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Polar Coordinates

Polar Coordinates:
Given any point P = (x, y) on the plane
» r stands for the distance from the origin (0,0).
» 0 stands for the angle from positive x-axis to OP.

Polar coordinate: (r,0)
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Polar Coordinates

B One can easily convert Cartesian coordinate (x, y) to polar
coordinates (r,#), and the other way around.
r is a function of x, y;

0 is also a function of x, y.

r=+vx?+y?

0 =tan! )—/.
X
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Polar Coordinates

x is a function of r and 0;

y is a function of r and 6.

X = rcosb;

rsinf.
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Areas and lengths in polar coordinates

Let r = £(0) for 6 € [a, b] be a curve in the plane. The polar
region is the region enclosed by the ray § = a, 0 = b and the curve
r = () for 6 € [a, b].

How to compute the area?

b12 b12
= | Zr2do= | Zf%(6)ds.
A /azrdﬂ /2 (0)

a
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Areas and lengths in polar coordinates

Arc length in polar curve r = f(0) for 6 € [a, b]

L_/ V(F1(0)2 + (£(6))2do.
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Improper Integrals: Part 1

The first type of improper integral:

/:O f(x)dc:= lim /ab f(x)dx

if the limit exists (“exists” means “limit exists as a finite number").
M The improper integral [* f(x)dx is convergent if the limit exists.

It is divergent if the limit does not exist.
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Improper Integrals: Part 1

B Geometric meaning:
fab f(x)dx is the area under the graph of f(x) from a to b.
[.7 f(x)dx is the area under the graph of f(x) from a to co.
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Improper Integrals: Part 1

B Conclusion: [ -Ldx converges if p > 1;
J1° L dx diverges if p < 1.
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Improper Integrals: Part 2

The second type of improper integral: the interval is finite, but the
integrand is discontinuous at some points.

M If f is continuous on [a, b) and is discontinuous at b, then

/ab F(x)dx = lim /at F(x)dx

if the limit exists as a finite number.
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Improper Integrals: Part 2

M If f is continuous on (a, b] and is discontinuous at a, then

/ab F(x)dx = lim /tb F(x)dx

if the limit exists as a finite number.
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Improper Integrals: Part 2

Therefore fol L dx converges when p < 1, fol L dx diverges when
p=>1
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Improper Integrals: Part 2

What if there are both vertical asymptotes and oco?
B Find all vertical asymptotes, as well as co to write the integral as
the sum of several improper integrals. Then compute each

improper integral.
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Improper Integrals: Part 2

B Comparison test:
Suppose f and g are continuous with f(x) > g(x) > 0, for x > a.
> (1). If [>° f(x)dx is convergent, then [ g(x)dx is
convergent.
> (2). If [° g(x)dx is divergent, then [ °f(x)dx is divergent.
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Improper Integrals: Part 2

B Com parison test:

(3). If [ |f(x)|dx is convergent, then [* f(x)dx is convergent.
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Sequences

B Definition: A sequence (of numbers) is a list of {a1, a2, a3, -}
linearly ordered by an index set /. [ is just the set of positive
integers.

Other ways to write a sequence:

{3n}%ih

or

{an}n€Z+-
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Sequences

B We will put a lot of effort to understand asymptotic behavior of a

sequence, namely as n — 0.

Definition
If lim,_ oo an exists, we say the sequence is convergent. Otherwise,

we say the sequence is divergent.
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Sequences

B Fact 1: Suppose f(x) is a function so that a, = f(n) for all n > 1.

If limy_00 F(x) = A, then lim,_, a, = A.
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Sequences

B Fact 2: If limp_,o |an] = 0, then limy_ 0 @, = 0.

» Example 5.
—1)"
lim (=1)

n—oco N

=0.

Review Session Midterm 2, Section 11.1 Sequences 18 / 37



Sequences

B Fact 3' (Squeezing Theorem): If ¢, < a, < by,
lim, o0 by = lim,_oo ¢p = L, for some real number L, then

limp o0 an = L.
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Sequences

B Geometric sequence
limp oo r" =0if |r| < 1.
limp_o0 r" = o0 if |r| > 1.
limp—00(—1)" does not exist.
limpoo 1" = 1.
Conclusion: The sequence {r"} converges if —1 < r <1, and it

diverges for all other values of r.
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Sequences

B Fact 4: Every bounded, monotonic sequence is convergent.
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Series

Definition
a; + a» + az + - -+ is called an infinite series or just series.

Denoted by

(9
E an,org an.
n=1

Review Session Midterm 2, Section 11.2 Series 22 /37



Series

Given a series Y ° | ap, let s, denote its partial sum

n
Sp = E aj=ai+a+---+ an.
i=1

If lim,— oo Sy exists as a finite number, then the series
o0
E ap = lim s,
n—oo
n=1

and we say it is convergent.

If limp_o0 s» does not exist, we say > -, a, is divergent.
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Series

B Example 1. Suppose s, = 2313. Then

00 : : 3n 3
ZI‘I:]. an - |Imn_>oo Sn — I|mn_>oo m — §
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Series

M Example 2. Geometric series a, = a- r”. Compute > 77 a, for

—-1l<r<l1.

an+1

» Remark: in other words, {a,} is a geometric series if o

equals r for all n.

Solution:

1—1r"
sn:a—l—ar—i—arz—i—---—i—ar"*l:al ,
—r

(1)

for r £ 1.
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Series

If r = —1, then limit of s, = ak -
If r =1, then the partial sum s, is not equal to a1 . It should be
sp = na whose limit is infinity.

If r < —1orr>1, then limit of r" does not exist. Hence limit of

s, does not exist.
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Series

Conclusion: If —1 < r < 1, then

1
1—r

o0
atartar’4 ... = E ar" = a
n=0

The series converges.
If r<—1orr>1, then Z‘Z‘;O ar" diverges.
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Series

B Work on some examples!
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Series

Theorem

If 230:1 an is convergent, then lim,_,c a, = 0.

B Remark: The converse is not true in general.
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Series

Contrapositive Statement of the Theorem: If lim,_, a, # 0, then
Y021 an is divergent.
o0
B Example. Determine if the series Z arctan\/n is convergent or

. n=1
divergent.

Solution: Note ILm arctany/n = g # 0. Thus by the Test for

oo
Divergence Z arctan\/n diverges.

n=1
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