AS.110.109: Calculus II (Eng) Review session Midterm 1

Yi Wang, Johns Hopkins University

Fall 2018

```
7.1: Integration by parts
```

Basic integration method: *u*-sub, integration table
Integration By Parts formula

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

Review session Midterm 1, Section 7.1: Integration by parts

We learn how to do integration by parts from experiences.

Priority order to choose f:

▶ inverse (e.g. arcsin x, arccos x, etc.)

- logarithmic (e.g. log x, log₂ x, log₁₀ x etc.)
- ▶ algebraic (e.g. x^3, x^9 , etc.)
- ▶ trigonometric (e.g. sin x, cos x, etc.)
- ▶ exponential (e.g. $e^x, 2^x, 3^x$, etc.)

ILATE

7.2: Integrals of trigonometrics I

Goal: evaluate ∫ sin^m x cosⁿ xdx, where m, n are integers.
Strategy:

- ▶ Case 1. *n* is an odd integer
- Case 2. *m* is an odd integer

 \triangleright Case 3. Both *m* and *n* are even, we use half-angle identity.

7.2: Integrals of trigonometrics II

Goal: evaluate ∫ tan^m x secⁿ xdx, where m, n are integers.
Strategy:

► Case 1. If *n* is an even integer (n = 2k), then save a factor $\sec^2 x$ in the integrand.

Key fact:

$$(\tan x)' = \sec^2 x$$
, and $\sec^2 x = 1 + \tan^2 x$.

► Case 2. If m is an odd integer (m = 2k + 1), then save a factor sec x tan x in the integrand. Key fact:

$$(\sec x)' = \sec x \tan x$$
, and $\sec^2 x = 1 + \tan^2 x$.

7.3: Trigonometric substitution

3 different substitutions we usually use:

► $\sqrt{a^2 - x^2} = a \sin t$ by substituting $x = a \cos t$ and using identity $1 - \cos^2 t = \sin^2 t$. ► $\sqrt{a^2 + x^2} = a \sec t$ by substituting $x = a \tan t$ and using identity $1 + \tan^2 t = \sec^2 t$. ► $\sqrt{x^2 - a^2} = a \tan t$ by substituting $x = a \sec t$

and using identity $\sec^2 t - 1 = \tan^2 t$.

A rational function is a function of the form:

$$f(x)=\frac{P(x)}{Q(x)},$$

where P(x) and Q(x) are polynomials in x.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0.$$

$$Q(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0.$$

How to express a rational function as a linear combination of partial fractions?

Definition

 $f(x) = \frac{P(x)}{Q(x)}$ is called proper if deg(P(x)) < deg(Q(x)). Otherwise, it is called improper.

A rational function can always be written as:

f(x) = a polynomial function + a proper rational function.

After reducing the rational function to a proper rational function. We need to factorize Q(x) to irreducible polynomials.

All degree 1 polynomials are irreducible. Example. x + 3, 2x + 4, etc.

Some degree 2 polynomials are irreducible, but not all of them.

- ▶ if the discriminant $\Delta := b^2 4ac \ge 0$, then reducible;
- ▶ if the discriminant $\Delta := b^2 4ac < 0$, then irreducible.

If Q(x) has degree \geq 3, it can always be factored into a product:

$$Q(x) = Q_1(x) \cdots Q_k(x),$$

where each $Q_i(x)$ is a irreducible polynomial with degree ≤ 2 . Q_i is either of degree 1, or of degree 2 and $\Delta < 0$.

To integrate a rational function, we factorize the denominator Q(x):

$$Q(x) = Q_1(x) \cdots Q_k(x).$$

Case 1. Q(x) is a product of distinct linear factors. $\frac{P(x)}{Q(x)}$ takes the form

$$\frac{A_1}{a_1x+b_1}+\cdots+\frac{A_k}{a_kx+b_k}$$

Example 7.
$$\int \frac{x}{(x+1)(x+2)} dx$$
$$\frac{x}{(x+1)(x+2)} = \frac{A_1}{x+1} + \frac{A_2}{x+2}.$$

Case 2. Q(x) is a product of linear factors, some of which are repeated.

Suppose Q(x) contains a term $(a_1x + b_1)^{r_1}$. Instead of $\frac{A_1}{a_1x+b_1}$, we would have

$$\frac{A_1}{a_1x+b_1}+\cdots+\frac{A_{r_1}}{(a_1x+b_1)^{r_1}}.$$

For another repeated factor, say $(a_2x + b_2)^{r_2}$, we have

$$\frac{B_1}{a_2x+b_2}+\cdots+\frac{B_{r_2}}{(a_2x+b_2)^{r_2}}.$$

Case 3. Q(x) has irreducible quadratic factors $ax^2 + bx + c$, none of which is repeated. $\frac{P(x)}{Q(x)}$ takes the form $\frac{Ax+B}{ax^2+bx+c}$. Example 9. $\int \frac{x^2}{(x+1)(x^2+1)} dx$

$$\frac{x^2}{(x+1)(x^2+1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+1}.$$

Case 4. Q(x) has irreducible quadratic factors $ax^2 + bx + c$, some of which is repeated. For example. if there is a factor $\int \frac{1}{(x^2+a^2)^r} dx$ in Q(x). Then in the decomposition, there are following terms in $\frac{P(x)}{Q(x)}$: (of course, there are other terms corresponding to other factors of Q.)

$$\int \frac{A_1 x + B_1}{(x^2 + a^2)^1} dx + \dots + \frac{A_r x + B_r}{(x^2 + a^2)^r} dx.$$
 (1)

Integration of $\int \frac{A_r x}{(x^2+a^2)^r} dx$ uses *u* sub; that of $\int \frac{B_r}{(x^2+a^2)^r} dx$ may need to use trig substitution.

Review session Midterm 1, Section 7.2 Integral of trigonometrics II

13 / 24

Differential equations

- An equation involves derivatives of a function is called a differential equation.
- Solution is a function y = y(x).

If besides the differential equation, the value of y at a specific point, say x_0 is given: $y(x_0) = y_0$ is given, we call it an initial value problem.

Geometric meaning of general solution

Each solution is a curve on the xy-plane.

The set of general solution is a family of (infinitely many) curves on the *xy*-plane.

Geometrically, the initial condition has the effect of isolating the integral curve that passes through the point (x_0, y_0) .

9.2: Direction fields and Euler method

For y' = F(x, y), direction fields is a vector $F(x_0, y_0)$ at each point (x_0, y_0) .

An equation is separable if one can write it as y'(x) = f(x)g(y). Method: use algebra to separate the two variables, so that each side of the equation only contains 1 variable.

Example

Example. Find all the solutions to

$$y'=2x(1-y)^2.$$

Solution: First note that there is a constant solution $y \equiv 1$. Next we use separation method as above

$$\Rightarrow \frac{dy}{(1-y)^2} = 2xdx.$$

Then integrate both sides,

$$\Rightarrow \frac{1}{1-y} = x^2 + C.$$
$$\Rightarrow y = 1 - \frac{1}{x^2 + C}.$$

This together with $y \equiv 1$ are the general solutions.

Review session Midterm 1, Section 9.3: Separable Equations

Orthogonal trajectories.

Find orthogonal trajectories.

Example: Take a family of curves $x = ky^2$, where k is any constant. Find another family of curves such that any member of this family intersects any given one at a right angle.

$$x = ky^{2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{1}{2ky} = \frac{y}{2x}$$

.

The orthogonal trajectories satisfy the differential equation:

$$\frac{dy}{dx} = -\frac{2x}{y}.$$
$$\Rightarrow \int y dy = -\int 2x dx.$$
$$\Rightarrow x^{2} + \frac{y^{2}}{2} = C, \quad C > 0.$$

Review session Midterm 1, Section 9.3: Separable Equations

19 / 24

A first order linear differential equation is

$$\frac{dy}{dx} + P(x)y = Q(x).$$

Linear equations

Linear equations $\frac{dy}{dx} + P(x)y = Q(x)$:

Step 1. Take integrating factor $I(x) = e^{\int P(x)dx}$, and multiply it on both sides to get

$$(I(x)y(x))' = I(x)Q(x)$$

▶ Step 2. Integrate both sides to get the solution

$$y(x) = \frac{1}{I(x)} \int I(x)Q(x)dx.$$

Review session Midterm 1, Section 9.5: Linear equations

Parametric curves

Parametric equations of curve takes the form

$$x = f(t), y = g(t),$$

where $t \in (a, b)$.

The tangent slope

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}},$$

if $\frac{dx}{dt} \neq 0$.

Review session Midterm 1, Section 10.1: Curves defined by parametric equations

Calculus with parametric curves

Tangent line equation at $t = t_0$ is given by

$$y(x) = slope \cdot (x - x(t_0)) + y(t_0).$$

At points where dy/dx = 0, the tangent line is horizontal.
At points where dy/dx = ±∞, the tangent line is vertical.

Review session Midterm 1, Section 10.2: Calculus with parametric curves

Calculus with parametric curves

Second order derivative is

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}.$$

Review session Midterm 1, Section 10.2: Calculus with parametric curves