

Yes, for all constants C , y(x) = Cex + e2x is a solution. The first

solution y(x) = e2x is when taking C = 0.
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Example

I Example 2. Show that y = x + 1 + Cex is a solution to

y ′ = y − x .

Plug y = x + 1 + Cex into the left hand side (LHS) of the

equation y ′(x) = 1 + 0 + Cex . And the right hand side (RHS) of

the equation is y − x = x + 1 + Cex − x . Thus they are equal.
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General Solution

Definition

The set of all solutions is called general solution. One single

solution is called a (special) solution.

In the previous example, y(x) = e2x is a (special) solution, while

y(x) = Cex + e2x is the general solution to this differential

equation.
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