AS.110.109: Calculus II (Eng)

Chapter 11: Sequences and Series

Yi Wang, Johns Hopkins University

Fall 2018

■ Definition: A sequence (of numbers) is a list of $\{a_1, a_2, a_3, \dots\}$ ordered by an index set I. I is just the set of positive integers. Other ways to write a sequence:

$$\{a_n\}_{n=1}^{\infty}$$
,

or

$$\{a_n\}_{n\in\mathbb{Z}^+}$$
.

■ The numbers are not necessarily distinct.

Example 1. $a_1 = 1, a_2 = 0, a_3 = 0, \cdots$ is a sequence.

■ For some sequences, there is a function $f(x): \mathbb{Z}^+ \to \mathbb{R}$, such that $a_n = f(n)$.

Example 2. $a_1 = 1, a_2 = 3, a_3 = 5, a_4 = 7 \cdots$ is a sequence.

In this example, f(x) = 2x - 1. Another way to write it is

$$\{2n-1\}_{n=1}^{\infty}.$$

Example 3. $a_1 = 2$, $a_2 = 4$, $a_3 = 6$, $a_4 = 8 \cdots$ is a sequence. In this example, f(x) = 2x. Another way to write it is

$${2n}_{n=1}^{\infty}$$
.

■ Some more examples of sequences.

$$\{n^{2}\}_{n=1}^{\infty},$$

$$\{\sqrt{n+1}\}_{n=1}^{\infty},$$

$$\{\cos\frac{(n+1)\pi}{2}\}_{n=1}^{\infty},$$

$$\{\frac{1}{n} - \frac{1}{n+1}\}_{n=1}^{\infty}.$$

■ There are also examples that we cannot write down the general formula of the *n*-th term in the sequence. Example 4.

$$a_1 = 1, a_2 = 2,$$

$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 3$.

This is the famous Fibonacci sequence.

- There are 3 ways to express a sequence:
 - 1. list all the terms
 - 2. a function $f: \mathbb{Z}^+ \to \mathbb{R}$ such that $a_n = f(n)$
 - 3. an inductive formula.

■ If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are two sequences, then each of the following is a sequence:

$$\{a_{n+1}\}_{n=1}^{\infty},\ \{a_{n}^{2}\}_{n=1}^{\infty},\ \{a_{n}+b_{n}\}_{n=1}^{\infty},\ \{a_{n}\cdot b_{n}\}_{n=1}^{\infty},\ \{a_{n}^{2}+b_{n}^{2}\}_{n=1}^{\infty}$$

■ We will put a lot of effort to understand asymptotic behavior of a sequence, namely as $n \to \infty$.

Definition

If $\lim_{n\to\infty} \{a_n\}$ exists, we say the sequence is convergent.

Otherwise, we say the sequence is divergent.

- Property a: Suppose f(x) is an increasing/decreasing function, then $a_n = f(n)$ is an increasing sequence/decreasing sequence for all $n \ge 1$.
- Property b: Suppose f(x) is a function so that $a_n = f(n)$ for all $n \ge 1$. If $\lim_{x \to \infty} f(x) = A$, then $\lim_{n \to \infty} a_n = A$.
- Example 5.

$$\lim_{n \to \infty} \frac{n+1}{n} = \lim_{x \to \infty} \frac{x+1}{x} = 1.$$

$$\lim_{n \to \infty} \frac{\sqrt{n^2 - 1}}{n} = \lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{x} = 1.$$

One uses L'Hopistal's rule to derive the limit of the above two functions.

$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$

if $\lim_{n\to\infty} b_n \neq 0$.

- Property c: If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
 - ► Example 5.

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=0.$$

- Property d (Squeezing Theorem): If $0 \le a_n \le b_n$, $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = 0$.
 - ► Example 6. Determine if

$$\lim_{n\to\infty}\frac{\sin(\sqrt{n^2-1})}{n}$$

converges or diverges.

Solution: It converges because

$$\left|\frac{\sin(\sqrt{n^2-1})}{n}\right| \le \frac{1}{n}$$

and $\lim_{n\to\infty}\frac{1}{n}=0$

- Fact d' (Squeezing Theorem): If $c_n \leq a_n \leq b_n$, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = 0$, then $\lim_{n\to\infty} a_n = 0$.
 - ▶ Example 7. Determine if

$$\lim_{n\to\infty} a_n$$

converges or diverges, where $a_n = \frac{(-1)^n}{n}$ if n is odd; and $a_n = \frac{(-1)^n}{n^3}$ if n is even.

► Solution: Note

$$-\frac{1}{n} \le a_n \le \frac{1}{n^3},$$

$$\lim_{n\to\infty}-\frac{1}{n}=0$$

and

$$\lim_{n\to\infty}\frac{1}{n^3}=0.$$

By Squeezing Theorem, the sequence converges.