
Series

Definition

a1 + a2 + a3 + · · · is called an infinite series or just series.

Denoted by
∞∑
n=1

an, or
∑

an.

Chapter 11: Sequences and Series, Section 11.2 Series 24 / 40



Series

Given a series
∑∞

n=1 an. The partial sum is the sum of the first n

terms of the series, denoted by sn.

sn :=
n∑

i=1

ai = a1 + a2 + · · ·+ an.

If limn→∞ sn exists as a finite number, then the series

∞∑
n=1

an := lim
n→∞

sn,

and we say it is convergent.

If limn→∞ sn does not exist, we say
∑∞

n=1 an is divergent.
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Series

� Example 1. Suppose sn = 3n
2n+3 . Then by definition,∑∞

n=1 an = limn→∞ sn = limn→∞
3n

2n+3 = 3
2 .
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Series

� Example 2. Show that
∑∞

n=1
1

n(n+1) is convergent. And it is equal

to 1.

Solution: The partial sum

sn =
1

2
+

1

6
+ · · ·+ 1

n(n + 1)
.

Note that
1

n(n + 1)
=

1

n
− 1

n + 1
. So

sn = (1− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
) · · ·+ (

1

n
− 1

n + 1
)

All the terms, except 1 and − 1
n+1 , cancel. So sn = 1− 1

n+1 .

Hence

lim
n→∞

sn = 1.
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Series

By definition, it means
∑∞

n=1
1

n(n+1) is convergent and it is equal

to 1.

� Very few series have such a beautiful cancellation formula. For

most of the series, we cannot compute the partial sum explicitly.

Chapter 11: Sequences and Series, Section 11.2 Series 28 / 40



Series

� Example 3. (Geometric series) Compute
∑∞

n=0 a · rn. For what

values of r , this series converges.

I Remark: Recall {an} is a geometric sequence if an+1

an
equals a

constant r , for all n.

Solution: If r 6= 1,

sn = a + ar + ar2 + · · ·+ arn−1 = a
1− rn

1− r
. (1)

When r = 1, sn = a + a + · · · a = na.
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Series

How to prove identity (1)?

sn = a + ar + ar2 + · · ·+ arn−1

r · sn = ar + ar2 + ar3 + · · ·+ arn

Subtract the first line by the second line gives

(1− r)sn = a− arn

which is equivalent to

sn = a
1− rn

1− r

for r 6= 1.
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Series

If |r | < 1, then limn→∞ rn = 0. Thus

lim
n→∞

sn =
a

1− r
.
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Series

If r = 1, then the partial sum sn is not equal to a 1−rn
1−r . It is

sn = na, whose limit is infinity.

If r ≤ −1 or r > 1, then limit of rn does not exist. (Recall the four

cases in Chapter 11.1, in Oct 29 notes.) Hence limit of sn does not

exist.
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Series

Conclusion: If −1 < r < 1, then the series converges and

a + ar + ar2 + · · · =
∞∑
n=0

arn = a
1

1− r
.

If r ≤ −1 or r ≥ 1, then
∑∞

n=0 ar
n diverges.
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Series

� Example 4. Find the sum of geometric series

5− 10

3
+

20

9
− 40

27
+ · · · .

Solution: Note an+1

an
is a constant for all n, and they all equal to

−2
3 . Thus it is a geometric series. a = 5, r = an+1

an
= a2

a1
= −2

3 .

Apparently, |r | < 1.

Thus the series equals to

a
1

1− r
= 5 · 1

1− (−2
3)

=
5

1 + 2
3

= 3.
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Series

� Example 5. Is the series
∑∞

n=1 52n21−n convergent or divergent?

Solution:

∞∑
n=1

52n21−n =
∞∑
n=1

(52)n · 2 · 1

2n
=
∞∑
n=1

2 · (25

2
)n.

Note r = 25
2 > 1, thus the geometric series diverges.
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Series

� Example 6. Find
∑∞

n=100 2−n.

Solution:

∞∑
n=100

2−n =(
1

2
)100 + (

1

2
)101 + (

1

2
)102 + (

1

2
)103 + · · ·

=(
1

2
)100

(
1 +

1

2
+ (

1

2
)2 + (

1

2
)3 + · · ·

)
=(

1

2
)100

∞∑
n=0

1

2n
.

(2)

|r | = 1
2 < 1, thus

∑∞
n=0

1
2n = 1

1− 1
2

= 2.
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Series

Hence
∞∑

n=100

2−n = (
1

2
)100 · 1

1− 1
2

= (
1

2
)99.

This example shows that we can compute geometric series starting

with any index.
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Series

Theorem

If
∑∞

n=1 an is convergent, then limn→∞ an = 0.

� Remark: The converse is not true in general. If limn→∞ an = 0,

the series
∑∞

n=1 an may be convergent and divergent. We will give

examples in future.
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Series

Contrapositive Statement of the Theorem: If limn→∞ an 6= 0, then∑∞
n=1 an is divergent.

This is also called Divergence test.

� Example 7.
∑∞

n=1
n

2n+4 diverges.

Solution: Since limn→∞
n

2n+4 = 1
2 6= 0, by the contrapositive

statement of the Theorem,
∑∞

n=1
n

2n+4 diverges.
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