AS.110.109: Calculus II (Eng) Review Session Midterm 2

Yi Wang, Johns Hopkins University

Fall 2018

Polar Coordinates:

Given any point P = (x, y) on the plane

 $\triangleright$  r stands for the distance from the origin (0,0).

▶  $\theta$  stands for the angle from positive *x*-axis to *OP*. Polar coordinate:  $(r, \theta)$ 

# Polar Coordinates

- One can easily convert Cartesian coordinate (x, y) to polar coordinates (r, θ), and the other way around.
   r is a function of x, y;
  - $\theta$  is also a function of x, y.

$$r = \sqrt{x^2 + y^2};$$
$$\theta = \tan^{-1} \frac{y}{x}.$$

x is a function of r and  $\theta$ ; y is a function of r and  $\theta$ .

 $x = r \cos \theta;$  $y = r \sin \theta.$ 

### Areas and lengths in polar coordinates

Let  $r = f(\theta)$  for  $\theta \in [a, b]$  be a curve in the plane. The polar region is the region enclosed by the ray  $\theta = a$ ,  $\theta = b$  and the curve  $r = f(\theta)$  for  $\theta \in [a, b]$ .

How to compute the area?

$$A = \int_a^b \frac{1}{2}r^2 d\theta = \int_a^b \frac{1}{2}f^2(\theta)d\theta.$$

Areas and lengths in polar coordinates

Arc length in polar curve  $r = f(\theta)$  for  $\theta \in [a, b]$ 

$$L = \int_{a}^{b} \sqrt{(f'(\theta))^{2} + (f(\theta))^{2}} d\theta$$

The first type of improper integral:

$$\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

if the limit exists ("exists" means "limit exists as a finite number").
■ The improper integral ∫<sub>a</sub><sup>∞</sup> f(x)dx is convergent if the limit exists. It is divergent if the limit does not exist.

Geometric meaning:

 $\int_{a}^{b} f(x) dx$  is the area under the graph of f(x) from a to b.

 $\int_{a}^{\infty} f(x) dx$  is the area under the graph of f(x) from a to  $\infty$ .

Conclusion: 
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 converges if  $p > 1$ ;  
 $\int_{1}^{\infty} \frac{1}{x^{p}} dx$  diverges if  $p \le 1$ .

The second type of improper integral: the interval is finite, but the integrand is discontinuous at some points.

If f is continuous on [a, b) and is discontinuous at b, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b-} \int_{a}^{t} f(x) dx$$

if the limit exists as a finite number.

#### If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to a+} \int_{t}^{b} f(x) dx$$

if the limit exists as a finite number.

Therefore  $\int_0^1 \frac{1}{x^p} dx$  converges when p < 1,  $\int_0^1 \frac{1}{x^p} dx$  diverges when  $p \ge 1$ .

What if there are both vertical asymptotes and  $\infty$ ?

■ Find all vertical asymptotes, as well as ∞ to write the integral as the sum of several improper integrals. Then compute each improper integral.

Comparison test:

Suppose f and g are continuous with  $f(x) \ge g(x) \ge 0$ , for  $x \ge a$ . (1). If  $\int_a^{\infty} f(x) dx$  is convergent, then  $\int_a^{\infty} g(x) dx$  is convergent.

▶ (2). If  $\int_a^{\infty} g(x) dx$  is divergent, then  $\int_a^{\infty} f(x) dx$  is divergent.

Comparison test: (3). If  $\int_{a}^{\infty} |f(x)| dx$  is convergent, then  $\int_{a}^{\infty} f(x) dx$  is convergent.

Definition: A sequence (of numbers) is a list of {a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ··· } linearly ordered by an index set *I*. *I* is just the set of positive integers.

Other ways to write a sequence:

 $\{a_n\}_{n=1}^{\infty},$ 

or

 $\{a_n\}_{n\in\mathbb{Z}^+}.$ 



We will put a lot of effort to understand asymptotic behavior of a sequence, namely as  $n \to \infty$ .

#### Definition

If  $\lim_{n\to\infty} a_n$  exists, we say the sequence is convergent. Otherwise, we say the sequence is divergent.

Fact 1: Suppose f(x) is a function so that  $a_n = f(n)$  for all  $n \ge 1$ . If  $\lim_{x\to\infty} f(x) = A$ , then  $\lim_{n\to\infty} a_n = A$ .

Fact 2: If  $\lim_{n\to\infty} |a_n| = 0$ , then  $\lim_{n\to\infty} a_n = 0$ . Example 5.  $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0.$ 

Fact 3' (Squeezing Theorem): If 
$$c_n \le a_n \le b_n$$
,  
 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = L$ , for some real number  $L$ , then  
 $\lim_{n\to\infty} a_n = L$ .

#### Geometric sequence

$$\begin{split} &\lim_{n\to\infty} r^n = 0 \text{ if } |r| < 1.\\ &\lim_{n\to\infty} r^n = \infty \text{ if } |r| > 1.\\ &\lim_{n\to\infty} (-1)^n \text{ does not exist.}\\ &\lim_{n\to\infty} 1^n = 1. \end{split}$$

Conclusion: The sequence  $\{r^n\}$  converges if  $-1 < r \le 1$ , and it diverges for all other values of r.



### Fact 4: Every bounded, monotonic sequence is convergent.

### Definition

# $a_1 + a_2 + a_3 + \cdots$ is called an infinite series or just series. Denoted by

$$\sum_{n=1}^{\infty} a_n, \text{ or } \sum a_n.$$

Given a series  $\sum_{n=1}^{\infty} a_n$ , let  $s_n$  denote its partial sum

$$s_n=\sum_{i=1}^n a_i=a_1+a_2+\cdots+a_n.$$

If  $\lim_{n\to\infty} s_n$  exists as a finite number, then the series

$$\sum_{n=1}^{\infty} a_n := \lim_{n \to \infty} s_n,$$

and we say it is convergent.

If  $\lim_{n\to\infty} s_n$  does not exist, we say  $\sum_{n=1}^{\infty} a_n$  is divergent.

I

Example 1. Suppose 
$$s_n = \frac{3n}{2n+3}$$
. Then  
 $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{3n}{2n+3} = \frac{3}{2}$ .

■ Example 2. Geometric series a<sub>n</sub> = a · r<sup>n</sup>. Compute ∑<sub>n=0</sub><sup>∞</sup> a<sub>n</sub> for -1 < r < 1.</li>
 ▶ Remark: in other words, {a<sub>n</sub>} is a geometric series if a<sub>n+1</sub>/a<sub>n</sub> equals r for all n. Solution:

$$s_n = a + ar + ar^2 + \dots + ar^{n-1} = a \frac{1 - r^n}{1 - r},$$
 (1)

for  $r \neq 1$ .

If r = -1, then limit of  $s_n = a \frac{1-r^n}{1-r}$  does not exist. If r = 1, then the partial sum  $s_n$  is not equal to  $a \frac{1}{1-r}$ . It should be  $s_n = na$  whose limit is infinity. If  $r \leq -1$  or r > 1, then limit of  $r^n$  does not exist. Hence limit of

Review Session Midterm 2, Section 11.2 Series

 $s_n$  does not exist.

Conclusion: If -1 < r < 1, then

$$a + ar + ar^2 + \dots = \sum_{n=0}^{\infty} ar^n = a \frac{1}{1-r}$$

The series converges.

If  $r \leq -1$  or  $r \geq 1$ , then  $\sum_{n=0}^{\infty} ar^n$  diverges.



Work on some examples!

### Theorem

If 
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then  $\lim_{n\to\infty} a_n = 0$ .

Remark: The converse is not true in general.

Contrapositive Statement of the Theorem: If lim<sub>n→∞</sub> a<sub>n</sub> ≠ 0, then ∑<sub>n=1</sub><sup>∞</sup> a<sub>n</sub> is divergent.
Example. Determine if the series ∑<sub>n=1</sub><sup>∞</sup> arctan√n is convergent or divergent.
Solution: Note lim<sub>n→∞</sub> arctan√n = π/2 ≠ 0. Thus by the Test for Divergence ∑<sub>n=1</sub><sup>∞</sup> arctan√n diverges.