
Representation of functions as power series

Function 1
1−x can be written as a power series (geometric series):

1

1− x
= 1 + x + x2 + · · · =

∞∑
n=0

xn

for |x | < 1.

Why |x | < 1?

Because 1
1−x can be written as a power series only when the series

is convergent. The geometric series
∑∞

n=0 x
n is convergent on

|x | < 1.
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Representation of functions as power series

� Example 1. Write 1
1+x2

as the sum of a power series and find the

interval of convergence.

Solution: Replacing x by −x2, we have

1

1 + x2
=

1

1− (−x2)
=
∞∑
n=0

(−x2)n = 1− x2 + x4 − x6 + x8 − · · ·

It converges when | − x2| < 1 that is |x | < 1. Of course, we could

have determined the interval of convergence by ratio test, but it is

unnecessary here.
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Representation of functions as power series

� Example 2. Write 1
x+2 as the sum of a power series and find the

interval of convergence.

Solution:

1

2 + x
=

1

2(1− (− x
2 ))

=
1

2

∞∑
n=0

(−x

2
)n

It converges when | − x
2 | < 1 that is |x | < 2. (Of course, we could

have determined the interval of convergence by ratio test, but it is

unnecessary here.)
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Representation of functions as power series

How to take differentiation/integration of a function represented

by a power series on the interval of convergence?

Take differentiation/integration term by term in the power series.

� Theorem If the power series
∑

cn(x − a)n has radius of

convergence R > 0, then the function f defined by

f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · =
∞∑
n=0

cn(x − a)n

is differentiable (and therefore continuous) on the interval

(a− R, a + R) and
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Representation of functions as power series

(i)

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · ·

(ii)∫
f (x)dx = C + c0(x − a) + c1

(x − a)2

2
+ c2

(x − a)3

3
+ · · ·

The radius of convergence of the power series are both R.
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Representation of functions as power series

� Example 3. Express 1
(1−x)2 as a power series.

Solution: 1
(1−x)2 = ( 1

1−x )′. Thus we can take the derivative term

by term in the following identity

1

1− x
= 1 + x + x2 + · · · =

∞∑
n=0

xn.

and get

1

(1− x)2
= (

1

1− x
)′ =

∞∑
n=1

nxn−1.

The radius of convergence is the same as for the original series.

Radius of convergence is R = 1.
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Representation of functions as power series

� Example 4. Express ln(1 + x) as a power series.

Solution: ln(1 + x) =
∫

1
1+x dx .

1

1 + x
=
∞∑
n=0

(−x)n.
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Representation of functions as power series

Taking the integration term by term, we get

ln(1 + x) =

∫
1

1 + x
dx =

∞∑
n=0

(−1)n
xn+1

n + 1
+ C

=
∞∑
n=1

(−1)n−1
xn

n
+ C .

(7)

The radius of convergence is the same as for the original series.

Radius of convergence is R = 1.
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Representation of functions as power series

� Example 5. Find the power series for f (x) = tan−1 x .

Solution:

tan−1 x =

∫
1

1 + x2
dx

=

∫ ∞∑
n=0

(−x2)ndx

=
∞∑
n=0

(−1)n
x2n+1

2n + 1
+ C .

(8)

To find C , we put x = 0 and obtain C = tan−1 0 = 0.
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Representation of functions as power series

Thus

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n + 1
.

The radius of convergence is the same as for the original series.

Radius of convergence is R = 1.
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