
The comparison test

Limit comparison test revisted:

The limit comparison test: suppose
∑

an and
∑

bn are series with

positive terms.

Suppose

lim
n→∞

an
bn

= c.

a) If c > 0 (including c =∞), and
∑

bn diverges, then
∑

an

diverges.

b) If c <∞ (including c = 0), and
∑

bn converges, then
∑

an

converges.
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� Proof (of the convergence case) of this modified version of limit

comparison test can be seen from the following example. Proof (of

the divergence case) of this modified version of limit comparison

test can be derived similarly.

I Example 12. Determine if the series
∞∑
n=1

n3

en
is convergent or

divergent.

Solution: Compare
n3

en
with

2n

en
. Since

lim
n→∞

n3

2n
= 0,

there exists a constant A, s.t. for n ≥ A,

n3

2n
< 1.
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Hence for n ≥ A,
n3

en
=

n3

2n
· 2n

en
<

2n

en
.

Since the series
∞∑
n=1

2n

en
converges, by comparison test

∞∑
n=1

n3

en
also

converges.
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I Example 13. Determine if the series
∞∑
n=1

1

n1+
1
n

is convergent or

divergent.

Solution: Compare
∞∑
n=1

1

n1+
1
n

with
1

n
.

Note
1

n1+
1
n

=
1

n

1
n
√
n
,

and

lim
n→∞

1
n
√
n

= 1.
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We have

lim
n→∞

1

n1+
1
n

1
n

= 1

It is known that
1

n
diverges. Thus

∞∑
n=1

1

n1+
1
n

also diverges.
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I Example 14. Determine if the series
∞∑
n=1

n!

nn
is convergent or

divergent.

Solution: Let’s say n is even for example. We can write

n!

nn
=

1

n
· 2

n
· · ·

n
2

n
·

(n2 + 1)

n
· · · n

n

Now each term i
n ≤

1
2 for i = 1, · · · n2 . Also each term i

n ≤ 1 for

i = n
2 + 1, · · · n.

Thus

[
1

n
· 2

n
· · ·

n
2

n
] · [

(n2 + 1)

n
· · · n

n
] ≤ [

1

2
· · · 1

2
] · [1 · · · 1] = (

1

2
)n/2
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∞∑
n=1

(
1

2
)n/2 =

∞∑
n=1

(
1√
2

)n converges. Thus
∞∑
n=1

n!

nn
converges.
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