
Alternating series

� Example 6.
∞∑
n=1

(−1)n
√
n

2n + 3

converges.

I Solution: It is obvious

lim
n→∞

√
n

2n + 3
= 0.

Thus all we need (in order to apply the alternating series test) is
√
n

2n+3 is decreasing.
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Alternating series

Consider f (x) =
√
x

2x+3 . By computation, f ′(x) =
3
2
−x√

x(2x+3)2
.

Thus f ′(x) < 0 is x > 3
2 . In particular, b2 > b3 > b4 · · · . Thus the

series is convergent.

� Remark: It is enough to assume bn is decreasing for n big enough

(i.e. there exists an integer A > 0, such that bn is decreasing for

n ≥ A).
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Alternating series

� Example 7. Let f and g are two polynomials

∞∑
n=1

(−1)n
f (n)

g(n)

converges if and only if deg(f ) < deg(g).

I Solution: All we need is f (n)
g(n) is decreasing for big enough n, and

lim
n→∞

f (n)

g(n)
= 0.

When deg(f ) < deg(g) holds, the above two statements are true.

Thus by the alternating series test, it is convergent.
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Alternating series

If deg(f ) ≥ deg(g), then limn→∞
f (n)
g(n) 6= 0. Thus by the divergence

test, the series diverges.
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Absolute convergence series

Definition

A series
∑∞

n=1 an is called absolutely convergent if the series of

absolute values
∑∞

n=1 |an| is convergent.
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Absolute convergence series

If all an are positive (an ≥ 0), then absolute convergence is the

same as convergence. But in general,

−
∞∑
n=1

|an| ≤
∞∑
n=1

an ≤
∞∑
n=1

|an|
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Absolute convergence series

Theorem

If a series
∑

an is absolutely convergent, then it is convergent.
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Absolute convergence series

� Example 1.
∞∑
n=1

(−1)n+1 1

n2 + 2n

I Note
∑∞

n=1
1

n2+2n
converges, by limit comparison test with

series
∑∞

n=1
1
n2

.

Thus using Theorem,
∑∞

n=1(−1)n+1 1
n2+2n

converges.
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Absolute convergence series

Definition

A series is called conditionally convergent if it is convergent but

not absolutely convergent.

� Example 2.
∞∑
n=1

(−1)n
1

np

for 0 < p ≤ 1 are conditionally convergent.
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Absolute convergence series

� Solution: We note by using the alternating series test,∑∞
n=1(−1)n 1

np converges. But the p-series
∑∞

n=1
1
np diverges for

these values of p.

Thus
∑∞

n=1(−1)n 1
np is conditionally convergent.
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Absolute convergence series

� Example 3. Determine whether

∞∑
n=1

cos n

n2

is convergent or divergent.

Solution:
∞∑
n=1

|cos n

n2
| ≤

∞∑
n=1

| 1

n2
|
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Absolute convergence series

and we know
∞∑
n=1

| 1

n2
|

converges. Thus
∞∑
n=1

cos n

n2

is absolutely convergent and therefore is convergent.

Chapter 11: Sequences and Series, Section 11.6 Absolute convergence series 99 / 168


